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IDH-mutant myeloid neoplasms are associated with
seronegative rheumatoid arthritis and innate immune
activation
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High prevalence of IDH mutations in seronegative rheumatoid arthritis (RA) with myeloid neoplasm, elevated
2-hydroxyglutarate, dysregulated innate immunity, and proinflammatory microenvironment suggests causative association
between IDH mutations and seronegative RA. Our findings merit investigation of IDH inhibitors as therapeutics for sero-
negative IDH-mutated RA.
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Autoimmune manifestations including autoimmune rheumatic
disease (AIRD) are reported in 8% to 30% of patients with
myeloid neoplasm (MN), including myelodysplastic syndrome
(MDS), chronic myelomonocytic leukemia (CMML), acute
myeloid leukemia (AML), and myeloproliferative neoplasms
(MPNs).1-4 Furthermore, the risk of developing MN is elevated
in autoimmune diseases.5,6 However, the mechanisms under-
pinning the association between autoimmune disease and MN
remain unclear.

We assessed the burden of AIRD in patients with MN (n = 1702)
including MDS (n = 861), AML (n = 640), MDS/MPN (n = 112),
and MPN (n = 89). AIRD was identified using the International
Classification of Diseases, which was then verified by experi-
enced rheumatologists (supplemental Figure 1A-B and
supplemental Table 1, available on the Blood website). The
study was approved by the respective ethics committees and
performed in accordance with the Declaration of Helsinki.
Methodological details are provided in the supplemental
materials.

The median age of the cohort was 68 years (interquartile range,
59-75), 1023 (60%) of the subjects were male (supplemental
Table 2), and 7.7% of patients with MN had AIRD (MN-AIRD).
Enrichment of AIRD was observed in MDS, MDS/MPN, and MPN
compared with AML (9.5%, 9.8%, 10.1%, and 4.7%, respectively;
P = .003) (Figure 1A). MN cohort displayed male predominance
(60.1% vs 39.9%), but a higher proportion of females had
concomitant MN-AIRD (55.7% vs 44.3%; P < .01). This
was confirmed when analyzed by sex (11% female vs 6% male,
P < .0001), especially in MDS-AIRD (supplemental Figure 1C-E).
Inflammatory arthritis (n = 64, 48.9%), inflammatory connective
tissue diseases (n = 23, 17.2%), polymyalgia rheumatica (n = 18,
13.7%), and vasculitis (n = 16, 12.2%) were the most prevalent
AIRD (Figure 1B). Notably, 85.9% of inflammatory arthritis dis-
eases were rheumatoid arthritis (RA) (n = 55) followed by
peripheral (n = 8, 12.5%) and axial (n = 1, 1.6%)
spondyloarthropathies.

Enrichment for somatic mutations in the epigenetic modifiers
DNMT3A (odds ratio 1.93, P = .02) and IDH1/2 (odds ratio 1.9,
P = .02) was observed in MN-AIRD (Figure 1C). To investigate
this observed link, we analyzed an expanded cohort of 1356
patients with MN screened for IDH1/2mutations. Enrichment of
IDH1/2 mutations was identified in all MN-AIRD cases
compared with non-AIRD cases (18.8% vs 11.3%; P = .04) driven
primarily by the enrichment noted in MDS-AIRD (20.7% vs
6.9%; P = .001), suggesting a link between these somatic
mutations and autoimmune features (Figure 1D). A similar trend
was observed in AML (22.7% vs 18.7%; P = .58) but did not
reach statistical significance in part due to the higher preva-
lence of seropositive RA in AML compared with MDS (78% vs
29%; P = .03), and the lack of association of seropositive RA
with IDH mutation. Unexpectedly, males with MN-AIRD dis-
played IDH1/2 mutations enrichment when compared with
those without AIRD (23% vs 11%; P = .01), which was not
apparent in females (14% vs 12%; P =.67) (Figure 1E).

