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Acute myeloid leukemias with UBTF tandem
duplications are sensitive to menin inhibitors
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UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in
pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized
by a poor response to conventional chemotherapy and a transcriptional signature that
mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation.
However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In
this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood
CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein
maintained genomic occupancy at ribosomal DNA loci while also occupying genomic tar-
gets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB
gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration
that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD
also co-occupies key genomic loci with KMT2A and menin, which are known to be key
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partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness,
proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally,
we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting
in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD
leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML
subtype.
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Introduction
The upstream binding transcription factor (UBTF) gene encodes
for a nucleolar protein (UBTF/UBF) involved in nucleolar for-
mation that is primarily associated with active transcription of
ribosomal DNA (rDNA).1,2 UBTF is necessary for embryonic
development past the morula stage, and UBTF knockout cells
displayed nucleolar disassembly, abnormal heterochromatin
distribution on active rDNA, and loss of rRNA synthesis.3

Recently, UBTF has gained increased interest in hematological
malignancies, such as acute myeloid leukemia (AML) and B-cell
acute lymphoblastic leukemia.4-11 Recurrent exon 13 tandem
duplications (TD) in UBTF have emerged as a major subtype-
defining genomic alteration in pediatric AML that is associ-
ated with poor prognosis4,5,11,12 and has also recently been
reported in ~3% of adults aged 18 to 60 years9 and 1.2% of all
individuals over 18 years of age.10 UBTF-TDs have a high
variant allele frequency and are preserved during disease pro-
gression. Patients with UBTF-TD AML are associated with high
measurable residual disease positivity and poor outcomes,
suggesting an overall poor response to conventional chemo-
therapy. Although expression of UBTF-TD in cord-blood
CD34+ (cbCD34+) cells leads to increased myeloid prolifera-
tion and clonogenicity,4 the molecular mechanisms by which
UBTF-TD promotes leukemogenesis remain poorly understood.

Here, we use transcriptomic and epigenomic profiling to pro-
vide mechanistic insights into UBTF-TD leukemias and ulti-
mately propose a therapeutic strategy for individuals with this
high-risk AML subtype. We show that UBTF-TD/KMT2A/
menin colocalize and interact with chromatin at the homeo-
box gene clusters and other target loci to maintain a leukemic
molecular signature that is dependent on UBTF-TD genomic
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localization to these regions. Based on these mechanistic find-
ings, and recent work demonstrating that HOX-dysregulated
AMLs are sensitive to menin inhibitors,13-16 we hypothesized
that menin inhibition is a viable therapeutic option for UBTF-TD
AMLs. Our data demonstrate that UBTF-TD AMLs are sensitive
to SNDX-5613 (revumenib) in vitro and in vivo. Collectively, we
provide a mechanism of how UBTF-TD alterations drive myeloid
leukemias and nominate menin inhibition as a therapeutic
option for patients with UBTF-TD AMLs.
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Methods
Cell culture and analysis of cbCD34+ cell models
UBTF-TD cbCD34+ models were generated as previously
described.4 Briefly, commercially available cbCD34+ cells were
obtained from Lonza (catalog no. 2C-101, Lot#1ITL248959) or
isolated (cat#130-1-453, Miltenyi Biotec) from cord blood
obtained from Carolinas Cord Blood Bank/ Duke University.
Cells were cultured in StemSpan SFEMII media (#09655,
STEMCELL Technologies) supplemented with penicillin/
streptomycin, L-glutamine, and recombinant human SCF, FLT-3,
TPO, and IL-6 (all 50 ng/mL PeproTech), UM729 (#72332,
STEMCELL Technologies), and SR-1 (1 μmol/L, #72344,
STEMCELL Technologies). Cells were transduced with lentiviral
particles for MND-PGK-mCherry (MPC) vector control or MPC
constructs expressing N-terminus human infuenza hemaggluti-
nin (HA)-tagged UBTF–wild-type (WT), N-terminus HA-tagged
UBTF-TD, and N-terminus FKBP12F36V-3XHA-UBTF-TD. Trans-
duced mCherry+ cells were sorted and expanded. Molecular
experiments were performed at 40 to 60 days after sorting,
unless otherwise noted.

