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Contact System: A Vascular Biology Modulator With Anticoagulant,
Profibrinolytic, Antiadhesive, and Proinflammatory Attributes

By Robert W. Colman and Alvin H. Schmaier

T physiologic reactions of vascular biology. Last, this presenta-
tion will point to possible new therapeutic strategies to treat

HE KALLIKREIN-KININ system was first recognized
as a plasma and tissue proteolytic system responsible

for the liberation of the vasoactive, proinflammatory media- various diseases arising out of the knowledge of this system
in physiologic and pathophysiologic states.tor, bradykinin (BK).1 BK, a nonapeptide released from ki-

ninogens by kallikreins, could reproduce many of the charac-
STRUCTURE-FUNCTION CHARACTERISTICSteristics of an inflammatory state, such as changes in local

OF THE CONTACT SYSTEMblood pressure, edema, and pain, resulting in vasodilation
and increased microvessel permeability. In 1975, three indi- High Molecular Weight Kininogen (Williams, Fitzgerald
viduals were described with deficiency of high molecular Factor)
weight kininogen (HK), a precursor of BK, all of whom had

Gene expression and regulation. The two forms of
a prolonged activated partial thromboplastin time (APTT),

plasma kininogens, HK and low molecular weight kininogen
a surface-activated coagulation protein screening test.2-4 De-

(LK), are the products of a single gene.5,6 This gene maps
spite the fact that none of these individuals had a hemor- to 3q26-qter, the location of the homologous a2HS-glycopro-
rhagic state, studies on the plasma kallikrein-kinin system tein and histidine-rich glycoprotein.7-9 The single kininogen
focused on defining the procoagulant property of HK. In gene of 11 exons consisting of 27 kb produces a unique
fact, it was already known that deficiency of the two zymo- mRNA for HK and LK by alternative splicing (Fig 1).6 HK
gens, factor XII and prekallikrein, required for the enzymatic and LK share the coding region of the first nine exons, a
cleavage of HK, also did not lead to bleeding. These plasma part of exon 10 containing the BK sequence, and the first
proteins together were grouped as the contact system because 12 amino acids after the carboxy-terminal sequence of BK.
they required contact with artificial, negatively charged sur- Exon 11 codes for a unique 4-kD light chain of LK. The
faces for zymogen activation. Over the last 20 years, these complete exon 10 contains the full coding sequence for the
proteins have been shown to have little influence on hemo- unique 56-kD light chain of HK. A novel mechanism for
stasis. However, examination of their molecular, biochemi- alternative RNA processing has been characterized in the rat
cal, biologic, and physiologic properties has shown that these kininogen gene.10 Splicing efficiency is controlled by the
proteins interact with a number of physiologic and patho- interaction of U1 small nuclear ribonucleoproteins and the
physiologic systems. Cloning and delineation of their struc- U1 small nuclear RNA (snRNA)-complementary repetitive
ture-function relationships have shown new activities of sequences of the kininogen pre-mRNA. The mRNA for LK
these proteins such as protease inhibition, antithrombin func- and HK are 1.7 and 3.5 kb, respectively.
tion, and antiadhesive properties. Their specific interactions The molecular basis for one example of homozygous total
with biologic membranes of endothelial cells, platelets, neu- kininogen deficiency, Williams trait, has been determined.11

trophils, and monocytes indicate that assembly and activa- A C to T transition at nucleotide 587 occurred, changing a
tion of this system takes place in a physiologic milieu, inde- CGA (Arg) codon to TGA (Stop) mutation in exon 5 and
pendent of negatively charged surfaces. In fact, it is correct to resulting in prevention of synthesis of both HK and LK.11

say that the so-called elusive physiologic, negatively charged The phenotype of this defect is similar to that seen in Brown-
surface for contact system activation is actually the assembly Norway, Katholiek strain rats that have absent plasma kinin-
of these proteins on cell membranes. In vivo, a negatively ogens, but the defect in the rats is due to a single point
charged surface is not needed for activation. One may argue mutation, Ala163 to Thr, which results in defective secretion
that the term contact activation is a misnomer to describe from the liver.12 Little is known about what regulates gene
this system. The proteins of the plasma contact system have expression of kininogens. In the rat, ovariectomy results in
anticoagulant, profibrinolytic, antiadhesive, and proinflam- a reduction of kininogen transcripts in the liver, whereas
matory functions. This review presents a revitalized view of
the contact system as a physiologic mediator of vascular
biology and inflammatory reactions. We will first examine From the Sol Sherry Thrombosis Research Center, Temple Uni-
the current structure-function knowledge of each of the pro- versity School of Medicine, Philadelphia, PA; and the Hematology/

Oncology Division, Department of Internal Medicine, University ofteins of the system: HK, prekallikrein, and factor XII. We
Michigan, Ann Arbor, MI.will next describe how this system assembles on cell mem-
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COLMAN AND SCHMAIER3820

Fig 1. The domain structure of the kininogens. The kininogens are produced by one gene with 11 exons (E1-E11). E1-E3 codes for domain
1 (D1) on both HK (high molecular weight kininogen) and LK (low molecular weight kininogen). Parts of domain 1 inhibit atrial naturetic factor.
E4-E6 codes for domain 2 (D2), which has papain and unique calpain inhibitory sequences. E7-E9 codes for domain 3 (D3), which has papain
inhibitory sequences. Domain 4 (D4) is coded by part of E10; it is the bradykinin sequence on kininogens and the first 12 amino acids of the
light chains of HK and LK. The remainder of E10 codes for HK’s light chain, which consists of domain 5 (D5H) and domain 6 (D6H). D5H is an
artificial surface binding region; D6H has the prekallikrein and factor XI binding regions. Domains 3, 4, and 5 on HK also participate in cell
binding. E11 codes for the remainder of the unique light chain of LK (D5L).

estrogens increase kininogen mRNA levels.13 This result is region is separated after bradykinin liberation and rearranged
with the cysteine protease inhibitory region opposite the pre-consistent with the clinical observation that HK concentra-

tions increase in pregnancy.14 In contrast, progesterone treat- kallikrein binding region.26 The regions of kininogens are
divided into domains (Fig 1). Separating these domains arement reduced kininogen gene expression, resulting in a slight

reduction of plasma kininogen levels.15 Murine fibroblasts serine protease sensitive regions.27-29 As will be discussed
below, contiguity of certain domains are important for somesynthesize and secrete kininogens in response to cyclic-

AMP, forskolin, prostaglandin E2, and tumor necrosis factor biologic functions of kininogens such as calpain inhibition
and HK and LK binding to endothelial cells.30-32 Alterna-a.15 Similarly, tumor necrosis factor a has been recognized

to increase kininogen expression in HEP G2 cells.16 Little tively, proteolytic cleavage of HK unmasks a new function,
ie, its cell antiadhesive activity.33 Of course, the major activ-else is known to influence kininogen levels, only because

this aspect of kininogens has not been studied extensively. ity of kininogens, which is to deliver bradykinin, is pro-
grammed disruption of the protein, because bradykinin isProtein chemistry and structure of the kininogens. The

two mRNAs of the kininogens code for two separate pro- not active as a biologic peptide unless liberated from its
precursor.teins. LK is a 66-kD b-globulin with a plasma concentration

of 160 mg/mL (2.4 mmol/L) and an isoelectric point of Domain structure of kininogens. The kininogens are pro-
teins composed of multiple domains, each with associated4.7.17,18 HK is a 120-kD a-globulin with a plasma concentra-

tion of 80 mg/mL (0.67 mmol/L) and an isoelectric point of activities (Fig 1). Binding of kininogen to its cell receptors
facilitates bradykinin liberation in a circumscribed environ-4.3.18,19 Human liver is a source for cDNA for both kinino-

gens,5,6 but human umbilical vein endothelial cells have been ment in which the peptide can bind to bradykinin receptors
and influence the local cellular milieu. Thus, one can viewshown to contain HK mRNA and to synthesize the protein.20

Kininogen antigen also has been found in platelets, granulo- each function of the domains of the kininogens as participat-
ing in the whole protein’s kinin delivery activity. The kinino-cytes, renal tubular cells, and skin.19-24 LK, until its cloning,

was also known as an a1-cysteine protease inhibitor.25 Both gens, in general, can be divided into three portions: the heavy
chain that is common to both HK and LK, the bradykininHK and LK are composed of globular units. LK gel filters

at 66 kD and behaves as a true globular protein; HK, al- moiety, and the light chains that, as already stated, are unique
to HK and LK, respectively (Fig 1). Domains 1 through 3though 120 kD, gel filters at 220 kD, indicating a high axial

ratio. Physical evidence for HK being a complex of globular comprise kininogens’ heavy chain. Domain 4 is the bradyki-
nin region. Domain 5 for LK (D5L) is its unique 4-kD lightunits was obtained by electronmicroscopy studies.26 On elec-

tron microscopy, HK appeared to be a linear array of three chain. Domains 5 and 6 of HK (D5H or D6H) are unique to
this protein and comprise its light chain.linked centralized globular regions, with the two ends thinly

connected.26 Cleavage of HK by plasma kallikrein leads to a Little is known about the function of domain 1 except to
note that it has a low-affinity binding calcium binding sitestriking change in conformation in HK. The central globular
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CONTACT SYSTEM—A MATURING IN UNDERSTANDING 3821

Fig 2. The structure of high molecular weight kininogen. An amino acid sequence diagram of high molecular weight kininogen. A circle
with thin vertical lines represents a papain inhibitory domain. A circle with thin horizontal lines represents a calpain inhibitory domain. A
circle with a solid background represents a cell surface binding domain. A circle with thick vertical lines represents overlapping papain
inhibitory activity and cell surface binding activity. A circle with thick horizontal lines represents bradykinin. A circle with a blank backround
represents the factor XI binding domain. A circle with a shaded background represents overlapping prekallikrein and factor XI binding domain.

whose role is unknown.34 Although calcium ions are im- and thus functioned as a binding site (Fig 2). Another pep-
tide (C211-C229) C-terminal to this peptide was a directportant for phorbol 12-myristate 13-acetate upregulation of

