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KEY PO INT S

• “Multilineage” vs
“lymphoid-only”
BCR::ABL1 involvement
and distinct
cooperating events
determine gene
expression in
BCR::ABL1-positive
ALL.

•Outcome with recent
GMALL protocols is
similar for BCR::ABL1
lineage clusters, but
inferior for an IKZF1-/-

enriched “lymphoid”
subcluster.
4

Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL)
are currently defined by the International Consensus Classification of myeloid neoplasms
and acute leukemias (ICC): “lymphoid only”, with BCR::ABL1 observed exclusively in
lymphatic precursors, vs “multilineage”, where BCR::ABL1 is also present in other hemato-
poietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with
ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters
reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization anal-
ysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct
BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients;
P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred
from gene expression. Further subclusters grouped samples according to cooperating
genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or
CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for
BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on
current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in
comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year
DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS,
whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying develop-
mental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.
Introduction
BCR::ABL1-positive acute lymphoblastic leukemia (ALL) is a
high-risk disease subtype in children and adults,1,2 treated with
tyrosine-kinase inhibitors (TKIs) combined with dose-reduced
chemotherapy regimens, including allogenic stem cell
transplantation (SCT).2,3 Combinations of TKIs and the bispe-
cific antibody blinatumomab provide further promising results
in clinical trials.4,5 However, dependency on lineage-specific
targets poses the risk of lineage infidelity as a resistance
mechanism in particular for lineage-restricted immunother-
apies.6 We and others described 2 developmental trajectories
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Figure 1. Developmental trajectories of BCR::ABL1-positive ALL can be determined by gene expression. (A) Uniform manifold approximation and projection (UMAP)
plot shows unsupervised clustering of 493 BCP-ALL patients (GMALL study group) based on 2802 genes previously established15 for allocation to 21 molecular disease
subtypes. A total of 18 subtypes represented in this adult cohort are shown. Arrows indicate separation of BCR::ABL1-positive patients into 2 distinct clusters. (B) BCR::ABL1-
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in BCR::ABL1-positive ALL with either a lymphoid or a stem cell
origin.6-9 The ICC classification of myeloid neoplasms and acute
leukemia defines BCR::ABL1-positive ALL accordingly as
“lymphoid only” or “multilineage,”10 but diagnostic standards
are not yet established. In addition, the leukemia-intrinsic
biology of these subtypes and their clinical phenotype remain
poorly understood.

Study design
We analyzed 327 BCR::ABL1-positive ALL patient samples (age,
2-84 years; median, 46 years) from 4 cohorts11-14 by tran-
scriptomic (RNA sequencing [RNA-Seq]15: n = 327) and
genomic profiling (whole-genome sequencing12: n = 61/single-
nucleotide polymorphism array16: n = 102) and BCR::ABL1
fluorescence in situ hybridization on fluorescence-activated cell-
sorted hematopoietic populations6 (supplemental Table 1
[available on the Blood website]). Machine learning–based
gene expression analysis15 was used to define in our GMALL
cohort BCR::ABL1-ALL gene expression clusters, reproducibly
validated in 3 external cohorts.12-14 Long-read RNA-Seq17 and
single-cell assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-Seq)/RNA-Seq (10×
Genomics, Pleasanton, CA) were used to confirm cluster-
specific gene isoform expressions. Immunophenotyping and
measurement of minimal residual disease were performed in
central reference laboratories.18,19 Clinical outcome of
BCR::ABL1-positive ALL clusters was analyzed in 98 evaluable
adult patients treated according to GMALL protocols with dose-
reduced chemotherapy induction combined with imatinib, fol-
lowed by consolidation I with continuous imatinib treatment
and indication for allogeneic SCT in first complete remission
(CR)3 (supplemental Appendix).

The GMALL studies (NCT02872987, NCT02881086) reported
here were approved by the ethical committees of the partici-
pating centers, and patients gave written informed consent for
biological research.