UBTF-TD patient derived xenograft model for
SNDX-5613 treatment
UBTF-TD luciferase-labeled patient derived xenograft (PDX)
model was generated at St Jude Children’s Research Hospital
and is available through the PROPEL repository at St Jude
Children’s Research Hospital (https://propel.stjude.cloud/). PDX
cells were slowly thawed and resuspended in phosphate-
buffered saline (PBS) + 20% fetal bovine serum (FBS). Cells
were then subjected to mouse cell depletion (STEMCELL
Technologies, cat# 19849), and 0.5 million live human blast cells
were injected via tail vein into 20 NSG-SGM3 mice (NOD.Cg-
Prkdcscid, Il2rgtm1Wjl, Tg(CMV-IL3, CSF2, KITLG)1Eav/MloySzJ,
Jackson Laboratory). Mice were then monitored weekly by
in vivo imaging system and biweekly by flow cytometry. At 2
weeks after transplant, we assessed human CD45% (human
chimerism > 0.1%) and in vivo imaging system bioluminesence
(BL) total flux p/s > 1.2E6) in 20 mice. Two mice did not show
engraftment and were excluded from the study. The remaining
18 mice were then randomly split into a vehicle and SNDX group
(n = 9 per group). The SNDX group was treated with SNDX-5613
(cat# HY-136175, MedChemExpress) (dissolved in 0.5% meth-
ylcellulose (type 400 cPs) in ultrapure water acidified with
fumaric acid, at 10 mg/mL) at 75mg/kg by oral gavage twice
daily (5 days on, 2 days off). The vehicle group was treated with
vehicle control (0.5% methylcellulose (type 400 cPs) in ultrapure
water acidified with fumaric acid). Treatment was continued for 5
weeks for 3 mice per group; these mice were sacrificed at week
6 of the experiment to assess molecular and pathological phe-
notypes. For the colony-forming unit assay, 1000 UBTF-PDX
620 15 FEBRUARY 2024 | VOLUME 143, NUMBER 7
cells were plated in methylcellulose (#H4435, STEMCELL
Technologies). For serial transplant experiments, cells from each
group were pooled and transplanted via tail vein injection into 8-
week-old NSG-SGM3 mice. Treatment for the remaining 6 mice
from each group continued for 6 weeks. These mice were
monitored and sacrificed at the first sign of morbidity or
leukemic cell burden above thresholds. Leukemic cell burden
was assessed by flow cytometry in the peripheral blood (PB), and
mice were sacrificed when human CD45+ reached > 75%
chimerism in the PB or when mice displayed hunched posture,
lethargy, loss of appetite and weight, labored breath, and a
rough coat. All animal studies, including husbandry, breeding,
and experimental procedures, were performed in accordance
with protocols approved by the St Jude Children’s Research
Hospital Institutional Animal Care and Use Committee.

CUT&RUN and data analysis
Cleavage under targets and release using nuclease
(CUT&RUN)17 was performed to assess genomic occupancy and
histone modifications with antibodies for H3K4me3 (pAb cat#
13-0041, EpiCypher, 1:50), H3K27ac (mAb #8173, Cell
Signaling Technology, clone: D5E4, 1:50), HA-tagged UBTF-
WT or UBTF-TD (mAb #3724, Cell Signaling Technology, clone:
C29F4, 1:25), UBTF (mAb Cat# sc-13125, Santa Cruz Biotech-
nology, clone F-9, 1:10), menin (pAb Cat# A300-105A, Bethyl
Laboratories, 1:50), KMT2A (pAB A300-086A, Bethyl Labora-
tories, 1:50), and RNA Pol II (mAb cat# 05-623, Millipore, clone:
CTD4H8, 1:50) in cbCD34+ cell models and PDXs according to
the manufacturer’s protocol (cat#14-1048, EpiCypher, kit v3.3).
After DNA purification, ~5ng of DNA from each sample was
subjected to DNA library prep (cat#E7103, NEB, NEBNext Ultra
II DNA Library Prep Kit for Illumina) per manufacturer’s
instructions for enrichment of short fragments (1.8x AMPure
Beads) and sequenced on NovaSeq (PE, 100 bp, 10 million
reads). To obtain quality reads, raw reads were processed and
trimmed with Trim_galore (v0.4.4) from cutadapt18 and
FASTQC analysis.19 A default quality score cutoff of Q20 is
used. Quality-trimmed reads were then mapped to hg38+rDNA
genome build20 by bwa (v0.7.12-r1039)21 and converted to a
bam file by samtools (v1.2).22 Duplicate reads were marked with
biobambam2 (v2.0.87).23 Uniquely mapped and properly
paired reads were then extracted with samtools (v1.2) and
biobambam2. Fragments with a size shorter than 2000 bp were
extracted, and the center 80 bp of each fragment was used to
generate bigwig track files by UCSC tools (v4)24 and visualized
using IGV (v2.16.0).25 Narrow peaks were called with MACS2
(v2.1.1.20160309),26 and broad peaks were called by SICER
(v1.1).27 For UBTF peak calls, artifacts at LINC02408, ST8SIA3,
APBB1IP, OR2K2, PUM2, CDH11, BIK, FAM183BP, TMEM86B,
and MAP3K1 were removed for all samples.

RNA sequencing
RNA sequencing (RNA-Seq) was performed in cbCD34+
expressing MPC-[FKBP12F36V-UBTF-TD] like previously done.4