LK and heavy chain binding to endothelial cells,35 there is inhibitor of calpain (IC50 Å 35 mmol/L). The two regions
probably form a continuous binding site on the three-dimen-no good evidence that calcium ions participate in HK bind-

ing to cells,31,36 contrary to other laboratories’ work.37,38 Re- sional structure of kininogens (Fig 2). A third peptide
(V128-L138), N-terminal to the QVVAG region, inhibitedcent evidence also indicates that a peptide from domain 1

inhibits atrial naturetic peptide.39 Domains 2 and 3 contain papain, but not calpain, indicating that the inhibitory sites
on domain 2 for these two cysteine proteases are not identi-the highly conserved amino acid sequence, QVVAG, found

in cysteine protease inhibitors (Fig 2).27 Both LK and HK cal (Fig 2). In contrast, the optimal inhibition of cathepsin
B and H requires three loops of domain 3 (Fig 2).43 Althoughare potent, tight-binding, reversible cysteine protease inhibi-

tors with Kis of 2 and 0.5 nmol/L, respectively, of platelet an inhibitor of cysteine proteases, kininogens are also sub-
strates of this class of enzyme when there is molar excesscalpain.18,40 Kininogens’ calpain inhibitory region is exclu-

sively found on domain 228,30,40,41, whereas papain and ca- of enzyme to inhibitor.18,44,45 Because kininogens are extra-
cellular or within granules in platelets and granulocytes, itthepsin L are effectively inhibited by regions on both do-

mains 2 and 3.27,30,42,43 Computer three-dimensional models has been unclear how they interact with cellular cysteine
proteases that, for the most part, are internal membraneof domain 2 were constructed using x-ray crystallographic

coordinates of cystatin, which is 50% identical to domains or cytosolic in location.19,21,46 However, when platelets are
activated, calpain translocates to the external membrane in2 and 3.30 Peptides from domain 2 of HK were selected

and air-oxidized to form disulfide-bonded loops. A peptide which it could be inhibited by plasma or externalized plate-
let a-granule HK.45-47containing Q170VVAG174 blocked HK inhibition of calpain
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COLMAN AND SCHMAIER3822

Domain 3 of kininogens has other functions. The finding Alternatively, Hasan et al56 indicate that the kininogens’
that LK and its isolated heavy chain bind to platelets and thrombin inhibitory activity previously ascribed to domain
endothelial cells indicates that there is a cell binding region 3,50 prepared by proteolytic cleavage, is really domain 4, or
on kininogens’ heavy chain.35,48,49 This point was confirmed the kinin moiety remaining attached to the C-terminus of
by direct studies using isolated and recombinant domain 3 domain 3. When pure or plasma HK is cleaved by plasma
that contained the heavy chain cell binding region on plate- kallikrein on an artificial surface, bradykinin is liberated
lets50 and neutrophils.51 Using a computerized model of do- from its parent protein in three ways.58,59 The first cleavage
main 3 also based on the structure of crystallized cystatin,52 yields a nicked kininogen composed of two disulfide-linked
the sequential amino acid structure of domain 3 was drawn 64- and 56-kD chains. The second cleavage yields bradyki-
to show three surface-exposed regions: a disulfide loop con- nin (0.9 kD) and an intermediate kinin-free protein of ap-
necting it to domain 2 and two hairpin loops (Fig 2). The proximately similar molecular weight to nicked HK. The
cysteine protease inhibitory region of domain 3 consists of third cleavage results in a stable, kinin-free protein composed
portions of these three surface-exposed loops. Using synthetic of two disulfide-linked 64- and 46-kD chains. However,
peptides of these surface-exposed regions, K244ICVGCP- when kininogens are cleaved in solution without a surface,
RDIP254 (KIC11), N276ATFYFKIDNVKKARVQVVAGK- this sequence does not necessarily occur and bradykinin can
KYFI301 (NAT26), and L331DCNAEVYVVPWEKKIYPT- remain attached to kininogens’ heavy or light chain.60 Be-
VNC-QPLGM357 (LDC27), studies were performed to cause isolated domain 3 was prepared by proteolytic cleav-
determine if they inhibit HK binding to endothelial cells. age in solution, we examined both trypsin-cleaved LK and
KIC11, NAT26, and LDC27 inhibited biotin-HK binding to domain 3 prepared by tryptic digestion and found that the
endothelial cells with IC50 of 1,000, 258, and 60 mmol/L, bradykinin moiety remained attached to LK’s heavy chain
respectively. The minimal sequence in LDC27 to inhibit bind- and isolated domain 3.32 Investigations were next performed
ing was 13 amino acids, C333NAEVYVVPWEKK345 (IC50 Å to determine if bradykinin, analogs of bradykinin, and its
113 mmol/L).53 Because papain blocked HK binding to endo- breakdown products block a-thrombin–induced platelets ac-
thelial cells, the cysteine protease inhibitory site overlaps with tivation. In experiments to be described below, all of these
the cell binding site on domain 3.53 Thus, the last 27 amino domain 4 fragments were shown to be inhibitors of a-throm-
acids of domain 3, which are contiguous to domain 4, the bin–induced platelet aggregation by preventing a-thrombin
bradykinin region, are an endothelial cell binding site. Throm- from cleaving its cloned receptor (PAR1).56

bospondin (TSP), a platelet a-granule protein secreted upon Certainly, domain 4, the bradykinin region, has many
platelet stimulation, also binds to HK both to a site on the functions assigned to this nanopeptide in addition to its new-
heavy chain requiring calcium ions and to the light chain est function, a-thrombin inhibition.56 In the liberation of
independent of calcium ions.54 TSP’s interaction with kinino- bradykinin, HK is a better substrate of plasma kallikrein and
gens’ heavy chain may be on domain 3 overlapping the KIC11 LK is a better substrate of tissue kallikrein. However, both
sequence.54

kininogens are substrates to both forms of kallikrein. Factor
The last function ascribed to domain 3 was kininogens’ XIIa cleaves HK similarly to plasma kallikrein.61 Factor XIa

a-thrombin inhibitory activity.48,50,55 Isolated domain 3, pre- initially cleaves HK into 76- and 46-kD bands. Upon pro-
pared by tryptic digestion of LK in solution, inhibited a- longed exposure to factor XIa, the 46-kD light chain of HK
thrombin–induced platelet activation.50 The thrombin inhibi- is proteolyzed into smaller, inactive fragments.62 Elastase
tory region was not the same as the platelet binding region treatment of LK renders the protein a better substrate of
because one monoclonal antibody (MoAb), which did not plasma kallikrein to liberate bradykinin and Met-Lys-brady-
block cell binding, neutralized HK’s ability to inhibit a- kinin,63 although it destroys HK’s procoagulant activity. Ca-
thrombin’s activation of platelets.50 Furthermore, the a-

thepsin D inactivates kininogens’ cysteine protease inhibi-
thrombin inhibitory region on kininogens was not one of the

tory activity.64 One last function of domain 4 is to servethree cell binding regions, KIC11, NAT26, or LDC27.53,56,57

as a cell binding region.65 The carboxy terminal portion ofTwo other distinct sequences, one from domain 3 and an-
bradykinin and the amino terminal portion of kininogen’sother contiguous with domain 3 on domain 4, respectively,
common light chain participate as a low-affinity (kd Å 1are capable of inhibiting thrombin-induced platelet activa-
mmol/L) binding site to endothelial cells. The importancetion by different mechanisms. Kunapuli et al57 expressed
of the domain 4 cell binding region is not its isolated affinitydomain 3 in Escherichia coli, G235-M357. The recombinant
to the cell surface, but its ability to hold kininogens in thepolypeptide inhibited thrombin-induced aggregation of
proper conformation for optimal cell binding.26 For example,platelets with an IC50 of 4 mmol/L. It should be noted that
intact HK binds to endothelial cells maintained at 377C withthis sequence, unlike the tryptic digest of LK, does not in-
a kd of 7 nmol/L and 1 1 107 molecules/cell versus kinin-clude any part of domain 4. The protein coded by exon 7,
free kininogen, which binds to endothelial cells maintainedG235-Q292, showed an IC50 of 13.4 mmol/L, and a recombi-
at 47C with a kd of 30 nmol/L and 1 to 2.6 1 106 molecules/nant peptide of 23 amino acids, K270-Q292, showed an IC50

cell.31 These different data for intact or kinin-free HK’s inter-of 30 mmol/L. Finally, a synthetic heptapeptide located on
action with biologic surfaces are not surprising consideringdomain 3, L271-A277 (LNAENNA), was the minimal se-
the major change in the shape of HK that occurs when it isquence to inhibit a-thrombin–induced platelet aggregation
cleaved on an artificial surface.26(IC50 Å 65 mmol/L). As will be described below, this se-

LK’s light chain is 4 kD and consists of one domain (D5L).quence competes for thrombin binding to platelets by mim-
icking a GPIb sequence on platelets for binding thrombin. Its function is not known. HK’s light chain is 56 kD and
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CONTACT SYSTEM—A MATURING IN UNDERSTANDING 3823

consists of two domains, domains 5 (D5H) and 6. D5H serves XI binding site (P556-M613) (Fig 2).75-77 The affinity of
prekallikrein for its binding site on the light chain of HK isas an additional cell binding site on platelets, granulocytes,

and endothelial cells.35,49,51,66 Two areas of D5H were found to about 17 nmol/L.78,79 The prekallikrein and factor XI binding
site consists of a 31-residue sequence that contains predomi-participate in cell binding.67 One is on the amino terminal end

of the domain and consisted of sequences G402KEQGHTRRH- nantly b-turn elements.80 Although the 30 amino acid region
(S565-K595) was shown to be sufficient for binding, moreDWGHEKQRK420 (GKE19) and H421NLGHGHKHERDQ-