Results and discussion
Transcriptomic profiles of B-cell precursor ALL (BCP-ALL) define
molecular disease subtypes.15 Unsupervised analysis of
subtype-specific gene expression in our GMALL cohort (n =
493) revealed 2 distinct main clusters within BCR::ABL1-positive
ALL (Figure 1A). For validation, we obtained sample-to-sample
distances from systematic variation of uniform manifold
approximation and projection (UMAP) parameters on gene
Figure 1 (continued) positive samples from this cohort (n = 113) were reanalyzed by UM
“min_dist” and “n_neighbors” (supplemental Figure 1). Sample-to-sample distances for e
the averaged distances is shown. To define the final number of clusters, the dendrogram
determined using machine learning (SVM linear). When the predictability (Cohen κ) of a cl
supplemental Figure 2). This resulted in 2 main clusters (C1 and C2) with 4 subclusters (
clusters were present in other cohorts, 2 machine learning classifiers (1 for the 2 main cl
genes, respectively, derived from the GMALL discovery cohort (supplemental Tables 2-6
n = 61; St. Jude Children's Research Hospital, n = 104; and Princess Margaret Cancer Ce
reference cohort after batch correction. Newly established classifiers were used for sampl
in the annotation. (D) UMAP plots obtained from the data in panel C, showing the class
peripheral blood samples at first diagnosis of ALL were fluorescence-activated cell sorte
rescence in situ hybridization (FISH) (supplemental Figure 4). Bars depict the frequen
(CD45lowCD19−CD10-CD34+/−CD13/33+), mature B cells (CD45highCD19+CD10−CD20
(CD45lowCD19+CD10+; in 1 case with pro-B immunophenotype, ALL cells were only ident
are detailed in the supplemental Table 12. Note: *less than 100 cells analyzed, ¥less tha
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expression profiles of BCR::ABL1-positive GMALL samples
(supplemental Figure 1). Unsupervised clustering of these dis-
tances confirmed 2 main clusters (C1, C2) and 2 subclusters
(C1a, C1b, C2a, and C2b) within each of the main clusters
(Figure 1B), which could be robustly predicted by a machine
learning–based classifier (supplemental Figure 2). We used the
underlying gene set definition (n = 331 genes; supplemental
Tables 2-6) for unsupervised clustering of an aggregated data
set of all cohorts (n = 32711-14; Figure 1C), which confirmed the
cluster separation (Figure 1D). Differential gene expression
analysis provided complex transcriptomic signatures for the 2
main and 4 subclusters (supplemental Figure 3; supplemental
Tables 7-11), indicating underlying biological differences.
BCR::ABL1 fluorescence in situ hybridization on diagnostic
samples from 34 adult patients (supplemental Figure 4) based
on fluorescence-activated cell-sorted6 hematopoietic compart-
ments (myeloid, lymphoid precursor, and mature B/T cells)
identified BCR::ABL1 in 28% to 99% of myeloid cells in 18 of 18
samples from C1 (therefore termed: multilineage), whereas 13
of 16 samples from C2 showed BCR::ABL1 exclusively in
lymphoid precursors or mature B cells (termed lymphoid; P <
.001; Figure 1E; supplemental Table 12). Thus, ICC-defined
BCR::ABL1 multilineage vs lymphoid-only ALL subtypes are
characterized by clearly distinct gene expression profiles.

To identify the underpinnings of the subclusters, we obtained
genomic profiles of 149 cases of the aggregated cohort
(Figure 2A; supplemental Figure 5). Focal deletions in HBS1-like
translational GTPase (HBS1L) were exclusively observed in the
multilineage cluster C1 with strong enrichment for subcluster
C1a (termed “delHBS1L”; P = .001), whereas monosomy 7 was
strongly enriched in C1b (“del7”; P < .001). The lymphoid
subcluster C2a was enriched for homozygous deletions in IKZF1
(“IKZF1”; P < .001), whereas C2b was enriched for homozygous
CDKN2A/B deletions (P < .001), PAX5 deletions (P < .001), and/
or hyperdiploidy (“CDKN2A/PAX5”; P < .001). Validation on an
external cohort14 confirmed this enrichment pattern of genomic
aberrations (Figure 2B), indicating that the 4 gene expression
subclusters represent distinct patterns of underlying genomic
aberrations.