Briefly, cells were treated with dimethyl sulfoxide or dTAG-13
(1μM) for 3 days. Total RNA was extracted from 1×106 cells
using the Quick-RNA Miniprep Kit (cat# R1054, Zymo
Research). A total of 250 ng RNA was subjected to library
preparation using the TruSeq Stranded Total RNA library kit
(Illumina, CA) and sequenced on NovaSeq (100 million reads,
PE, 100bps).
BARAJAS et al
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Primary AML cells
The primary AML samples obtained with written informed
consent were provided by the Princess Maxima Center for
Pediatric Oncology or St. Jude Children’s Research Hospital.
Five UBTF-TD samples with co-occurring FLT3-ITD and WT1
mutations and 1 sample with RUNX1::RUNX1T1 fusion were
used for in vitro coculture experiments. Patient-derived AML
cells were cultured in a serum-free condition on healthy bone
marrow–derived mesenchymal stem cells (MSCs). MSCs were
seeded at a density of 7500 cells/cm2 in Dulbecco modified
Eagle medium, low glucose, GlutaMAX(TM), pyruvate (Gibco
BRL, #21885) medium supplemented with 20% FBS, 8 ng/mL
fibroblast growth factor-2 (PeproTech, London, United
Kingdom) and 100 U/ml penicillin/streptomycin (Gibco BRL, Life
Technologies, Breda, The Netherlands), and cultivated in a
37◦C, 5% CO2 incubator until reaching 70% confluence. Primary
AML cells were thawed and seeded over an MSC layer at a
density of 5×105 cells/mL in SFEMII medium (STEMCELL
Technologies, Cologne, Germany) supplemented with 100 U/
mL penicillin/streptomycin (Gibco BRL), 10 ng/mL FLT3 ligand,
10 ng/mL GM-CSF, 10 ng/mL IL-3, 150 ng/mL SCF, 100 ng/mL
TPO (all from PeproTech), 750 nM SR1 (Biogeme, Lausanne,
Switzerland), and 1.35 μM UM729 (STEMCELL Technologies).
Cocultures were maintained at 37◦C with 5% CO2 and
expanded by adjusting AML cell numbers to 5 × 105 cells/mL
every 4 days.
/article-pdf/143/7/619/2213739/blood_bld-2023-021359-m
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Proximity ligation assay (PLA)
Duolink in situ detection reagent red (DUO92008; Sigma) was
used to perform PLA in accordance with the manufacturer’s
protocol. Briefly, cells were washed twice with 1X PBS,
cytospun on a glass slide, fixed, permeabilized, and then
incubated with blocking buffer (all reagents provided in the
kit) for 1 hour. Subsequently, the cells were probed with
primary antibodies against MLL (14197, Cell Signaling
Technology, 1:250), UBTF (F-9, Santa Cruz #SC-13125; 1:50),
and menin (AbCam ab2605, 1:250). For negative reaction
controls, cells were incubated with only 1 of each antibody.
The slides were washed and incubated (1 hour, 37◦C), with
specific plus and minus Duolink PLA probes (1:5). After
washing, the slides were further incubated with ligation-
ligase solution (30 min, 37◦C) followed by incubation with
amplification polymerase solution (2 h, 37◦C). The slides were
finally incubated with DAPI (300 nM) for 5 minutes in the dark
and washed twice. Images were acquired using a confocal
microscope (Leica, SP8) and processed by Leica LAS AF Lite
software (Leica). For flow cytometry analysis of PLA, all the
steps were performed in 96-well plates, and data were
acquired by a Beckman Coulter CytoFLEX LX with subse-
quent data analysis using FlowJo software (V10.0.7; TreeStar,
Ashland, OR).
Statistics
Details about statistical comparisons are provided in each
figure legend. For survival data, Kaplan-Meier estimates
were computed by the treatment group. The difference in
survival distribution between genotypes was examined
using an exact log-rank test. All the computations were
done using R or GraphPad Prism, and all P values are
2-sided.
UBTF-TD AMLs ARE SENSITIVE TO MENIN INHIBITORS
Results
UBTF-TD localizes to genomic loci that are
dysregulated in UBTF-TD AMLs
We hypothesized that UBTF-TD may interact with genomic loci
that define the molecular signature of UBTD-TD AML, such as
the HOXA and HOXB clusters. We, therefore, assessed the
genomic occupancy of UBTF-TD using CUT&RUN.17 We first
assessed the genomic distribution of UBTF-TD in cbCD34+
from 3 independent donors transduced with an N-terminus HA-
tagged UBTF-TD expressing lentiviral construct (Figure 1A).4

Genome-wide annotation of UBTF-TD occupancy peaks
showed that UBTF-TD binding is preferentially associated with
promoters (supplemental Figure 1A-B). We then found that
UBTF-TD consistently localized to regions dysregulated in
UBTF-TD leukemias like HOXB, HOXA, and MEIS1 in all 3
biological replicates (supplemental Figure 1C). The peaks at
these regions colocalized with H3K4me3, H3K27ac, and RNA
Pol II (POLR2A) peaks, indicating active transcriptional status
(Figure 1A). GO Enrichment analysis of UBTF-TD targets com-
mon in 3 biological replicates enriched in molecular pathways
associated with myeloid cell development and nucleosome
assembly, in addition to canonical functions of UBTF involved in
rDNA activity (Figure 1B). We also assessed KMT2A and menin
binding, considering their known role in HOX gene activation in
certain leukemia subtypes.13,28-30 We found significant overlaps
of occupied genomic targets between UBTF-TD and KMT2A (P
value = 1.2E-142), UBTF-TD and menin (P value = 3.2E-95), and
KMT2A and menin (P value = 2.0E-268) (Figure 1C). These
nuclear colocalizations were validated in a primary UBTF-TD
patient sample by PLA (Figure 1D).