GHGHQRGH441 (HNL21) (Fig 2). These peptides inhibit bio- recent studies show that an N-terminally and C-terminally
truncated 27-mer (W569-K595) has the essential structuraltin-HK binding with IC50 of 792 and 215 mmol/L,

respectively.67 The other region is on the carboxy terminal elements for prekallikrein binding.81,82 HK’s procoagulant
activity is dependent on two activities: (1) the ability toregion of D5H and is subsumed in the region of two overlapping

peptides H479KHGHGHGKHKNKGKKNGKH498 (HKH20) bind to anionic surfaces via D5H and (2) the ability to bind
prekallikrein and factor XI to domain 6.28 Inhibition of eitherand H471VLDHGHKHKHGHGHGKHKNKGKK494 (HVL24)

that inhibit HK binding with IC50 of 0.23 and 0.8 mmol/L, interaction with MoAbs directed to these regions will inhibit
HK’s procoagulant activity.28,83,84 HK’s domain 6 serves asrespectively.67 Preliminary evidence suggests that the region

responsible for binding to neutrophils on D5 is localized to the acceptor protein for factor XI and prekallikrein binding
to platelets, neutrophils, and endothelial cells.37,85,86 As willH420-H458, similar to HNL21.68 Independent of its cell bind-

ing region, D5H has been recognized as HK’s artificial surface be seen below, prekallikrein binding to bound HK initiates
a sequence of events that leads to prekallikrein activation onbinding region.28,69,70 D5H’s histidine- and glycine-rich regions

have the ability to bind to anionic surfaces, zinc, and hep- biologic surfaces independent of factor XII activation.
arin.69-72 Using an MoAb that blocks HK clotting and binding

Prekallikrein (Fletcher Factor)of cleaved HK to anionic surfaces,28 a 7.3-kD peptide was
isolated on an immunoaffinity column that was identified by N- Prekallikrein (PK) is produced by a single gene that maps
terminal analysis as H441-K497.72 This 57 amino acid peptide to chromosome 4.87 PK’s gene structure is similar to that of
inhibited coagulant activity and had the ability to bind to an- factor XI.88 Its mRNA codes for a 371 amino acid heavy
ionic surfaces with an IC50 of 30 mmol/L. D5H contains two chain and a 248 amino acid light chain that are held together
histidine- and glycine-rich regions, one on its carboxy terminal by a disulfide bond (Fig 3).88 The amino acid sequence of
side, which was also rich in lysine (H457-K502), similar to PK has 58% homology to factor XI.88 The protein has four
HKH20, and the other on its amino terminal side (K420-H458), tandem repeats in the amino-terminal portion of the molecule
similar to HNL21. Using a deletion mutagenesis strategy on due to the linking of the first and sixth, second and fifth,
D5H, the anionic surface binding region was found to be associ- and third and fourth half cysteines residues present in each
ated with both histidine-glycine–rich regions of D5H.70 Either repeat (Fig 3). This arrangement results in four groups of
region was able to support coagulant activity provided it was 90 or 91 amino acids that are arranged in so-called apple
associated with D6.70 This question was examined further using domains.89,90 These same structures have been described in
synthetic peptides.67 Peptides HKH20 and HVL24, which are factor XI, suggesting a common ancestor genic duplication
found to be its high-affinity cell binding regions on the carboxy event for plasma prekallikrein and factor XI.87,91

terminal side of D5H, are also found to inhibit the procoagulant In plasma, PK appears as a doublet of 85 and 88 kD,
activity of HK.67 No other peptides from D5H, including whether or not the protein has undergone reduction.92,93 In
HNL21, have this property. Furthermore, a polyclonal antibody plasma, PK is a fast g-globulin (isolelectric point Å 8.5 to
reared to HKH20 is able to prolong the procoagulant activity 9.0) with a circulating concentration in blood estimated at
of HK in plasma.67 These data indicate that the endothelial cell 35 to 50 mg/mL (0.41 to 0.56 mmol/L).94,95 Human liver has
and neutrophil cell binding regions and the artificial surface been shown to be a source for PK cDNA.89 In liver disease,
binding region on HK are contained within the same highly plasma PK is decreased.94 Women on oral contraceptives
conserved region of D5H. Furthermore, the endothelial cell have increased PK levels, but women in their second and
and artificial surface binding regions are overlapping.67 Peptide third trimester of pregnancy do not.14,94 When PK is activated
HKH20 and its parent HK have the additional ability to interact to kallikrein (a-kallikrein) by either factor XIIa or factor
with M protein on Streptococcus pyogenes.73 It is of interest XIIf, the protein on reduced sodium dodecyl sulfate (SDS)
that the highest affinity cell binding site for D5H turns out to gel electrophoresis has two subunits: a heavy chain of ap-
be the artificial surface binding site. Efforts by many investiga- proximately 52 kD and two light chains variants of approxi-
tors over the last two decades to characterize HK binding to mately 36 and 33 kD.92,93 The active site of kallikrein is
artificial surfaces indicated the location of HK’s cell binding contained within its light chain because this region incorpo-
site. Last, when HK is bradykinin free, the residual kinin-free rates tritiated diisopropyl fluorophosphate in a covalent link-
kininogen has the ability to prevent the adhesive interaction of age with serine559 .96 Histidine415 and asparatic acid464 com-
vitronectin with tumor cells, endothelial cells, platelets, and prise the other two amino acids involved in catalytic activity
monocytes.33 This property is much weaker in intact, nonpro- (Fig 3). Prolonged incubation of kallikrein with itself results
teolyzed HK. This result was anticipated by the finding that, in autodigestion of its heavy chain into 33- and 20-kD bands
after the liberation of bradykinin from HK, the resulting kinin- as seen on reduced SDS gel electrophoresis to yield a form
free kininogen binds much more tightly to anionic surfaces termed b-kallikrein.97 These cleavages occur through the
than does the uncleaved HK.74 tandem repeats in the heavy chain and result in a protein

that cleaves HK more slowly and fails to activate neutrophilsHK’s domain 6 has a prekallikrein (S565-K595) and factor
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COLMAN AND SCHMAIER3824

Fig 3. The structure of prekallikrein. The letters A1 through A4 represent the apple domains of prekallikrein’s heavy chain. The notation
Factor XIIa and arrow at arginine371 represent the factor XIIa activation site on prekallikrein. Histidine415 , aspartic acid464 , and serine559 represent
kallikrein’s catalytic active site. A circle with a shaded background represents the regions involved in binding to high molecular weight
kininogen. Adapted from Chung et al.89

or induce their secretion of elastase.97,98 Nonreduced SDS prekallikrein will not become activated on an artificial sur-
face. It is because of this finding that this system is calledgel electrophoresis of artificial, negatively charged surface

activation of plasma results in the appearance of kallikrein the contact system. A single bond (Arg371-Ile372) is split,
generating a heavy chain of 371 amino acids still linked toin complex with a2macroglobulin (a2M) and C1 inhibitor as

well as the appearance of a 50-kD prekallikrein/kallikrein a light chain by a single disulfide bridge without a change
in molecular weight. On the endothelial cell surface, thisfragment containing a portion of the native protein’s heavy

chain.14 At least 75% of PK circulates bound, noncovalently, cleavage occurs in the absence of factor XII when PK is
bound to HK.86 The light chain of kallikrein reacts withto HK.99 The binding regions on PK for HK are on apple

domains 1 (F56-G86) and 4 (K266-G295) (Fig 3).100-104 The protease inhibitors, principally a2M and C1 inhibitor (C1-
INH). C1-INH forms a 1:1 stoichiometric complex with kal-prekallikrein binding regions for factor XII are localized in

apple domains 3 and 4, but the specific sequence has not likrein,105-109 resulting in loss of proteolytic and amidolytic
activity. HK protects kallikrein from inhibition by C1-INHbeen delinated.100

The in vitro conversion of human plasma PK to kallikrein, and a2M in a purified system,109,110 suggesting a mechanism
of substrate (HK) protection of the enzyme (kallikrein) fromits active form, is catalyzed by activated factor XII, on a

surface augmented by HK, or by Hageman factor fragment active site-directed protease inhibitors. a2M inhibits the ki-
nin-forming activity but only partially inhibits the amidolytic(bFXIIa) in the fluid phase.96 In the absence of factor XII,
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CONTACT SYSTEM—A MATURING IN UNDERSTANDING 3825

Fig 4. The structure of factor XII. Proteolysis at arginines 334, 343, and 353 (see arrows) results in activated factor XII (b-factor XIIa). The
catalytic triad of factor XIIa consists of histidine393 , aspartic acid442 , and serine544 . A circle with a shaded background represents the artificial
surface binding domains on factor XII’s heavy chain. A circle with horizontal lines represent two of factor XII’s zinc binding domains. Adapted
from Cool and MacGillivray.119

family of tPA and urokinase-type plasminogen activatoractivity of kallikrein108 by forming a covalent complex. Al-
(uPA) genes, but is different from most other coagulationthough C1 inhibitor and a2M account for an equal amount
protein genes.119 Its 2.4-kb mRNA codes for a 596 aminoof kallikrein inhibition in plasma, C1 inhibitor in plasma
acid, single chain b-globulin with a molecular mass of 80acts more rapidly than a2M.111 Antithrombin III also inhibits
to 90 kD and an isoelectric point of 6.1 to 6.5 (Fig 4).122 Itskallikrein, but it does so slowly, even in the presence of
concentration in plasma is estimated to be 30 mg/mL (0.375heparin.112 In the presence of HK, heparin, which binds to
mmol/L; range, 15 to 47 mg/mL).123,124 Human liver has beenHK,71,72 significantly accelerates the inhibition of kallikrein
shown to be a source for factor XII DNA120 and cultured ratby antithrombin. Protein C inhibitor has also been recognized
hepatocytes synthesize factor XII.125 In humans, estrogensto be a potent inhibitor of kallikrein.113,114 The major protein
administered to postmenopausal women and pregnantsubstrates of plasma kallikrein are factor XII, HK, and pro-
women elevate plasma levels of factor XII and its expressionurokinase.115,116

is enhanced in isolated livers of estrogen- and prolactin-
treated rats.126-128 Rat liver DNA has been shown to have a

Factor XII (Hageman Factor)
functional estrogen regulatory element contained in its 5*

Factor XII is produced by a single gene that maps to untranslated region that is modulated by 17b-estradiol.129

chromosome 5.117,118 The gene for factor XII is 12 kb and Factor XII, which contains an EGF domain, enhances HepG2
is composed of 13 introns and 14 exons.119 By both the cell proliferation and thymidine and leucine incorporation,
complementary DNA (cDNA) and DNA sequence, factor suggesting that it is a mitogen for these cells.130 In fact,
XII has multiple domains with extensive sequence homology factor XII, through its EGF domain, functions as a mitogen
with regions of tissue-type plasminogen activator (tPA; the and stimulates a signal transduction pathway by a mitogen-
epidermal growth factor [EGF]-like region and the kringle induced protein kinase.131 This activity is independent of
region) and fibronectin (Fig 4).119-121 The factor XII intron/ activated factor XII’s proteolytic activity.