We next evaluated AIRD subtypes in patients with IDH1/2
mutations. IDH1/2 mutations were increased in MN with RA vs
other AIRD (30.6% vs 11.7%; P = .03) (Figure 1F-G) with striking
enrichment in seronegative vs seropositive RA (44.4% vs 0%;
P = .009) (Figure 1H). Although IDH1/2 mutations occurred with
similar frequency in AIRD, we found enrichment of IDH1
mutations in seronegative RA (75% IDH1 vs 25% IDH2), and
IDH2mutations were prevalent in other AIRD (100% IDH2 vs 0%
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IDH1; P = .009) (Figure 1I). The higher frequency of AIRD was
verified in an independent validation cohort of patients with
CMML (n = 21) who were selected based on IDH mutation
status, irrespective of AIRD status. Of the patients with IDH1/2-
mutated CMML, 62% (n = 13) had AIRD (n = 7) or other auto-
inflammatory manifestations (n = 6) (Figure 1J). Our findings
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indicate enrichment of IDH1 and IDH2 mutations in AIRD,
particularly seronegative RA.

If IDH1/2 mutations play a pathogenic role in AIRD, it is plau-
sible that mutant clones precede AIRD diagnosis. We therefore
analyzed the temporal events surrounding mutation and
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disease onset. In 84% (n = 65) and 5% (n = 4) of cases with
available information (n = 78), MN was diagnosed >12 and 1 to
12 months after the AIRD diagnosis, respectively, and in 6% (n =
5) and 5% (n = 4) of cases, MN was diagnosed within 1 month
and >1 month before the AIRD diagnosis, respectively. The
interval between diagnosis of RA and MN (latency) tended to
be shorter in seronegative vs seropositive RA (34.6 vs 135.4
months; P = .06) (supplemental Figure 1F). Importantly, the
P = .02

AIRD

IDHmut

(n = 13)
IDHwt

(n = 43)

300

200

100

0In
te

rv
al

 b
et

we
en

 A
IR

D 
an

d
M

N 
di

ag
no

sis
 (m

on
th

s)

A
P = .04

AIRD

IDH1mut

(n = 5)
IDH2mut

(n = 8)

In
te

rv
al

 b
et

we
en

 A
IR

D 
an

d
M

N 
di

ag
no

sis
 (m

on
th

s)

200

150

100

50

0

B

IDH1 MN IDH2 MN

PBMNC PBMNC

CD14 CD19 CD3 CD14 CD19 CD3

50%IDH VAF 40-45%
not

detectable
not

detectable
not

detectable
not

detectable

G

P = .016
P = .057

P = .036

10000

1000

100

10

1

Ra
tio

 o
f c

la
ss

ica
l t

o
no

n-
cla

ss
ica

l m
on

oc
yt

es

Myeloid neoplasms

Healthy control
(n = 3)

AIRD
(n = 4)

no AIRD
(n = 5)

D

0.125 0.25 0

1×100

1×10–2

1×10–4

1×10–6

P 
-va

lu
e

MN- no AIE

Figure 2. IDH-mutant clones are likely to be present prior to diagnosis of autoimmun
MN-AIRD compared with IDH wild-type MN-AIRD particularly in (B) IDH1-mutated com
(LOESS) analysis to calculate clonal expansion kinetics of IDHmut and to evaluate if IDH clo
average was calculated, and the sliding window passes along the x-axis. The shaded area
high ratio of proinflammatory classical to nonclassical monocytes in patients with MN-AI
healthy controls (n = 3). (E) Proinflammatory cytokines secreted by innate immune cells in
marrow plasma of MN-AIRD (n = 9) compared with MN without AIRD (n = 109). (F) Aberra
aureus Bioparticles uptake, in subjects with MN (n = 9) compared with healthy controls (n
(CD14+ monocytes, CD19+ B cells, and CD3+ T cells) in 2 patients with IDHmutation. (H) A
only 25% of cases with low 2-HG level. (I) Aberrantly high in vitro macrophage activity in su
mean, and all error bars indicate SD. The Mann-Whitney test was used to detect statis
associations between categorical variables. FGF-2, fibroblast growth factor 2; TGFα, tr
factor; IFN-α2, interferon α2; IFNγ, interferon γ; VAF, variant allele frequency.