To assess whether localization to HOXA or HOXB loci and other
regions that characterize UBTF-TD AMLs was unique to UBTF-
TD and not UBTF-WT, we first compared the genomic bind-
ing of HA-tagged UBTF-WT or HA-tagged UBTF-TD using an
HA antibody in a cbCD34+ lentiviral expression model
(Figure 2A). We could clearly detect both UBTF-WT and UBTF-
TD at rDNA loci at early time points when introduced into pri-
mary cbCD34+ cells (day 10 after transduction and sorting).
Although we did not observe strong UBTF-TD occupancy at the
HOXA or HOXB loci until day 32, some signal could be
detected at these loci on day 10 for UBTF-TD but not for UBTF-
WT. UBTF-WT expression in cbCD34+ does not transform cells,
and cells begin to differentiate in vitro beyond day 20, and thus
not enough material can be collected for a similar analysis.4

Alternatively, we tested endogenous UBTF occupancy in 3
independent biological replicates of normal cbCD34+ cells, 2
aggressive UBTF-TD patient-derived xenograft (PDX) models, a
KMT2A-rearranged (KMT2A-r) PDX (KMT2A::MLLT3 fusion with
UBTF-WT), and a mixed phenotype leukemia (MPAL with UBTF-
WT) using an antibody that detects both UBTF-WT and UBTF-
TD (Figure 2B). These data show that UBTF is bound at rDNA
in normal hematopoietic progenitor cells as well as in UBTF-TD-
PDX, KMT2A-r-PDX, and MPAL-PDX. However, UBTF was
detected at HOXB and HOXA regions only in the UBTF-TD PDX
cells and at lower levels at the HOXA locus in the KMT2A-r-PDX
but not in normal cbCD34+ cells or MPAL PDX. Furthermore,
like in the cbCD34+ UBTF-TD model, we also observed that
KMT2A and menin colocalize at HOXB and HOXA loci with
UBTF-TD (Figure 2B). We then assessed the top UBTF peaks
localized to promoters or rDNA in these samples and found that
15 FEBRUARY 2024 | VOLUME 143, NUMBER 7 621
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Figure 1. UBTF-TD/menin/KMT2A co-occupy genomic loci of genes dysregulated in UBTF-TD AML. (A) IGV tracks of HA:UBTF-TD (black), demonstrating features from 3
cbCD34+ donors transduced with UBTF-TD–expressing lentiviral vectors and maintained in culture for 40 days. CUT&RUN for UBTF, H3K4me3, H3K27ac, POLR2A, menin, and
KMT2A in blue were performed in donor A. (B) GO-enrichment pathway analysis of significant targets occupied by UBTF-TD in all 3 donors (n = 226). (C) Overlap of genomic
regions occupied by UBTF-TD (HA), KMT2A, and menin. Significance of overlap was calculated using hypergeometric distribution. (D) In situ PLA of endogenous UBTF/menin
and UBTF/KMT2A in a UBTF-TD patient sample. Single targets (menin, KMT2A, and UBTF) are shown as controls.
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UBTF was enriched at rDNA, but not HOXA/HOXB regions, in
normal cbCD34+ cells (Figure 2C). In contrast, both UBTF-TD PDX
included top peaks for both rDNA and the HOXA/HOXB loci.
These collective data demonstrate that the localization of UBTF to
rDNA regions is a shared feature of both UBTF-WT and UBTF-TD,
but that localization to targets dysregulated in UBTF-TD AMLs,
such as the HOXA and HOXB clusters, is enhanced by UBTF-TD.
622 15 FEBRUARY 2024 | VOLUME 143, NUMBER 7
UBTF-TD expression and genomic localization is
required for myeloid cell expansion
We next sought to determine if UBTF-TD expression and
aberrant genomic localization are driving and maintaining a
leukemic phenotype. To test this, we first designed a
FKBP12F36V::HA-UBTF-TD fusion construct, which allows for
rapid degradation of UBTF-TD protein upon dTAG-13
BARAJAS et al
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treatment,31 and expressed it in cbCD34+ cells (Figure 3A). We
found that the FKBP12F36V tag did not impair the ability of
UBTF-TD to promote transformation in cbCD34+ cells, as
measured by cell proliferation and colony-forming unit assays,
and that levels of expression of this FKBP12F36V::HA-UBTF-TD
were comparable to endogenous UBTF (supplemental
Figure 2A-C). Treatment with dTAG-13 resulted in rapid
degradation (< 4 hours) of UBTF-TD protein (Figure 3B) and
induced a decline in proliferation in vitro (Figure 3C). This
change was accompanied by morphologic and immunophe-
notypic features of myeloid differentiation, including an
increase in CD11b expression and a loss of stem cell marker
CD117, along with an increase in apoptotic cells as measured
by annexin V staining (Figure 3D-E). This contrasts with cells that
express untagged UBTF-TD, which were unaffected by dTAG-
13 treatment (supplemental Figure 2D).
UBTF-TD AMLs ARE SENSITIVE TO MENIN INHIBITORS
To further validate if genomic occupancy of UBTF-TD to dys-
regulate in UBTF-TD AML was driving the leukemic phenotype,
we performed CUT&RUN and RNA-seq after a 3-day treatment
with 1 μM dTAG-13 (Figure 4A). This treatment was previously
determined to be sufficient to degrade UBTF-TD but not long
enough for phenotypic changes in proliferation, cell death, or
differentiation to take place (supplemental Figure 3A-E). This
treatment also had no detectable effect on normal cbCD34+
cells (supplemental Figure 3F-G). After the 3-day treatment with
dTAG-13, UBTF-TD occupancy was significantly reduced in 266
regions (false discovery rate < 0.05) (Figure 4B). Importantly, the
top UBTF-TD–depleted regions (n = 29) were loci dysregulated
in UBTF-TD leukemias, such as the HOXA/HOXB and MEIS1
loci (Figure 4C-D). However, KMT2A binding was only slightly
reduced, and menin displayed little to no change in occupancy,
suggesting that loss of UBTF-TD in these regions does not
15 FEBRUARY 2024 | VOLUME 143, NUMBER 7 623
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immediately disrupt KMT2A/menin localization. Yet, loss of
UBTF-TD occupancy was associated with decreased mRNA
levels for these top targets (Figure 4E-F), suggesting a depen-
dency on UBTF-TD for the maintenance of active transcription
but not for KMT2A and menin localization. Furthermore,
upstream network analysis revealed that significantly depleted
UBTF-TD target genes are those predicted to be regulated by
KMT2A (Figure 4G). Despite these findings, no interaction motif
present in most of the regions could be identified for UBTF-TD
(supplemental Figure 4A-B). This is similar to previous reports
showing that DNA binding of UBTF-WT is not driven by a
specific motif.32 Collectively, we show that UBTF-TD localiza-
tion to DNA loci dysregulated in UBTF-TD AML is necessary for
leukemic cell expansion and expression of the UBTF-TD
molecular signature.