Factor XII can be divided into two regions, a heavy chainexon gene is similar in organization to the serine protease
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and a light chain. The heavy chain contains two artificial Enzymatic activation of factor XII gives rise to succes-
sively smaller proteins, each with the same active site serinesurface binding regions, one at the distal amino terminal end

(I1-C28) and another on its fibronectin type I region (T134- site. Activation of zymogen factor XII by plasma kallikrein,
trypsin, or plasmin results in an enzyme with a decreasingR153) (Fig 4).132,133 Recent studies using recombinant dele-

tion mutants of factor XII confirmed these findings and also size, a decrease in its surface-binding properties, and a de-
crease in its coagulant activity. There are two major formsindicated that a third region on factor XII’s heavy chain, on

the second EGF-like or kringle domain (P313-R334, L344- of activated Hageman factor: factor XIIa (aXIIa), an 80-kD
protein consisting of two disulfide-linked polypeptide chains,R353), also participated in artificial surface binding (Fig

4).134 Upon contact with negatively charged surfaces, FXII and factor XIIf (Hageman factor fragments, HFf, bXIIa), a
28- to 30-kD fragment derived from factor XIIa.155-159 b-is autoactivated (solid-phase activation).135 Both the binding

to the surface and the cleavage during autoactivation result Factor XIIa results from cleavage at arginines 334, 343, and
353.120 The 80-kD form of activated factor XII has the abilityin distinct, defined conformational changes.136 Plasma pro-

teinases, including plasma kallikrein and plasmin, activate to bind to negatively charged surfaces133,134 and activate fac-
tor XI. The 28- to 30-kD enzymatic form of factor XII hasfactor XII (FXII) to FXIIa (aFXIIa), cleaving the bond con-

necting Arg353-Val354 and generating a two-chain molecule no surface-binding properties but retains its ability to activate
prekallikrein and C1.140,160,161composed of a heavy chain (353 residues) and a light chain

(243 residues), held together by a disulfide bond.120 The light The major plasma protease inhibitor of activated factor
XIIa and XIIf is C1 inhibitor, accounting for greater thanchain of FXIIa is a typical serine proteinase containing the

canonical Asp442 , His393 , and Ser554 and is the site for inhibi- 90% of the inhibition of these proteases in plasma.162-165 C1
inhibitor will bind both proteins and irreversibly inactivatetion by its major plasma inhibitor, C1-inhibitor.137 Hageman

factor fragments or FXII fragments (FXIIf, bFXIIa) (Mr Å them. When associated with a kaolin surface, factor XIIa is
protected from C1 inhibitor inactivation.166 Antithrombin III30 kD) are produced by further proteolytic cleavage, re-

sulting in a chain of 243 residues expressing catalytic activity has some inhibitory activity on factor XIIa.167,168 Plasmino-
gen activator inhibitor-1 (PAI-1) also inhibits factor XIIa.169attached to a fragment of the former heavy chain by a single

disulfide bond. Defects in the light chain of factor XII result Endothelial cells may also produce a protein that impairs
factor XII activation, but not its coagulant or amidolyticin disorders of the enzymatic activity of the protein. Coagula-

tion factor XII Washington DC has a Cys571-to-Ser substitu- activity once formed.170

tion that results in complete loss of procoagulant activity.138

Coagulation factor XII Bern is a protein that, when kalli- EXPRESSION OF KININOGENS
krein-cleaved, is unable to activate factor XI or prekalli- ON BIOLOGIC MEMBRANES
krein.139 Contact activation arises from the activation of fac-

A major impediment to appreciate the contact system istor XII. Factor XII can be activated by contact with
the pervasive notion that the system has no biologic rele-negatively charged surfaces or by the addition of a protease
vance because it is entirely activated on artificial surfaces.that produced enzymatic cleavage. These two mechanisms
Although most studies to date only describe activation ofhave been referred to as solid- and fluid-phase activation,
this system on artificial surfaces and much work has beenrespectively.140

performed to describe physiologic, negatively charged sur-The activation of factor XII that arises from binding with
faces (eg, acidic phospholipids, cholesterol sulfate, sul-negatively charged surfaces140-143 is termed autoactivation.144-149

fatides, gout crystals, etc), none has been convincing as aSome evidence suggests that Zn2/ binding to factor XII induces
single, unifying in vivo activator of this system. The physio-a conformation change that makes the protein more susceptible
logic, negatively charged surface for contact system activa-for development of enzymic activity when associated with nega-
tion is actually the assembly of these proteins on biologictively charged surfaces.150-152 There are four zinc binding sites,
surfaces, ie, cell membranes. In the protected milieu of celltwo of which have been identified (H40-H44 and H78-H82).153

membranes, we have now shown that the assembly of contactAlthough there are large number of candidate physiologic nega-
proteins on endothelial cell membranes leads to a multipro-tively charged surfaces that in vitro can be associated with factor
tein complex that results in prekallikrein activation indepen-XII autoactivation, the concept of autoactivation itself has never
dent of activated factor XII.86 This mechanism will be dis-been a sufficiently convincing mechanism to explain activation
cussed in a later section. Detailed investigations of theof factor XII and associated contact system activation in vivo.
proteins of the contact system interacting with cells have ledAlternative mechanisms have been searched for factor XII activa-
to this current hypothesis as to how this system is physiologi-tion in vivo. A rabbit endothelial cell activator of factor XII
cally active. Although there are some individual cell differ-has been described, but there is no corresponding example in
ences, we will first discuss the common features of contacthumans.154 Our own studies indicate that incubation of zymogen
protein expression and interaction with cells in the intravas-factor XII with human umbilical vein endothelial cells does not
cular compartment.result in human factor XII activation (unpublished data). How-

The pivotal protein for contact system assembly on cellever, assembly of PK bound to HK on human umbilical vein
membranes is HK. In addition to being contained withinendothelial cells results in PK activation independent of factor
platelets, granulocytes, and endothelial cells, unoccupiedXII by a cell-associated thiolprotease.86 Furthermore, factor XII
binding sites for HK exists on each of these cells.19-21,36-38,activation by this pathway can occur. In the absence of prekalli-
45,171,172 Why each of these cells contain kininogens and alsokrein, factor XII does not activate on endothelial cells in a puri-

fied system or in plasma (unpublished data). have unoccupied binding sites for them is not known.
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CONTACT SYSTEM—A MATURING IN UNDERSTANDING 3827

Table 1. Kininogen Expression on Cells in theIn platelets, less than 8% of total platelet HK is HK tightly
Intravascular Compartmentbound to the platelet membrane.19,45 Upon platelet activation,

40% of total platelet HK is secreted and another 40% of the Cell Type kd (nmol/L)* No. of Sites

total becomes expressed upon the activated platelet mem- Platelets
brane.45 The total platelet contribution to plasma HK is only 125I-HK 15 { 4† 911 { 239
0.23%.19,173 The local concentration of HK on or about the 125I-LK 27 { 2 647 { 147
activated platelet membrane may exceed 10 times the plasma 125I-D3 39 { 8 1,227 { 404

Granulocytesconcentration of this protein because platelets excrete their
125I-HK 10 { 1.3 4.8 1 104granule contents by exocytosis.19,45

Endothelial cellsThe majority of granulocyte-associated HK appears to be
125I-HK at 47C 52 { 13 9.3 1 105

exogenous HK tightly bound and nonexchangeable with the
125I-LK at 47C 43 { 8 9.7 1 105

granulocyte surface.174 Granulocytes have the ability to as-
Biotin-HK at 47C 46 { 8 2.6 1 106

semble all of the proteins of the contact system.174 Elastase
Biotin-HK at 377C 7 { 3 1.0 1 107

liberated from granulocytes proteolyzes cell-bound HK.175

* Values presented were determined by direct binding studies.Initial investigations suggested that human umbilical vein
† Values presented represent the mean { SD.endothelial cells were able to internalize HK.20,172 However,

more recent detailed investigations indicate that there is no
mechanism for HK internalization by endothelial cells.31 The
difference in the amount of HK associated with the endothe- endothelial cells.65 The interaction sites between HK and its
lial cell membrane when cells are maintained at 47C versus putative receptor may be multiple locations: 3 in domain 3,
377C is that, at the higher temperature, there is increased 1 in domain 4, and 2 in domain 5.53,65,67 Clearly, the sequence
expression of kininogen binding sites.20,31,35,172,176

of peptide LDC27 from domain 3 and HKH20 from domain
There are characteristic features of kininogens binding to 5 are the highest affinity binding regions on HK for endothe-

all cells. First, kininogen binding to cells has an absolute lial cells.53,67 It is important to appreciate that the binding of
requirement for Zn2/.20,21,36,38,171,172 The requirement for Zn2/

even a low-affinity sequence from domain 4, for example,
is probably not limited to mediate HK binding to the cells will block whole HK from binding to endothelial cells.65

by its zinc binding region of domain 5.69,72 LK binding to This information suggests that HK and, presumably, LK
platelets and endothelial cells also has an absolute require- have a very tight fit into its binding site(s), putative recep-
ment for Zn2/. These data indicate that Zn2/ is necessary tor(s). In fact, because the Ki and Kd calculated from binding
for the expression of the kininogen binding site, putative studies for HK, LK, and all of their subunits are the same,
receptor.35,48 Although some investigators have suggested the two chains of kininogens do not bind to cells in an
that calcium is a cofactor for binding to endothelial cells optimal manner.66,177 This kind of noncooperative interaction
and platelets, our investigations show that it does not influ- is characterized by a loss of entropy on binding and suggests
ence HK binding to unstimulated platelets, endothelial cells, that whole HK bends to fit into its binding site, putative
or granulocytes.21,31,36 However, calcium was a requirement receptor.177 In support of this notion, when bradykinin is
for maximal upregulation of LK or isolated heavy chain liberated from HK, kinin-free HK binds to endothelial cells
binding to endothelial cells after stimulation with phorbol with lower affinity and number of binding sites.31,65 Like-
esters.35 When HK or LK binds to platelets, granulocytes, wise, when LK is cleaved between domains 1 and 2 such
or endothelial cells, the affinity of binding are the similar that there is a change in the conformation of the LK, there
(Table 1). Because the affinity of HK binding to cells in the is decreased LK binding to endothelial cells compared with
intravascular compartment is between 7 and 52 nmol/L and intact LK.32 These changes in the biology of HK expression
the plasma concentration of HK is 670 nmol/L, we can postu- on cell membranes when bradykinin is removed from the
late that all kininogen binding sites in the intravascular com- protein are, in retrospect, predictable from the major confor-
partment are saturated in vivo. The number of binding sites mational changes that take place between HK and kinin-
for the kininogens on cells in the intravascular compartment free kininogen as shown in functional characteristics74 in
varies with the cell type. Platelets have approximately 1,000 electronmicroscopy26 and documented by circular dichro-
binding sites/cell; granulocytes have approximately 50,000 ism.178

sites/cell; and endothelial cells have approximately The kininogen binding site, putative receptor on endothe-
1,000,000 sites/cell when chilled to 47C and approximately lial cells appears to be a structure that can be regulated.
10,000,000 sites/cell when maintained at 377C (Table First, treatment of endothelial cells with metabolic inhibitors
1).20,21,31,35,36,50 to anaerobic and aerobic metabolism and the hexose mono-