Interestingly, BCR::ABL1 multilineage cluster samples showed
an increased HBS1L gene expression but reduced exon 1 to 3
use (Figure 2C). This pattern was absent in BCR::ABL1-negative
ALL and healthy lymphoid progenitors (supplemental Figure 6).
Long-read RNA-Seq confirmed a previously not described
HBS1L transcript (HBS1Lalt) in delHBS1L and del7 cases initi-
ated from a putative transcription start side in HBS1L intron 3
AP analysis with systematic variation of 30 setting combinations for the parameters
ach setting were calculated, z-transformed, and averaged. Hierarchical clustering of
was progressively split at each junction and the integrity of the resulting clusters was
uster decreased below 0.8, no further cluster splitting was performed (for details, see
C1a, C1b, C2a, C2b), which could be reliably predicted. (C) To test whether similar
usters and 1 for the 4 subclusters) were trained on the basis of 178 and 331 LASSO
). Gene expression data from validation cohorts (Munich Leukemia Laboratry (MLL),
ntre (PMCC), n = 49) were used for hierarchical clustering together with the GMALL
e allocation to the 2 main and 4 subclusters (supplemental Table 1), which are shown
ifier predictions for the main clusters (left) and subclusters (right). (E) Bone marrow/
d into hematopoietic compartments on cover slides and used for BCR::ABL1 fluo-
cy of BCR::ABL1-positive cells in the corresponding compartments: myeloid cells
+), T cells (CD45highCD19-CD3+CD16/65−), or B lymphoid precursor/ALL cells
ified by CD45lowCD19+). FISH signal constellations and distribution in analyzed cells
n 50 cells analyzed.
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(Figure 2C,D; supplemental Figure 7). Single-cell ATAC-Seq
revealed an open chromatin region at the putative HBS1Lalt
promoter in 2 del7 cases, which was absent in 1 lymphoid
BCR::ABL1 case (supplemental Figure 8). Besides, no signifi-
cantly enriched genomic aberrations were identified in the
proximity of HBS1L (whole-genome sequencing; chromosome
6:134,800,000-135,310,000, GRCh38), which could explain
HSB1Lalt expression by disruption of regulatory elements.
Expression of HBS1Lalt due to independent mechanisms, pro-
moter loss (delHBS1L) or epigenetic/transcriptional regulations
(del7), suggests HBS1Lalt as a novel cooperating event in
multilineage BCR::ABL1-positive ALL.

Our subtype definition extends a recent description of tran-
scriptomic classes of BCR::ABL1-positive ALL by Kim et al.14 In
direct comparison, the published Early-Pro subtype corre-
sponds to our multilineage definition (supplemental Figure 9).
Within the multilineage cluster, we additionally identified sub-
clusters delHBS1L and del7, which were confirmed also on the
published data (Figure 1C; supplemental Figure 9A). The pub-
lished Inter-Pro and Late-Pro definitions correspond to our
IKZF1 and CDKN2A/PAX5 subclusters, respectively. However,
our IKFZ1 cluster definition included more samples with het-
erozygous IKZF1 deletions compared with “Inter-Pro,” which
was exclusively restricted to samples with biallelic IKZF1 loss in
the published data. Unsupervised clustering of the aggregated
cohorts using the published14 gene set definition grouped
together samples classified IKZF1 according to our definition,
independent of the genomic IKZF1 deletion status, suggesting
that epigenetic regulations might contribute to a shared tran-
scriptomic profile in cases without biallelic IKFZ1 loss
(supplemental Figure 9B). Thus, validation across independent
analyses specifies 4 molecular subtypes of BCR::ABL1-positive
ALL.