UBTF-TD leukemias are sensitive to menin
inhibition
The above molecular findings suggested that UBTF-TD leuke-
mias may be sensitive to menin inhibitors like other HOX-dys-
regulated leukemias.33 This was also indicated by a compound
screen in our cbCD34+ model, consisting of 160 epigenetic
compounds and 32 compounds commonly used to treat AML,
in which we found that UBTF-TD–expressing cells were sensi-
tive to the first-generation menin inhibitor MI-2-2 (supplemental
Table 1). Furthermore, other compounds that directly interfere
with KMT2A or components of the COMPASS complex also
scored as possible hits (eg, MI-503). We also observed that
treatment of the UBTF-TD CD34+ cell model with SNDX-5613
(revumenib), a clinical-grade menin inhibitor, led to a variable
624 15 FEBRUARY 2024 | VOLUME 143, NUMBER 7
reduction of UBTF-TD and KMT2A binding (supplemental
Figure 5A-C). In contrast to dTAG-13, SNDX-5613 also mark-
edly reduced menin binding, as previously reported for menin
inhibitors in KMT2A-rearranged AMLs.13 SNDX-5613 has shown
promising results in preclinical models of NPM1-mutated
KMT2A-r13,14 and is currently in phase 1/2 clinical trials16,34 for
refractory KMT2A-r or NPM1-mut leukemias, and preclinical
studies have recently also shown efficacy in NUP98-rearranged
(NUP98-r) leukemias, which also share a similar molecular
signature to UBTF-TD AMLs.4,35,36 Using an ex vivo culture
system with 5 patient samples harboring UBTF-TDs (Figure 5A;
supplemental Table 2), we found a dose-dependent inhibition
of growth with SNDX-5613 treatment in all 5 UBTF-TD samples
(Figure 5B), with an average inhibitory concentration 50 of 19.8
nM (supplemental Figure 6A). In contrast, a primary AML with a
RUNX1::RUNX1T1 fusion, a subtype without HOX gene dysre-
gulation, showed no response to SNDX-5613 (Figure 5B).
Decreased cell growth in UBTF-TD samples was accompanied
by a dose-dependent decrease in MEIS1 mRNA levels
(Figure 5C), which could be maintained over time
(supplemental Figure 6B-C). SNDX-5613 also resulted in
decreased UBTF-TD/KMT2A/menin interactions (supplemental
Figure 6D). Furthermore, primary AML samples treated with
SNDX-5613 had reduced colony-forming capacity compared
with the vehicle-treated samples (Figure 5D). We assessed the
transcriptional consequence on 3 of these primary AMLs and
found that treatment with SNDX-5613 for 7 days induced global
gene expression changes (Figure 5E), including a reduction in
the expression of genes like MEIS1, PBX3, IGF2BP2, PROM1,
and MEF2C.37-40 We also observed that SNDX-5613 reduced
BARAJAS et al
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the colony-forming potential of a UBTF-TD PDX model
(Figure 5F). These cells also displayed decreased stem-cell
marker CD117 (KIT) expression, increased CD11b expression,
and increased cell death as measured by annexin V+ cells
(Figure 5G-H).
UBTF-TD AMLs ARE SENSITIVE TO MENIN INHIBITORS
We next assessed the in vivo efficacy of menin inhibition using
the UBTF-TD PDX model previously tested in vitro (Figure 6A).
Treatment with SNDX-5613 significantly increased the survival
of these mice compared to vehicle controls (vehicle: median
survival = 62.5 days, SNDX-5613: median survival = 104 days,
15 FEBRUARY 2024 | VOLUME 143, NUMBER 7 625
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from panel I. P values were calculated using 2-stage step-up Benjamini, Krieger, and Yekutieli test. CFU, colony-forming unit; IVIS, in vivo imaging system; H&E, hematoxylin
and eosin; IHC, immunohistochemistry; MFI, mean fluorescent intensity; P.O, per os.
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log-rank P value = .00005) (Figure 6B). This was accompanied
by a decrease in tumor burden as measured by total body
luminescence and human chimerism in the peripheral blood
(Figure 6C-D; supplemental Figure 7A). To accurately compare
the molecular and phenotypic changes associated with SNDX-
5613 treatment, we sacrificed a subset of the mice from
the vehicle and SNDX-5613 groups after 5 weeks of treatment
(n = 3 per group). SNDX-treated mice had smaller spleens and
less spleen infiltration (Figure 6E-G). Evaluation of cells in the
bone marrow from these mice showed that the transplanted
cells had increased CD11b and reduced CD117 expression,
suggesting that SNDX-5613 promotes myeloid differentiation
in UBTF-TD leukemias (Figure 6H). Human cells isolated from
these mice also displayed increased mRNA levels of myeloid
differentiation genes (MPO, ITGAM) and decreased mRNA
levels of hematopoietic stem cell–associated genes (KIT, PBX3)
(supplemental Figure 7B). Cells harvested from the bone
marrow of recipient mice treated with SNDX-5613 had mark-
edly reduced in vitro colony-forming capacity and secondary
reconstitution potential in vivo compared with cells harvested
from vehicle-treated primary mice (Figure 6I-K). Collectively,
these data show that menin inhibition is a viable therapeutic
option for AMLs with UBTF-TD alterations that induce differ-
entiation and reduce their leukemic potential.
.net/blood/article-pdf/143/7/619/2213739/blood_bld-2023-021359-m
ain.pdf by guest on 08 M