The expression of kininogens on cell membranes is a com- phosphate shunt abolish the ability of HK to bind to the
plex process. As indicated above in previous sections, there cells.31 Cycloheximide has no effect on HK binding to endo-
appear to be multiple regions on kininogens that allow them thelial cells. Second, temperature or the bradykinin sequence
to interact with its various cellular receptors. The first infor- in kininogens contributes to the level of kininogen binding
mation that such was the case was the finding that HK binds to endothelial cells.31,65 Third, bradykinin treatment of endo-
to platelets, endothelial cells, and granulocytes by regions thelial cells results in increased HK and LK binding and this
on their heavy and light chains.35,49,51,66 HK actually has three pathway is mediated by protein kinase C and the endothelial

cell B1 bradykinin receptor.35 Fourth, heavy chain and LKdomains that fit into the putative kininogen receptor(s) on
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have a Ca2/ requirement for phorbol 12-myristate 13-acetate cytes.187 Kininogen binding to cytokeratin 1 requires Zn2/

and all cell binding domains of kininogens interact with it.4-0-methyl ether upregulation of their endothelial cell bind-
ing site, whereas HK does not.35 Fifth, angiotensin-con- gC1qR and suPAR block HK binding to cytokeratin, sug-

gesting that these proteins participate in a multiprotein as-verting enzyme inhibitors potentiate the effect of bradykinin
on upregulating the HK binding site on endothelial cells.35 sembly on endothelial cells. These data along with the recent

finding that cytokeratin 8 is a cellular plasminogen receptorLast, when HK binds to endothelial cells, it initiates a series
of events that allow for an endothelial cell- or matrix-associ- suggest that cytokeratins may represent a new class of pre-

sentation receptors on cells.188,189 Full characterization of theated enzyme to activate prekallikrein bound to HK.86 Thus,
bradykinin upregulates kininogen binding on endothelial multiprotein kininogen receptor complex is the next chal-

lenge in this field.cells and kininogens can influence bradykinin formation.35,86

These data indicate that this system is tightly controlled in
HK AND CELLULAR ACTIVATIONan autocrine-like manner.

The combined data described above indicate that there On endothelial cells and platelets, kininogen binding mod-
should be a physiochemical receptor(s) for kininogens on ulates activation of the contact system. Platelet and endothe-
blood and endothelial cells. Recent evidence proposes a lial cell bound HK is protected from activation by exogenous
number of candidate proteins to be the kininogen receptor(s). plasma kallikrein.66,190 Moreover, HK serves as the binding
Antibody inhibition studies suggest that Mac-1 (CD11b/18) site or receptor for factor XI and prekallikrein on platelets
may be an HK binding site on granulocytes.51 Fibrinogen and endothelial cells.37,85,86,191 No evidence exists to date to
has been shown to be a noncompetitive inhibitor of HK indicate that platelet-associated factor XI is activated to fac-
binding to granulocytes and ADP-stimulated platelets.175 HK tor XIa in any favorable fashion.192 However, prekallikrein
could bind directly to CD11b/18 on granulocytes or could bound to HK on platelets or endothelial cells can result in
interact with a receptor complexed to that integrin (see be- its activation to kallikrein by a factor XIIa-dependent85,193 or
low). Herwald et al180 have isolated on a HK affinity column independent86 mechanism. The factor XII-independent pre-
from EA.hy926 cells, a human umbilical vein endothelial kallikrein activation mechanism is due to a membrane- or
cell line,179 a 33-kD protein that was identified as gC1qR. matrix-associated thiolprotease whose activity is regulated
gC1qR is a known C1 receptor protein181 that only binds HK by HK binding.86 Both situations result in the generation
and peptides from domain 5, but not LK or binding peptides of bradykinin.86 Thus, cell membrane assembly of contact
from domain 3. Furthermore, its ability to bind HK does proteins through binding can result in a complex that can
not require Zn2/, although other workers claim that Zn2/ is be activated through physiologic mechanisms to result in
required for ligand blots.182 Moreover, only a small portion bradykinin liberation and the kinin-dependent activities.
of total endothelial cell gC1qR is found on the external In addition to the general characteristics of contact pro-
membrane of endothelial cells.183 These data indicate that teins interacting with cells of the intravascular compartment
gC1qR cannot explain all of the characteristics of the kinino- as described above, there are some unique protein-cell inter-
gen receptor. Factor XII blocks HK binding to qC1qR.180

actions as well. Kallikrein, but not PK, is chemotactic for
These data support the previous finding that factor XII par- neutrophils.194 Exposure of neutrophils to concentrations of
tially blocks HK binding to endothelial cells.184 The kinino- kallikrein capable of eliciting chemotaxis increased aerobic
gen binding protein just described may form part of a multi- glycolysis and activity of the hexose-monophosphate
protein receptor complex to explain the features of HK and shunt.194 In the presence of calcium, neutrophils aggregate
LK binding to cells. Recently, preliminary evidence has been in response to kallikrein.195 This interaction is associated
presented that HKa also binds to the urokinase receptor on with stimulation of the respiratory burst in neutrophils, as
endothelial cells.185 An antibody to domain 2/3 of the uroki- indicated by an increase in oxygen uptake.195 Kallikrein also
nase receptor completely inhibits HKa binding to endothelial induces neutrophils to release human neutrophil elastase
cells, as does vitronectin, a ligand for this receptor domain. from their azurophilic granules196 and primes neutrophils for
Soluble urokinase receptor markedly inhibits the binding of superoxide production.197

HKa and forms a zinc-dependent complex with it in a cell- In plasma, human neutrophils release elastase during
free system. The finding that integrins are tightly associated blood coagulation,198 but neutrophils resuspended in either
with the urokinase receptor186 and can enhance the binding PK- or FXII-deficient plasma release less than one-third of
of ligands to domain 2/3 of the urokinase receptor could be the amount of elastase released in normal human plasma.196

relevant to the interaction of kininogens with neutrophils, A skin window technique that assesses the in vivo chemo-
which display both integrins and the urokinase receptor. Re- taxis of leukocytes in response to tissue or microvascular
cent evidence indicates that HKa binds directly to cells trans- injury shows a significant impairment in chemotaxis in FXII
fected with Mac-1 and to purified Mac-1.186a The interaction and PK-deficient patients.199 This result suggests that both
of the urokinase receptor with CD11b/18 could be a potential kallikrein and FXIIa are important in the release of elastase
pathway by which kininogen binding could signal within from neutrophils in plasma. In addition, kallikrein induces
cells. However, because platelets do not express the uroki- an in vitro release of elastase from neutrophils in a concentra-
nase receptor, this candidate binding site also cannot be the tion-dependent fashion that requires the presence of both the
major kininogen receptor on all cells. Recent evidence indi- active site of kallikrein (on its light chain) and an intact
cates that cytokeratin 1 is an additional kininogen (HK and heavy chain.200 The requirement for an uncleaved heavy

chain can be explained by the requirement for both apple 1LK) binding site on endothelial cells, platelets, and granulo-
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Table 2. Kininogens’ Antithrombin, Antiadhesive, andand apple 4 sequences for binding of kallikrein to HK on
Profibrinolytic Activitiesneutrophils.104,105 Kallikrein formation occurring in human

sepsis and experimental arthritis and enterocolitis (see be- Domain Activity

low) would also recruit neutrophils to participate in the body Bradykinin Stimulates prostacyclin formation
defenses. FXIIa has also been shown to cause neutrophil Bradykinin Stimulates NO formation
aggregation201 and degranulation (release of elastase). FXIIf Bradykinin Stimulates superoxide formation
will not stimulate neutrophils, and, thus, a domain on the Bradykinin Selectively stimulates tissue plasminogen

activator secretionheavy chain is required. However, the catalytic activity of
RPPGF Prevents a-thrombin from cleaving its receptorFXIIa is required because the active site inhibitors, D-Pro-