To further evaluate lineage-specific phenotypes, we analyzed
diagnostic BCP-ALL immunophenotypes and compared gene
expression with normal lymphopoiesis. More frequent myeloid
coexpression (CD13, CD33) was observed in the multilineage
subclusters, whereas lymphoid markers (CD20, CD22) were
higher expressed in the lymphoid subclusters (supplemental
Figure 10). Top differentially expressed genes between
multilineage and lymphoid main cluster (Figure 3A) and single-
sample gene set enrichment analyses for normal B lympho-
poiesis stages15 (Figure 3B; supplemental Figure 11) revealed a
closer proximity to pro-B cells in multilineage and to pre-B I
cells in lymphoid cluster samples, confirming distinct underlying
developmental trajectories. Analysis of involved signaling
Figure 2. Cooperating genomic events define gene expression subclusters, inclu
candidate. (A) Distribution of recurrent copy number variants (CNVs) in the 4 BCR::ABL1
(GMALL: ground truth; MLL: predictions, excluding n = 14 samples that remained "uncl
whole-genome sequencing (WGS) (n = 47) or single-nucleotide polymorphism (SNP) array
reaction (PCR), and/or multiplex ligation-dependent probe amplification (MLPA). The id
identified by WGS (chr6:135,044,863-135,116,862; GRCh38hg38), including the HBS1L pro
with a given alteration within each category. Associations between delHBS1L vs del7 vs I
significance level of 0.05 are depicted in bold). For detailed statistic please refer to sup
genomic aberrations were validated in the PMCC cohort (n = 49) using subcluster allocatio
published14 genomic aberration profile of these samples. (C) Hierarchical clustering wa
135,040,344-135,040,447), HBS1L exon use, and HBS1L total gene expression in 113 GMA
Direct long-read RNA-sequencing reads of HBS1L region between exons 1 and 4 are sh
alternative promoter in the intronic region between exon 3 and 4 is depicted in red. T
overview of the alternative HBS1L transcript and confirmation of the alternative TSS by
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pathways confirmed functional independence of the BCR::ABL1
clusters with strong enrichment for Hippo and Hedgehog
pathways in IKZF1 and CDKN2A/PAX5, respectively
(supplemental Figure 12).

Integration of gene set definitions for the new molecular
BCR::ABL1 clusters with our previous definitions for 21 molecular
subtypes provided a clear separation in a large BCP-ALL data
set15 (Figure 3C,D). Therefore, we implemented a predictive
model for the novel BCR::ABL1 clusters in ALLCatchR15 to facil-
itate independent validation for routine diagnostic application
(https://github.com/ThomasBeder/ALLCatchR_bcrabl1).

Integrated analysis across all cohorts revealed further clinical
phenotypes of the BCR::ABL1 clusters (Figure 3E; supplemental
Tables 13 and 14). We observed a predominance of the
CDKN2A/PAX5 subcluster in pediatric patients despite equal
distribution of multilineage and lymphoid cases in children and
younger adults. Elderly patients were more frequently classified
as multilineage with an increase of del7 cases. Patients in the
multilineage cluster more frequently harbored BCR::ABL1major
breaks with a significant increase of BCR exon14 involvement in
delHBS1L. White blood cell counts at diagnosis also differed
between the novel BCR::ABL1 clusters (highest in delHBS1L
and CDKN2A/PAX5), together indicating that the novel cluster
definitions also represent distinct clinical profiles.

We analyzed the clinical implications of BCR::ABL1 subtypes in
our homogeneously treated adult patient cohort (n = 98; first
diagnosis 2014-2021) in the context of recent GMALL multi-
center protocols including imatinib combined with adapted
chemotherapy, minimal residual disease monitoring, and allo-
geneic SCT in first CR. The SCT rate was 86% in this cohort and
85% in the most recent GMALL trial 08/2013.3 Seven patients
were aged >55 years and treated according to less intensive
protocols. We observed fewer complete molecular responders
in the multilineage cluster compared with the lymphoid cluster
(supplemental Figure 13). Disease-free survival (DFS) probabil-
ities were uniformly high in both subtypes (3-year DFS multi-
lineage vs lymphoid, 70% ± 9% vs 61% ± 6%; P = .530; n = 91
evaluable patients; Figure 3F), in line with recent reports.9,21

Analysis of the subclusters revealed an inferior outcome for
the IKZF1 cluster, whereas DFS was comparable in the
remaining clusters (3-year DFS: delHBS1L, 79% ± 11%; del7,
75% ± 12%; IKZF1, 57% ± 10%; CDKN2A/PAX5, 81% ± 6%; P =
.090; Figure 3G). Hyperdiploid cases had an excellent outcome
(DFS: 100% ± 0%; Figure 3H), extending previous reports.22,23