ay 2024
Discussion
UBTF has a well-established role in rRNA biogenesis and
nucleoli formation1,2 but only recently have alterations in UBTF
been recognized in leukemias. In particular, UBTF tandem
duplications have been characterized as subtype-defining
genomic alterations in childhood AML associated with HOX
gene dysregulation.4,5,11,12 Recent studies have now shown that
UBTF-TDs are not restricted to pediatric AML but also occur
in ~ 3% of adult AML patients aged 18 to 60 years (median
age = 37 years).9,10 UBTF alterations have also recently been
described in B-cell acute lymphoblastic leukemia, although
these are structural variations leading to focal deletions of
exons 18 to 21, resulting in UBTF::ATXN7L3 fusions.6-8 The
recent identification of novel UBTF alterations in hematological
malignancies highlights a critical need to understand how UBTF
alterations drive leukemogenesis.

At the transcriptional level, UBTF-TD AMLs are similar to other
well-defined AML subtypes, including NUP98-rearranged
(NUP98-r, ie, NUP98::NSD1), NPM1 mutations, DEK::NUP214,
KMT2A-rearranged (KMT2A-r), and KMT2A partial tandem
duplication (KMT2A-PTD) AMLs.4,12 The similarities in the
transcriptional profiles of these AML subtypes suggest a shared
mechanism. Similar to AMLs with NPM1 mutations or KMT2A
fusion oncoproteins,16 we demonstrate that UBTF-TD, KMT2A,
and menin co-occupy genomic regions that are transcriptionally
dysregulated in UBTF-TD leukemias (Figures 1 and 2). Our
dTAG strategy demonstrates that UBTF-TD is necessary to
maintain leukemic phenotypes. Considering that UBTF-WT is
primarily localized to rDNA in normal cbCD34+ cells and not to
genomic regions dysregulated in UBTF-TD AMLs, like the
HOXA or HOXB clusters, these collective data suggest that
aberrant localization of UBTF is a key event in the pathogenesis
of these leukemias and reflects a gain-of-function activity for the
mutant UBTF.
628 15 FEBRUARY 2024 | VOLUME 143, NUMBER 7
Disrupting the KMT2A interaction with its cofactor, menin, has
antileukemic activity in NUP98-r, mutant NPM1, and KMT2A-r
AMLs.35,41,42 Based on the similarity of HOX gene expression
profiles and the presented mechanistic studies, we determined
that UBTF-TD AML cells are also dependent on the KMT2A/
menin complex. Here, we show that degradation of UBTF-TD
minimally affects the genomic binding of KMT2A and menin,
yet disrupting the menin-KMT2A interaction with SNDX-5613
reduces binding of menin and has variable affects on genome
binding of UBTF-TD and KMT2A. These data suggest that the
integrity of the KMT2A-menin complex is critical to maintaining
the molecular properties of cells transformed by UBTF-TD, and
the presence of UBTF-TD is necessary for leukemia mainte-
nance and blocking myeloid differentiation. Although the
mechanism by which UBTF-TD interacts with the genome is
currently not clear, our data and the previous observations that
HOXA and HOXB genes are expressed in normal CD34+
cells,43 along with KMT2A binding to these regions in CD34+
cells,44 suggest that recruitment of UBTF-TD could be medi-
ated by KMT2A or its interacting partners.