(PAR1)Phe-Arg-CH2Cl and corn trypsin inhibitor, both abolish the
Domain 1 Inhibits atrial naturetic factorreaction.
Domain 2 Prevents calpain-related platelet aggregationFactor XIIa can decrease the number of FcgR1 (Ig) recep-
Domain 3 Prevents a-thrombin binding to platelets andtors on monocytes without affecting its affinity. This interac-

endothelial cells
tion requires the heavy chain, but, in contrast to the effect Domain 5 Prevents cells from sticking to artificial surfaces
of FXIIa on neutrophils, does not require the catalytic appa- Domain 5 Displaces fibrinogen from surfaces and cells
ratus of the light chain.202 The site on FXII responsible for Domain 6 Prekallikrein and factor XI receptor on
the downregulation of FcgR1 may be within the N-terminal endothelial cells and neutrophils
18 amino acids,203 and this decrease could impair the clear-
ance of immune complexes. Toossi et al204 have found that
factor XII induced monocyte synthesis and secretion of in- stimulate NO and cGMP formation in endothelial cells, pro-
terleukin-1 (IL-1) and IL-6. These investigators found that vides a major stimulus to prevent subendothelial smooth
lipopolysaccharide-stimulated secretion of these interleukins muscle proliferation.212,213 In the presence of an intact endo-
is also potentiated by factor XII. thelium, kinins appear to prevent vascular smooth muscle

growth and proliferation.214,215 Alternatively, when vessels
are injured, bradykinin stimulates protein kinase C and sub-BIOLOGIC INTERACTIONS OF CONTACT
sequently MAP kinases that can result in vascular smoothSYSTEM PROTEINS
muscle growth and proliferation.215-217 Thus, in an intact ves-The simple fact that a deficiency of HK, prekallikrein,
sel, the sum of bradykinin activities is to keep blood flowingand factor XII prolongs artificial surface-activated clotting
and vessels patent; in the absence of endothelium, bradykininwithout being associated with bleeding has obfusicated un-
stimulates repair of vessels that could lead to smooth musclederstanding the role of this system in vivo. The absence of
proliferation and intimal hypertrophy.hemostatic states associated with these proteins does not

Bradykinin effects its changes in the intravascular com-lessen their importance. The dicotomy between abnormal
partment by binding to at least two receptors, the B1 andsurface-activated screening laboratory tests for bleeding
B2 receptors.218,219 Both of these receptors are G-coupled;states and in vivo hemostasis should give us caution in inter-
thus, binding of bradykinin stimulates cellular signal trans-preting laboratory tests as predictors of bleeding. Indepen-
duction. Increased bradykinin results in increased cellulardent of its lack of effect on hemostasis, contact system acti-
stimulation. Blocking of the B2 receptor with an antagonistvation modulates vascular biology. The multidomain
Hoe 140 (D-Arg,[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin) in de-kininogens have a number of biologic activities either within
veloping rats results in higher blood pressures, heart rates,the intact protein or becoming manifest when the intact pro-
and body weights than controls.220 The in vivo modulation oftein is proteolyzed by kallikreins or activated factor XII.
bradykinin levels by angiotensin converting enzyme (ACE)This system is a potent local regulator of blood pressure
inhibitors is believed to be the basis for the cardioprotectivethrough bradykinin delivery. It also has both selective anti-
attributes of these agents.221,222 ACE inhibitors induced NOthrombin and profibrinolytic activity. Lastly, the cleaving of
and prostacyclin formation in cultured bovine endothelialHK unmasks antiadhesive properties of the protein as well.
cells and protect isolated perfused hearts from ischemia.223

The effects of ACE inhibitors to elevate NO and protect
Bradykinin Delivery isolated ischemic hearts was abolished by the B2 receptor

antagonist, Hoe 140.224 ACE inhibitor treatment in spontane-The first and most enduring function of the plasma kinino-
gens is the delivery of bradykinin, a potent biologically ac- ously hypertensive rats prevented the development of hyper-

tension and left ventricular hypertrophy and Hoe 140 blockstive peptide.1 In many ways, kininogens and bradykinin, an
activation peptide from domain 4, contribute to vessel pat- these effects.225,226 These data in animals have been extended

to humans, in whom ACE inhibitors have also been shownency, increased blood flow, and anti-thrombotic/profibrino-
lytic activities (Table 2). Bradykinin itself is a potent stimu- to be protective against myocardial infarction by increasing

myocardial blood flow and decreasing ischemic changes.lator of endothelial cell prostacyclin synthesis; an inhibitor
of platelet function,205,206 superoxide formation,207 and tissue Although these cardioprotective effects of ACE inhibitors

may be sufficiently explained alone by bradykinin’s effectplasminogen activator release; and a stimulator of plasmino-
gen activation,208,209 nitric oxide formation,210 and endothelial on vasculature, recent information that this peptide and its

breakdown products are also selective inhibitors of a-throm-cell-dependent smooth muscle hyperpolarization factor for-
mation.211 Furthermore, bradykinin, through its ability to bin could contribute as well (see below).56
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Blood Pressure Regulation platelet aggregation.239 HK, LK, and D3 were found to non-
competitively inhibit a-thrombin, but not Phe-Pro-Arg-chlo-Although much is known about the physiologic effects of
romethylketone–treated thrombin, from binding to the plate-bradykinin and how its stimulates its response in cells, little
let high-affinity site and endothelial cells.31,48,50,56,240 Thisis known on what regulates its liberation from kininogens by
finding was one explanation of how all platelet activationkallikreins. What regulates prekallikrein and tissue kallikrein
by a-thrombin could be blocked by large molecular massactivation on the vascular endothelium is not known. Regula-
proteins such as HK and LK. Additional studies have recog-tion of these zymogen’s activation is important because they
nized other mechanisms for inhibition.directly modulate bradykinin liberation, which, in turn, has

Kunapuli et al57 found that recombinant domain 3 (con-a direct effect on blood pressure in vivo. Dextran sulfate
taining no residues of domain 4) inhibited thrombin-inducedactivation of rat plasma in vivo induces arterial hypotension,
aggregation of platelets with only twofold less affinity thanwhich can be blocked by a B2 receptor antagonist.227

purified HK, indicating that at least one site for inhibitionTransgenic mice overexpressing tissue kallikrein are hypo-
does reside in domain 3 (Fig 5). The minimal a-thrombintensive.228 Intramuscular delivery of rat kallikrein-binding
inhibitory sequence was Leu271-Ala277 .57 Leu271-Ala277 didprotein reverses hypertension in transgenic mice overex-
not inhibit platelet aggregation by ADP or collagen. It didpressing human tissue kallikrein.229 Rat kallikrein binding
not inhibit thrombin’s amidolytic or clotting activity. Leu271-protein or kallistatin is the cognate SERPIN of tissue kalli-
Ala277 also failed to inhibit platelet shape change and it didkrein.230-232 Gene delivery of tissue kallikrein reduced mean
not inhibit SFLLRN from aggregating platelets. Bradford etblood pressure of spontaneous hypertensive rats and this
al241 have obtained evidence that Leu271-Ala277 and K270-inhibition was blocked by kallistatin.233,234 These molecular
Q292 inhibited thrombin-induced platelet activation at lowgenetic studies directly indicate that presumed tissue kalli-
thrombin concentrations by inhibiting the binding of throm-krein induced bradykinin liberation directly modifies local
bin to GPIb-IX-V complex. Furthermore, antibodies to andand, if sufficiently diffuse, systemic blood pressure regula-
ligands of GPIba inhibited HK binding to platelets and HKtion.
inhibited binding of antibodies to GPIba to platelets. More-
over, domain 3 peptides directly inhibited high-affinity 125I–

Thrombin Inhibition a-thrombin binding to platelets. Finally, HK inhibited bind-
ing of thrombin to fibroblasts transfected with GPIb-IX-V.In addition to the salutory effects of kinins to maintain
These findings suggested that domain 3 peptides may blockvessel patency, bradykinin’s precursor proteins, the kinino-
a-thrombin binding to its high-affinity site on GPIba. Thegens, have been shown to selectively inhibit a-thrombin–
sequence NAEN appears in HK, domain 3 peptides, and theinduced platelet activation. There are at least three mecha-
ligand binding domain of GPIba. It is possible that HK’snisms by which kininogens influence a-thrombin–induced
domain 3 may mimic this high-affinity binding site forplatelet and endothelial cell activation48,50,235 (Table 2). The
thrombin. These findings do not necessarily imply that bind-first mechanism is an indirect one probably mediated by
ing of thrombin to GPIba itself results in platelet activation.kininogen’s ability to inhibit platelet calpain. When a-throm-
Rather, GPIba may serve to present thrombin to the G-bin activates platelets, cytosolic or internal membrane-asso-
protein–linked cloned thrombin receptor, thus lowering theciated platelet calpain translocates to the activated platelet
concentration of thrombin necessary to cleave the latter re-surface.46,47 Externalized platelet calpain is able to proteolyze
ceptor. Kininogens by blocking this interaction would thenplatelet surface membrane glycoproteins such as glycopro-
modulate thrombin-induced platelet activation.tein Ib.236 Platelet calpain also proteolyzes a putative platelet

A third mechanism of a-thrombin inhibition has been de-ADP receptor that exposes the platelet fibrinogen receptor
scribed by Hasan et al.56 Kininogens and peptides derived fromand thus allows for platelet aggregation.235,237 Thus, inhibi-
it actually inhibit a-thrombin–induced platelet activation bytion of externalized platelet calpain by leupeptin or HK, ie,
blocking the enzyme’s ability to cleave the cloned thrombininhibitors of calpains, results in inhibition of a-thrombin–
receptor (PAR1).56 In work already described above, purifiedmediated platelet aggregation by preventing fibrinogen bind-
domain 3 prepared from proteolytic cleavage actually had do-ing.55,235 These data have been used to develop a group of
main 4 attached to it.32,56 Peptides from domain 4, BK, andcompounds modeled after kininogens’ domain 2 that prevent
related sequences were found to inhibit a-thrombin–induceda- and g-thrombin–induced platelet aggregation without in-
platelet activation (Fig 5). Although large molecular mass HK,terfering with other platelet agonists and thrombin-induced
LK, and D3 inhibited a-thrombin binding to platelets, isolatedintracellular platelet activation.238 Selective thrombin-in-
domain 4, ie, bradykinin (RPPGFSPFR) and MKRPPGFSP-duced platelet aggregation inhibitors can be developed by
FRSSRIG, did not inhibit binding.48,50,56 These data indicatedmaking peptides modeled after kininogens’ domain 2.
that another mechanism is operative for these peptides to blockAdditional studies suggested that there are more mecha-
a-thrombin–induced platelet activation. Like the parent pro-nisms by which kininogens inhibit a-thrombin–induced
teins HK and LK, domain 4 peptides did not inhibit a-throm-platelet activation. HK and LK were found to inhibit a-
bin’s ability to cleave a tripeptide substrate or clot fibrinogen,thrombin–induced platelet aggregation and secretion.48,56

suggesting that these peptides did not interact with a-throm-Because a-thrombin–induced platelet secretion is indepen-
bin’s active site or anion binding exosite.31,48,50,56 Moreover,dent of and occurs before platelet aggregation, kininogens
like HK and LK, these peptides were not substrates of a-must interfere with a-thrombin–induced platelet activation

by other mechanisms than just inhibition of calpain-related thrombin and they did not form complexes with a-throm-
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Fig 5. Kininogens’ thrombin
inhibitory domains. A circle with
a solid background represents
thrombin inhibitory activity. A
circle with a shaded background
represents a cell membrane
binding region. A circle with di-
agonal lines represents overlap-
ping papain inhibitory activity
and cell membrane binding ac-
tivity.