LETTER TO BLOOD
interval from AIRD to MN was markedly shorter in IDH1/2-
mutant cases compared with IDH wild-type cases (44.4 vs 106.3
months; P = .02) (Figure 2A) and even shorter in patients with
IDH1 vs IDH2 (12.9 vs 85.6 months; P = .04) (Figure 2B). This
short latency between AIRD and MN could be explained by the
clonal expansion rate of 20% and 10% per year of IDH1- and
IDH2-mutated clones, respectively, which is faster than the
yearly expansion rate of 5% for DNMT3A and TP53 clones.7
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Furthermore, extrapolation of the IDH1/2-mutant clonal burden
prior to MN diagnosis indicates that the majority of clones are
expected to be detectable at the time of AIRD diagnosis
(Figure 2C).

AIRD are thought to be driven through adaptive immunity.
However, autoinflammatory disorders such as VEXAS (vacuoles,
E1 enzyme, X linked, autoinflammatory, somatic) syndrome are
associated with innate immune activation and MDS.8 We
therefore analyzed T-cell subsets and monocyte and macro-
phage function in AIRD vs non-AIRD MN. We found a higher
ratio of proinflammatory CD14+CD16− classical monocytes to
nonclassical anti-inflammatory CD14−CD16+ monocytes in MN-
AIRD compared with age-matched controls and cases of MN
without AIRD (Figure 2D; supplemental Figure 2). In contrast, no
difference in T-cell subsets (including naive, central memory,
effector memory, and terminally differentiated CD4+ and CD8+

T cells) was observed (supplemental Figure 3). Furthermore, we
observed increased levels of proinflammatory cytokines,
including granulocyte-macrophage colony-stimulating factor,
interleukin-12 (IL-12), fractalkine, IL-15, and IL-1β, in the bone
marrow plasma of patients with MN-AIRD vs those without AIRD
(Figure 2E). Consistent with these cytokines being predomi-
nantly derived from innate immune monocyte/macrophages
rather than T cells, we observed increased monocyte-derived
phagocytic activity (assessed by flow cytometry) in MN
(Figure 2F).

We then isolated CD14+ monocytes, CD3+ T cells, and CD19+

B cells from 2 patients with AIRD with known IDH1/2 mutations
(Figure 2G). Interestingly, high VAF clones were detected in
monocytes (40%-50%) but not in T cells (<1%) or B cells (<1%)
from both patients (Figure 2G; supplemental Figure 4), consis-
tent with intracellular (R)-2-hydroxyglutarate (2-HG) production
in monocyte/macrophage cells rather than T cells, leading us to
assess 2-HG levels in patients with AIRD. Strikingly, all 3 cases
with high 2-HG (bone marrow metabolite peak abundance
above median of >9.3 × 105) had AIRD compared with only 1 of
the 5 cases with low 2-HG (<9.3 × 105 median abundance, P =
.02) (Figure 2H). Finally, we noted significantly higher macro-
phage phagocytic activity in subjects with IDH1/2-mutant MN
compared with controls (Figure 2I).

IDH mutations are neomorphic and lead to the production of an
alternative metabolite in the citric acid cycle, 2-HG, which inhibits
TET2 deoxygenase with resultant genomewide epigenetic mod-
ifications. This study demonstrates the enrichment of IDHmut in
MN-AIRD, in line with previous findings.4 Importantly, our study
demonstrates a strong association between IDH-mutated MN
and a specific type of AIRD-seronegative RA, as well as a tem-
poral relationship between IDH-mutant clones and AIRD. The
observed elevated 2-HG in seronegative RA and IDH1/2 muta-
tions in myeloid rather than T cells indicates a causative associ-
ation between IDH1/2 mutation and AIRD. Emerging literature
from in vitro9 and in vivo studies reports proinflammatory effects
of IDH mutations on monocytes9 and macrophages,10 in addition
to an elevated IL-18 level in individuals with IDH1 clonal hema-
topoiesis.11 Collectively our findings suggest a causative rela-
tionship between IDH1/2mutations, MN, and seronegative AIRD,
meriting further exploration of mutant IDH inhibitors such as
ivosidenib,12 enasidenib,13 or complex I inhibitor14 as therapeutic
options for seronegative RA.
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