From a clinical perspective, these data demonstrate that UBTF-
TD AMLs can be recognized as a new menin inhibitor–responsive
leukemia subtype in future clinical studies. This could be critical
to overcoming the dismal outcomes for children with UBTF-TD
AMLs. Recent studies that identified UBTF-TD at a relatively high
incidence in adults with AML also broadened the impact of these
findings. These data also support the idea that other AML sub-
types with similar HOX gene expression profiles, such as AMLs
with DEK::NUP214, may also be sensitive to menin inhibitors.

Here, we propose a mechanism where the tandem duplications
within exon 13 of UBTF observed in AML result in a gain-of-
function activity defined by aberrant genomic localization.
UBTF-TD/KMT2A/menin co-occupy target genes that charac-
terize the UBTF-TD molecular signature and present a potential
therapeutic opportunity through disruption of the KMT2A-
menin interaction by clinically available menin inhibitors,
whose efficacy was confirmed in preclinical models in this study.
Therefore, we propose menin inhibition as a therapeutic strat-
egy for UBTF-TD leukemias, which can be a key advance in the
clinical management of patients with these AMLs, considering
their refractoriness to conventional chemotherapy.
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25. Thorvaldsdóttir H, Robinson JT, Mesirov JP.
Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and
exploration. Brief Bioinform. 2013;14(2):
178-192.

26. Zhang Y, Liu T, Meyer CA, et al. Model-based
analysis of ChIP-Seq (MACS). Genome Biol.
2008;9(9):R137.

27. Xu S, Grullon S, Ge K, Peng W. Spatial
clustering for identification of ChIP-enriched
regions (SICER) to map regions of histone
methylation patterns in embryonic stem cells.
Methods Mol Biol. 2014;1150:97-111.
EBRUARY 2024 | VOLUME 143, NUMBER 7 629

http://orcid.org/0000-0002-0664-5243
http://orcid.org/0000-0002-9267-9844
http://orcid.org/0000-0002-9267-9844
http://orcid.org/0000-0002-1000-6698
http://orcid.org/0000-0002-6991-8587
http://orcid.org/0000-0003-0099-858X
http://orcid.org/0000-0001-7031-3430
http://orcid.org/0000-0002-0009-9210
http://orcid.org/0000-0002-0009-9210
http://orcid.org/0009-0000-4425-9178
http://orcid.org/0000-0001-9626-2598
http://orcid.org/0000-0001-9885-3527
http://orcid.org/0000-0001-6420-3809
http://orcid.org/0000-0003-1927-9286
http://orcid.org/0000-0001-5404-6483
http://orcid.org/0000-0003-2961-6960
http://orcid.org/0000-0003-2961-6960
mailto:jeffery.klco@stjude.org
mailto:jeffery.klco@stjude.org
mailto:otheidenreichprinsesmaximacentrumnl
https://doi.org/10.1182/blood.2023021359
https://doi.org/10.1182/blood.2023021359
http://www.bloodjournal.org/content/143/7/567
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref1
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref1
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref1
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref1
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref2
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref2
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref2
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref2
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref4
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref4
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref4
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref4
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref4
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref5
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref5
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref5
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref5
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref5
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref6
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref6
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref6
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref6
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref6
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref7
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref7
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref7
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref7
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref7
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref8
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref8
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref8
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref8
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref8
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref9
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref9
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref9
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref9
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref10
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref10
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref10
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref10
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref10
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref11
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref11
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref11
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref11
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref11
https://doi.org/10.1038/s41588-023-01640-3
https://doi.org/10.1038/s41588-023-01640-3
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref13
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref13
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref13
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref13
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref13
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref14
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref14
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref14
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref14
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref14
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref15
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref15
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref15
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref15
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref15
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref16
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref16
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref16
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref16
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref17
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref17
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref17
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref17
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref18
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref18
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref18
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref19
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref19
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref20
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref20
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref20
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref20
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref21
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref21
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref21
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref22
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref22
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref22
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref22
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref23
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref23
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref23
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref23
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref24
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref24
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref24
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref25
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref26
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref26
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref26
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref27
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref27
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref27
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref27
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref27


D
ow

nloaded from
 http://ashpublications.net/blood/article
28. Kühn MWM, Song E, Feng Z, et al. Targeting
chromatin regulators inhibits leukemogenic
gene expression in NPM1 mutant leukemia.
Cancer Discov. 2016;6(10):1166-1181.

29. Yokoyama A, Somervaille TC, Smith KS,
Rozenblatt-Rosen O, Meyerson M, Cleary ML.
The menin tumor suppressor protein is an
essential oncogenic cofactor for
MLL-associated leukemogenesis. Cell. 2005;
123(2):207-218.

30. Guenther MG, Jenner RG, Chevalier B, et al.
Global and Hox-specific roles for the MLL1
methyltransferase. Proc Natl Acad Sci U S A.
2005;102(24):8603-8608.

31. Nabet B, Roberts JM, Buckley DL, et al. The
dTAG system for immediate and target-
specific protein degradation. Nat Chem Biol.
2018;14(5):431-441.