bin.31,48,56 Domain 4 peptides did not block ADP-, collagen-, RPPGF specifically interfered with thrombin’s ability to cleave
the cloned thrombin receptor to activate platelets without in-or U46619-induced platelet aggregation in vitro.56 They did

block a-thrombin–induced calcium mobilization and g-throm- terfering with its procoagulant activity. These combined data
indicate that domain 4 peptides and this same sequence inbin–induced platelet aggregation in plasma in vitro.56 The mini-

mal form of domain 4 that inhibited a-thrombin–induced plate- kininogens are selective, proteolytic inhibitors of a-thrombin–
induced platelet activation by being directed to a-thrombin’slet activation was the peptide RPPGF (Fig 5).56 RPPGF is the

major angiotensin converting enzyme breakdown product of substrate, the cloned thrombin receptor. Compounds based on
the RPPGF sequence could represent a new class of thrombinbradykinin in plasma with a metabolic degradation rate of 4.2

hours.242,243 The mechanism by which RPPGF and related do- inhibitors that achieve selectivity by being directed to the sub-
strates of thrombin, rather than the enzyme itself.main 4 peptides inhibit a-thrombin–induced platelet activation

is unique. RPPGF does not block the thrombin receptor peptide,
Participation in FibrinolysisSFLLRN, from inducing platelet activation.56 Domain 4 pep-

tides prevent a-thrombin from cleaving the cloned thrombin In addition to these unique mechanisms of a-thrombin
inhibition, contact proteins participate in cellular fibrinolysis.receptor to initiate the activation process. This result means

that domain 4 peptides actually prevented a-thrombin from From the time of recognition of HK deficiency, this protein
has been ascribed to have a role in the fibrinolytic process,cleaving the cloned thrombin receptor after arginine41, a critical

step in a-thrombin activation of cells through this receptor.56 although the specific, physiologic mechanism has not been
known.2,4 It has been known for more than 35 years thatWhen a peptide was prepared that spanned the a-thrombin

cleavage site on the cloned thrombin receptor (NATLDPRSF- contact activation can increase total plasma fibrinolysis.244

Kallikrein, factor XIIa, and factor XIa cleave plasminogenLLR), RPPGF and HK actually prevented a-thrombin from
cleaving this peptide between the arginine and the serine.56 directly, albeit much less efficiently than tPA or uPA.245-248
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However, bradykinin has been characterized as a potent and can compete with vitronectin, which also binds to domain
2/3 of the urokinase receptor, and displace vitronectin andselective in vivo inducer of tissue-type plasminogen activator

release from endothelial cells in rabbits and humans.208,209 its associated molecule, plasminogen activator inhibitor-1,
thus enhancing fibrinolysis.Plasma kallikrein also has been characterized to be a kinet-

ically favorable activator of single-chain urokinase in
vitro.116 More recent studies suggested single-chain uroki- Antiadhesive Properties
nase activation by kallikrein can best occur on the platelet HK has been postulated to be an antiadhesive protein.
and endothelial cell surface.85,193,249

This property has been observed under three different situa-
These studies prompted us to examine the relationship of tions. First, cleaved, kinin-free kininogen (HKa) can com-

prekallikrein assembly on endothelial cells and how it may pete for deposition with adhesive proteins on artificial nega-
participate in single-chain urokinase activation (Table 2).86

tively charged surfaces such as those that occur on
When prekallikrein binds to HK on endothelial cells, the biomaterials. Second, HKa can compete with adhesive pro-
zymogen becomes activated to kallikrein, as indicated by teins for binding to cells. Third, HK on surfaces or in solution
elaboration of amidolytic activity, changes in the structure can prevent cells from attaching to protein-covered surfaces.
of prekallikrein to kallikrein on gel electrophoresis, and Vroman and Adams252 found that fibrinogen can be de-
cleavage of HK.86 Prekallikrein activation occurs indepen- tected immunochemically on a negatively charged surface
dently of any activated forms of factor XII. The prekalli- within seconds after normal human plasma contacts the sur-
krein-activating enzyme(s) is not a serine protease, but a face, but, within minutes, is no longer detectable. We have
membrane-associated or matrix-associated thiolprotease.86

shown that this phenomenon is due to the displacement of
Prekallikrein activation over endothelial cells is kinetically fibrinogen by HK after surface-dependent autoactivation of
similar to prekallikrein activation by factor XII on an artifi- factor XII.253,254 Factor XIIa, both directly and indirectly
cial surface. These data show for the first time that contact (through the formation of kallikrein), generates HKa from
protein assembly on endothelial cells results in prekallikrein HK. HKa (but not HK or LK) displaces fibrinogen from the
activation in the absence of factor XII and an artificial sur- surface.62 Therefore, the Vroman effect is due to the time-
face.86 This assembly of contact proteins allows for a physio- and surface-dependent generation of HKa, via contact activa-
logic pathway for this system to be activated. The degree of tion of plasma, which results in the physical displacement
prekallikrein activation is regulated by HK. Increasing HK of adherent fibrinogen from the surface.254 Extensive proteol-
concentrations upregulates the enzyme that activates cell- ysis results in HKi,62 which does not displace fibrinogen.254

bound prekallikrein. Thus, HK regulates prekallikrein We have also described a similar effect on blood cells,
activation, which, in turn, liberates more bradykinin from cell- as HK and/or HKa can displace 125I-fibrinogen from both
bound HK and removes HK from the surface to slow prekalli- neutrophils and platelets.175 Asakura et al33 extended these
krein activation.86 In support of this mechanism, we have results by showing that HKa, but not HK, HKi, or LK,
recently shown that peptides derived from D6 of HK can inhibited the adhesion and spreading of human osteosarcoma
downregulate plasmin formation by interfering with prekalli- cells to vitronectin-coated polystyrene plates. HKa inhibited
krein binding to HK on the endothelial cell surface.250 Also, the attachment of platelets and monocytes to extracellular
increased bradykinin increases kininogen binding, which de- matrix proteins, and the spread of bovine aortic endothelial
creases soluble kallikrein from cleaving HK to liberate more cells on both fibrinogen and vitronectin.33 The inhibition by
bradykinin.35 Thus, there is a closely regulated pathway of HK of cell attachment to vitronectin may be explained by
prekallikrein activation and bradykinin liberation. their competition for occupancy of domain 2/3 on the uroki-

The prekallikrein activation pathway on endothelial cells nase receptor.185 Results from our laboratory also indicated
participates in two pathways for fibrinolysis. First, kallikrein that neutrophils in a flow system at a shear rate of 20 s01

cleaves HK to liberate bradykinin, which is the most potent adhere to a fibrinogen-coated surface linearly. In contrast,
and specific stimulator of endothelial cell tissue-type plas- the rate of adherence to the same surface coated with HK is
minogen activator liberation.208,209 Second, kallikrein induces at least five times slower.255 The possibility of passivating
kinetically favorable conversion of single-chain urokinase surfaces with kininogen or its peptides may provide a new
into two-chain urokinase in an environment in which there approach to biocompatibility. Alternatively, ligands derived
is constitutive molar excess secretion of endothelial cell plas- from HK could, by binding to neutrophils, prevent their
minogen activator inhibitor-1.86,250 Formation of two-chain adhesion to surfaces or other cells such as endothelial cells.
urokinase results in a 4.3-fold increase in plasminogen acti-
vation. This system for plasminogen activation occurs in an DISEASE STATE INTERACTIONS
environment in which there is no contribution by factor XIIa.

Hereditary Angioedema (HAE)This mechanism for single-chain urokinase activation is a
pathway for cellular fibrinolysis that is either independent HAE is a congenital condition associated with a deficiency
of or conjoined with single-chain urokinase activation asso- or defect in C1 inhibitor (Table 3).256,257 Acute attacks of
ciated with its binding to its receptor.251 The possible binding HAE have been well-documented to be associated with con-
of HK (and, thus, kallikrein) to domain 2/3 of the urokinase tact system activation.14,258-260 Characteristically, in acute at-
receptor185 on the same molecule as prourokinase, which tacks of HAE, there is reduced plasma prekallikrein activity
binds to domain 1 of the receptor, may allow for a very with normal plasma prekallikrein antigen and reduced HK

activity and antigen.14,259,261 Contact activation arises due toefficient cleavage of the latter by kallikrein. In addition, HK
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Table 3. Diseases States and Conditions Associated With Contact System Activation

PK HK C1 INH a2M-Kal C1 INH-Kal
XI XII Complexes Complexes

Disease* Act. Ant. Act. Ant. Act. Ant. (Act.) (Act.) (Ant.) (Ant.)