DFS probabilities were comparable to overall survival (data
ding alternative HBS1L isoform expression in delHBS1L and del7 as novel
-positive ALL subclusters. CNVs were assessed in samples with subcluster allocation
assified" by machine learning classifier for the 2- and/or the 4-cluster definition) by
(n = 102) and validated by fluorescence in situ hybridization (FISH), polymerase chain
entified recurrent HBS1L deletion harbored the same breakpoints in all samples as
moter and exon 1 to 2. Bars represent the percentage of BCR::ABL1-positive cases
KZF1 vs CDKN2A/PAX5 were assessed by χ2 or Fisher exact test (P values below the
plemental Figure 5 and supplemental Appendix. (B) Subcluster-specific patterns of
ns obtained from a machine learning classifier trained on the GMALL cohort and the
s performed using HBS1L alternative transcription start side expression (TSS; chr6:
LL samples. In addition, the average expression on HBS1L exons 1 to 3 is shown. (D)
own for 1 lymphoid and 1 multilineage BCR::ABL1-positive sample. The predicted
he orange bar shows the identified genomic deletion in HBS1L. A more detailed
single-cell ATAC-Seq is shown in supplemental Figures 7 and 8.)
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Figure 3. Proximity to more immature lymphopoiesis stages defines multilineage BCR::ABL1-positive ALL, which has a similar outcome as lymphoid BCR::ABL1-
positive ALL. (A) Differential gene expression analysis between multilineage and lymphoid BCR::ABL1-positive ALL was performed using 1-way analysis of variance
(supplemental Table 7). The 100 most significantly differentially expressed genes were used for hierarchical clustering of BCR::ABL1-positive samples (upper panel). The
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Figure 3 (continued) expression heat map in the lower panel shows gene expression of the same genes in healthy B-cell progenitors.15 (B) ALLCatchR15 single-sample
enrichment scores20 for samples from the 4 subclusters are shown using gene set definitions of normal B lymphopoiesis. (C-D) Uniform manifold approximation and pro-
jection (UMAP) plots showing gene expression data of 2567 patients with BCP-ALL, previously aggregated from 3 cohorts15 and including now the 2 major (C) and 4 subcluster
(D) BCR::ABL1 groups. The UMAP plots are based on the 3058 genes defined for BCP-ALL subtypes15 and BCR::ABL1 clusters. The updated version of ALLCatchR, providing
molecular subtype allocation to BCP-ALL subtypes, including the novel BCR::ABL1 clusters, is available online (https://github.com/ThomasBeder/ALLCatchR_bcrabl1). (E) The
distribution of age groups (upper left), BCR::ABL1 break points (lower left), and white blood cell counts (WBC, upper right) at initial diagnosis are shown for subclusters of the
aggregated data set. The solid line in the dot plot showing WBC distribution represents a WBC of 30 000/μL, and red diamonds are the medians. Corresponding data and
statistical analyses are provided in supplemental Tables 1,13, and 14. (F-H) DFS recorded at a median of 3 years for 91 GMALL BCR::ABL1-positive patients treated according
to GMALL protocols with dose-reduced chemotherapy induction combined with imatinib, followed by consolidation I with continuous imatinib treatment and indication for
allogeneic stem cell transplantation in first complete remission is shown. Kaplan-Meier analysis was used to calculate survival probabilities, and differences were assessed by
log-rank test.
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not shown). Kim et al14 observed heterogeneous outcomes of
BCR::ABL1 subtypes with a poor 5-year overall survival of 33%
in “Early-Pro” cases, which correspond to our multilineage
definition. These adult patients were diagnosed between 1992
and 2019 and were treated mostly with protocols including
imatinib or other TKIs. SCT in first CR was performed in only
32% to 39% of cases, suggesting that higher transplantation
rates might equalize biological differences between BCR::ABL1
subtypes. Future trials need to evaluate the role of BCR::ABL1
subtypes in context of chemotherapy-free treatments relying on
immunotherapy targets. Our analyses provide a novel framework
integrating developmental trajectories and defined genomic
patterns in BCR::ABL1-positive ALL based on shared tran-
scriptomic regulations to subclassify BCR::ABL1-positive ALL into
distinct biological and clinically relevant entities.
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