32. Tremblay MG, Sibai DS, Valère M, et al.
Ribosomal DNA promoter recognition is
determined in vivo by cooperation
between UBTF1 and SL1 and is compromised
in the UBTF-E210K neuroregression syndrome.
PLoS Genet. 2022;18(2):e1009644.

33. Shi A, Murai MJ, He S, et al. Structural
insights into inhibition of the bivalent menin-
MLL interaction by small molecules in
leukemia. Blood. 2012;120(23):4461-4469.

34. A study of SNDX-5613 in R/R leukemias
including those with an MLLr/KMT2A gene
630 15 FEBRUARY 2024 | VOLUME 143, N
rearrangement or NPM1 mutation (AUGMENT-
101) ClinicalTrials.gov identifier:
NCT04065399. Updated 17 February 2023.
Accessed 18 February 2023. https://
clinicaltrials.gov/study/NCT04065399

35. Heikamp EB, Henrich JA, Perner F, et al. The
menin-MLL1 interaction is a molecular
dependency in NUP98-rearranged AML.
Blood. 2022;139(6):894-906.

36. Rasouli M, Blair H, Troester S, et al. The MLL-
menin interaction is a therapeutic
vulnerability in NUP98-rearranged AML.
Hemasphere. 2023;7(8):e935.

37. Moskow JJ, Bullrich F, Huebner K, Daar IO,
Buchberg AM. Meis1, a PBX1-related
homeobox gene involved in myeloid
leukemia in BXH-2 mice. Mol Cell Biol. 1995;
15(10):5434-5443.

38. He X, Li W, Liang X, et al. IGF2BP2
overexpression indicates poor survival in
patients with acute myelocytic leukemia.
Cell Physiol Biochem. 2018;51(4):
1945-1956.

39. Horn PA, Tesch H, Staib P, Kube D, Diehl V,
Voliotis D. Expression of AC133, a novel
hematopoietic precursor antigen, on acute
myeloid leukemia cells. Blood. 1999;93(4):
1435-1437.

40. Faber J, Krivtsov AV, Stubbs MC, et al.
HOXA9 is required for survival in human
UMBER 7
MLL-rearranged acute leukemias. Blood.
2009;113(11):2375-2385.

41. Grembecka J, He S, Shi A, et al. Menin-MLL
inhibitors reverse oncogenic activity of MLL
fusion proteins in leukemia. Nat Chem Biol.
2012;8(3):277-284.

42. Klossowski S, Miao H, Kempinska K, et al.
Menin inhibitor MI-3454 induces remission in
MLL1-rearranged and NPM1-mutated
models of leukemia. J Clin Invest. 2020;
130(2):981-997.

43. Spencer DH, Young MA, Lamprecht TL, et al.
Epigenomic analysis of the HOX gene loci
reveals mechanisms that may control
canonical expression patterns in AML and
normal hematopoietic cells. Leukemia. 2015;
29(6):1279-1289.

44. Janssens DH, Meers MP, Wu SJ, et al.
Automated CUT&Tag profiling of
chromatin heterogeneity in mixed-lineage
leukemia. Nat Genet. 2021;53(11):
1586-1596.
© 2024 American Society of Hematology. Published by

Elsevier Inc. Licensed under Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0

International (CC BY-NC-ND 4.0), permitting only

noncommercial, nonderivative use with attribution.

All other rights reserved.
-pd
BARAJAS et al

f/143/7/619/2213739/blood_bld-2023-021359-m
ain.pdf by guest on 08 M

ay 2024

http://refhub.elsevier.com/S0006-4971(23)14162-0/sref28
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref28
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref28
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref28
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref29
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref30
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref30
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref30
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref30
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref31
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref31
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref31
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref31
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref32
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref33
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref33
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref33
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref33
https://clinicaltrials.gov/study/NCT04065399
https://clinicaltrials.gov/study/NCT04065399
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref35
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref35
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref35
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref35
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref36
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref36
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref36
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref36
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref37
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref37
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref37
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref37
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref37
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref38
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref38
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref38
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref38
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref38
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref39
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref39
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref39
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref39
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref39
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref40
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref40
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref40
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref40
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref41
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref41
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref41
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref41
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref42
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref42
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref42
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref42
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref42
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref43
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref44
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref44
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref44
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref44
http://refhub.elsevier.com/S0006-4971(23)14162-0/sref44
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

	Acute myeloid leukemias with UBTF tandem duplications are sensitive to menin inhibitors
	Introduction
	Methods
	Cell culture and analysis of cbCD34+ cell models
	UBTF-TD patient derived xenograft model for SNDX-5613 treatment
	CUT&RUN and data analysis
	RNA sequencing
	Primary AML cells
	Proximity ligation assay (PLA)
	Statistics

	Results
	UBTF-TD localizes to genomic loci that are dysregulated in UBTF-TD AMLs
	UBTF-TD expression and genomic localization is required for myeloid cell expansion
	UBTF-TD leukemias are sensitive to menin inhibition

	Discussion
	Authorship
	References