HAE14,259 D D D D D D — — I —
Sepsis270,276 D — — — D — — D I —
Typhoid fever272 D U — — D I — — — —
ARDS269 D D D U D I U D — —
RMSF274 D D — — I — I U — I
Low-dose

endotoxin277 D U D — — — D — I —
CPB281-283 — — — — — — — — — I

Abbreviations: D, decreased; U, unaffected; I, increased.
* The following diseases were investigated: HAE, hereditary angiodema; ARDS, adult respiratory distress syndrome; RMSF, Rocky Mountain

spotted fever; CPB, cardiopulmonary bypass. The numbers after the disease category are references.

the absence of protease inhibition as a result of lowered C1 creased levels of C1-INH antigen. Decreased levels of pre-
kallikrein also have been documented in patients with septi-inhibitor levels. Bradykinin liberation is believed to be a

major mediator of the edema seen in that condition.262 The cemia due to viruses, fungi, or Rickettsia. Patients with
phenomena of cold activation of factor VII is result of cold Rocky Mountain Spotted Fever have decreased prekallikrein
inactivation of C1 inhibitor and factor XII activation in a levels but increased kallikrein-C1-inhibitor complexes.274

tube with resultant factor VII activation.263-265 Lowering tem- Because, kallikrein-C1-inhibitor complexes are cleared rap-
peratures to less than 377C decreases the reactivity of C1 idly in most cases of septic shock,275 we developed a sand-
inhibitor for its enzymes.266 wich enzyme-linked immunosorbent assay for a2M-Kal

complexes and found that, in septicemic hypotension, but not
Sepsis in septicemia alone, a2M-Kal complexes were elevated.276

None of the studies noted above indicated whether activa-Contact system activation has been postulated to be one of
tion of the contact system is an early event or whether it isthe mediators of systemic inflammatory response syndrome
related to complications of sepsis such as hypotension and(SIRS).267 Contact activation of factor XII and prekallikrein
multiple organ failure. To address this question, normal hu-in sepsis result in cleavages that activate them to enzymes
man volunteers received a low dose of E coli endotoxin (0.4that rapidly react with C1-inhibitor to form factor XIIa-C1-
ng/kg body weight). These individuals developed a flu-likeINH and kallikrein-C1-INH complexes (Table 3).268 The re-
illness associated with a hyperdynamic cardiovascular statesult is depletion of functional prekallikrein and factor XII
lasting 24 hours.277 Functional prekallikrein levels were sig-with persistence of normal levels of the corresponding anti-
nificantly lower in the endotoxin group as compared withgens. Functional C1-inhibitor also declines, but its antigen
controls at 2 hours after infusion and remained low through-remains constant or may even increase, suggesting that it
out the rest of the experimental protocol at 5 and 24 hours.behaves as a weak acute-phase reactant. As functional C1-
The concentration of a2M-Kal complexes was significantlyINH decreases, a2M becomes a more important inhibitor of
elevated fourfold in the endotoxin-treated group by 3 hourskallikrein and a2M-Kal complexes form.14 The HK coagulant
and fivefold by 5 hours, with a decrease to normal in theactivity and antigen decrease in parallel.269 Paradoxically,
circulating levels of complexes by 24 hours. Thus, a lowfor unknown reasons, functional factor XI may increase.269

dose of endotoxin can induce a prolonged state of contactInvestigations of patients with gram-negative sepsis
activation.showed that functional factor XII, prekallikrein, and C1-INH

To prove that contact activation is related to either shock orare decreased in patients with hypotensive septicemia.270 Pa-
DIC, animal studies were performed (Table 4). In an establishedtients with disseminated intravascular coagulation (DIC) due
experimental baboon model of bacteremia, two concentrationsto septicemia or viremia had decreased functional factor XII,
of E coli were used to produce lethal and nonlethal hypotension.prekallikrein, and C1-INH, but individuals with DIC second-
The lethal group developed irreversible hypotension, which sig-ary to neoplasia had no significant changes in the kallikrein-
nificantly correlated with both the decline in functional levels ofkinin system.270 In patients with postoperative septicemia,
HK and an increase in a2M-Kal complexes.278 The nonlethaldecreased prekallikrein activity and elevated bradykinin
group experienced reversible hypotension, a less striking declinewere associated with positive blood cultures and hypoten-
in HK, and only a slight elevation in a2M-Kal.278 Irreversiblesion.271 In an experimental infection of humans with typhoid
hypotension correlated with activation of the contact system.fever, all patients with typhoid fever showed a decrease in
Further investigations were performed to address the causalityfunctional prekallikrein and C1-INH, but the corresponding
of contact activation in shock and hypotension. An MoAb toantigens remained unaffected.272 In the adult respiratory dis-
human factor XII that is able in vitro to inhibit factor XII coagu-tress syndrome (ARDS), effected patients had reduced
lant activity in baboon plasma by 60% and slow kininogenplasma levels of factor XII and prekallikrein.269,273 HK and

C1-INH activity were also decreased, but there were in- cleavage in dextran sulfate-activated baboon plasma was infused
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Table 4. Experimental Diseases States for Which Contact System Activation Is Pathogenetic

PK HK C1 INH a2M-Kal C1 INH-Kal
XI XII Complexes Complexes

Disease* Act. Ant. Act. Ant. Act. Ant. (Act.) (Act.) (Ant.) (Ant.)

Baboon sepsis278,279 D — D — — — I — I —
Rat arthritis284,286 D — D — — — D — — —
Rat enterocolitis286,287 D — D — — — D — — —

In these conditions, a role for contact activation in the pathogenesis of these disorders is shown by the finding that specific inhibitors of the
contact system blocked the progression of the disease.

Abbreviations: D, decreased; I, increased.
* The numbers after the disease category are references.

into the lethal baboon group 30 minutes before the E coli.279 Experimental Arthritis in Genetically Susceptible Rats
Although the decline of factor V, fibrinogen, and platelets were The role of the kallikrein-kinin system in inflammatory
similar in both groups and prekallikrein values were normal, arthritis was investigated by a model of acute and chronic
there was a marked decline in HK in the untreated group, reach- relapsing arthritis induced by intraperitoneal injection of pro-
ing 40% of the baseline levels by 300 minutes. In the group teoglycan-polysaccharide from group A streptococci (PG-
treated with the MoAb to factor XII, the HK remained stable APS) into rats (Table 4).284 The mean joint diameter peaked
and was significantly higher (110% of baseline) at 360 minutes. at a maximum value of 8 at day 3, indicating an acute arthri-
Furthermore, in the untreated group, there was a progressive tis. After a decrease in the volume of the joint on days
increase of a2M-Kal complexes, which was highly significant 9 through 12, the joint diameter spontaneously increased
and was completely blocked by the MoAb in the treated group. beginning at day 15 and then progressed with waxing and
A significant decline of mean systemic arterial pressure was waning of individual joints, indicating reactivation leading
observed in both groups of animals between 60 and 120 minutes. to chronic synovitis and joint erosion. An increase in the
A Kaplan-Meier plot showed that treated animals survived sig- acute-phase protein, T-kininogen, splenic enlargement, and
nificantly longer than untreated animals. Inhibition of contact the development of the anemia of chronic disease were con-
system activation with an MoAb to factor XII modulated the sistently associated with the arthropathy. HK in rat plasma
hypotension.279

decreased on days 1, 5, and 15, but not at 30 minutes, day
23, or day 45. There is a striking inverse correlation betweenCardiopulmonary Bypass
HK concentration and joint enlargment on day 5, with r Å

Clinical cardiopulmonary bypass (CPB) is performed on .85. Prekallikrein levels were significantly lower in PG-
more than 350,000 Americans each year (Table 3). During APS–injected animals compared with controls. Prekallikrein
CPB, there is extensive contact between blood anticoagu- levels decreased as early as 30 minutes after injection, and
lated with heparin and the synthetic surfaces of the extracor- the levels remained low throughout the experimental proto-
poreal circuit. Blood cell interactions and plasma protein col. Further experiments showed that, when the rats were
alterations prolong the bleeding time, increase postoperative injected with PG-APS and received a specific, potent oral
blood loss, and trigger a chemical and cellular whole body plasma kallikrein inhibitor, P8720 or Bz-Pro-Phe-boroArg-
inflammatory response. Extracorporeal circulation has been OH (Ki Å 0.15 nmol/L, Kassoc Å 1.6 1 106 mol/Ls01), there
associated with both qualitative and quantitative alterations was a significant decrease (61%) in joint swelling at 49
of platelets, neutrophils and complement and contact sys- hours, with a disappearance of most of the dense infiltration
tems. Heparin, which markedly accelerates inactivation of of neutrophils and mononuclear cells.285 Furthermore, there
FXa and thrombin by antithrombin III, exhibits minimal en- was no decrease in plasma HK. Lastly, the anemia, the in-
hancement of the inactivation of FXIIa and FXIa in CPB.280

crease of TK, and the splenic weight increase were largely
In simulated CPB, there is a significant increase in kallikrein- inhibited. These data indicated that contact system activation
C1-INH complex formation.281 The simultaneous formation mediates the arthritis and that its inhibition ameliorates all
of C1-C1-INH complexes suggested that factor XII activa- the manifestations of this disorder.
tion occurred, which, in turn, activated both kallikrein and
C1, thus triggering both the contact and classical comple-

Acute and Chronic Enterocolitis in Genetically Susceptiblement pathways.281 Further studies showed that aprotinin, an
Ratsinhibitor of both plasmin and plasma kallikrein, reduced

blood loss after cardiac operations and decreased the ele- Further investigations examined the role of the contact
system in inflammatory bowel disease using a model of acutevated postoperative bleeding time. In a simulated extracorpo-

real bypass model, in which no plasmin is found, aprotinin and chronic enterocolitis induced by subserosal injection of
PG-APS into the wall of the distal ileum and cecum (Tabledecreased both kallikrein-C1-inhibitor and C1-C1-inhibitor

complexes, resulting in a marked inhibition of the release 4).286 Acute intestinal inflammation in the Lewis rat and
the Buffalo rat are characterized by edema, hemorrhage,of neutrophil elastase.282 Similar results were obtained with

specific kallikrein inhibitors, Bz-Pro-Phe-boroArg-OH, thickening of the bowel wall, and mesentery and adhesions.
However, genetically susceptible Lewis rats, but not resistantArg15-aprotinin, and Ala357-Arg358-a1-protease inhibi-

tor.283 Buffalo rats, spontaneously develop chronic enterocolitis
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with dense adhesions, thickening of intestinal wall, serosal thrombolytic therapy.295 Although these studies are interest-
ing, contact protein deficiencies are relatively rare occur-nodules, enlarged mesenteric lymph nodes, histological

changes consisting of mononuclear cell infiltration and crypt rences. It will require careful prospective investigations with
age- and sex-matched controls to determine whether theseabscesses, and a markedly elevated intestinal myeloperoxi-

dase that persists for at least 16 weeks. Furthermore, a factors contribute to the ever enlarging list of inherited risk
factors for thrombosis.marked disparity existed in the incidence of extraintestinal

manifestations between Lewis and Buffalo rats. Arthritis and
hepatic granulomas occurred in 73% of Lewis rats examined REFERENCES
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