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Current aplastic anemia guidelines4

continue to suggest viral testing. How-
ever, it is less likely that this mechanistic
explanation will alter current therapies as
both immunosuppressive therapy5 as well
as bone marrow transplantation6 have
long had a successful therapeutic role in
severe aplastic anemia, regardless of eti-
ology. The current results also do not
provide a way of predicting responders
from nonresponders to immunosuppres-
sive therapy. One could hypothesize that
hematopoiesis-reactive T-cell clones
should decrease in frequency or disappear
upon successful immunosuppressive ther-
apy. Whether clone frequencies correlate
with disease activity and could potentially
represent predictive biomarkers could be
investigated in larger studies. Lastly,
patients with aplastic anemia cured by
successful immune system (and thus T cell)
replacement via bone marrow transplant
(even if the cause was viral) are often
exposed again to these same viruses
without relapse. Exploring the differences
between the donor and the host immune
responses (especially in sibling transplants)
should expand our understanding of the
role of mimicry.

The critical role of T cells in aplastic
anemia has already been suggested by
previous experimental and clinical evi-
dence.7,8 Ben Hamza et al elegantly
furthered knowledge by systematically
studying clonal expansion, associated
immune phenotypes, targeted cell pop-
ulations, and target antigens to demon-
strate that epitopes derived from
viral infections can potentially drive
hematopoiesis-directed T-cell responses
by molecular mimicry (see figure). Future
studies should include identification of
other potential target antigens, for
unbiased identification of other T-cell
receptor targets causing marrow failure,
such as drug-induced aplastic anemia.
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Targeting PD-L1 to treat
ATLL?
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In this issue of Blood, Chiba et al reveal the molecular mechanisms that
control the expression of programmed cell death ligand 1 (PD-L1) in adult
T-cell leukemia/lymphoma (ATLL) and propose an original therapeutic
approach to treat this highly aggressive T-cell malignancy.1
ATLL is an aggressive mature T-cell
lymphoid malignancy caused by human
T-cell leukemia virus type 1 (HTLV-1)
infection. The prognosis is very poor,
especially in aggressive subtypes, which
represent the majority of the cases at
diagnosis, with an overall survival (OS) of
<1 year.2 In these subtypes, the standard
of care is polychemotherapy (ie, CHOP-
like regimen [cyclophosphamide, hydroxy-
daunorubicin, vincristine (Oncovin), pred-
nisone] or the LSG-15 protocol in Japan
that consists of a sequential combination
of chemotherapies: VCAP [vincristine,
cyclophosphamide, doxorubicin, predni-
sone], AMP [doxorubicin, ranimustine,
prednisone], and VCEP [vindesine, eto-
poside, carboplatin, prednisone]) fol-
lowed by allogeneic hematopoietic stem
cell transplantation (alloSCT), when
feasible. Apart from alloSCT, which
proved to cure some patients and
improve ATLL outcome,3 no significant
improvement in OS has been observed
since the original work by Shimoyama
describing different ATLL subtypes in
1991.2 Notably, targeted therapies, such
as “antiviral therapy” with the combina-
tion of zidovudine-interferon and anti–C-
C chemokine receptor 4 (CCR-4) antibody
(mogamulizumab), have not been able to
improve significantly the outcome of
ATLL.4,5 One of the main drawbacks of
ATLL treatment is the intrinsic chemo-
resistance of the disease, with around
40% of cases presenting with primary
chemoresistance.5

In the past decade, the molecular
understanding of ATLL has progressed.
The genetic and epigenetic landscape of
ATLL is now better characterized, with the
identification of at least 5 key recurrent
pathways, including the T-cell receptor/
NF-κB pathway (~75% of cases), T-
cell trafficking (~45%), immunoescape
(~30%), cell-cycle regulation and tumor
suppression (~25%), and Janus kinase–
signal transducer and activator of tran-
scription (JAK-STAT) signaling (~20%).6,7

Interestingly, these alterations are not
restricted to HTLV-1–related lymphoma-
genesis, but are shared with other
peripheral B- and T-cell lymphomas.
Furthermore, ethnic background does not
seem to affect the genomic landscape of
ATLL. Similarly, thanks to high-throughput
genomic sequencing techniques, the
understanding of the role of the oncovirus
in lymphomagenesis has improved.8
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Combination of a NEDD inhibitor and anti PDL-1 therapy
1. Pevonedistat + Avelumab

2. Pevonedistat + PD-L1 specific CAR T cells

Therapeutic proposal
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Identification of molecular pathway and pharmacological compounds that regulate PD-L1 expression in ATLL and proposal for a novel combined therapy. PD-L1, pro-
grammed cell death ligand 1; NEDD8, neural precursor cell expressed, developmentally downregulated 8; NAE1, NEDD8-activating enzyme; UBA3, ubiquitin-like modifier
activating enzyme 3; CUL3, cullin 3; STAT3, signal transducer and activator of transcription 3. The graphs are reproduced from Figure 7G-H in the article by Chiba et al that
begins on page 1379.
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In their study, Chiba and colleagues used
an unbiased approach based on CRISPR
whole genome technology to elegantly
identify molecular pathways regulating
PD-L1 expression (see figure). They
demonstrated that STAT3 is a positive
regulator of PD-L1 expression and iden-
tified several neddylation pathway genes
(NEDD8, NAE1, UBA3, and CUL3) as
negative regulators of PD-L1 expression.
In vitro studies using a pharmacological
inhibitor of JAK-STAT (ruxolitinib) or
neddylation (pevonedistat) provided
further support for these observations.
Moreover, increased PD-L1 expression by
the neddylation inhibitor pevonedistat
alone strongly upregulated PD-L1
expression and had a cytotoxic effect on
ATLL cells in vitro. The authors pursued an
interesting approach by combining
pevonedistat (to increase PD-L1 expres-
sion) with an anti–PD-L1 monoclonal
antibody (avelumab) or with PD-L1 spe-
cific chimeric antigen receptor T cells to
target ATLL cell lines. Finally, they
demonstrated an increased in vitro cyto-
toxic effect when using combination
therapy.
Chiba et al address a gap in our under-
standing of the biology of ATLL as well
as the urgent clinical need for novel
therapeutic approaches. Their observa-
tions are applicable both in the context
of wild-type PD-L1 and of somatic vari-
ants in the 3’-untranslated regions of PD-
L1 frequently observed in ATLL (~30% of
cases).9 However, from a clinical point of
view, the major point of concern is that
using anti–PD-L1/anti–PD-1 targeted
therapy could actually stimulate growth
of specific clones. Indeed, therapeutic
approaches using anti–PD-1 antibodies
as checkpoint inhibitors have already
been reported and have led to an
unexpected outcome: rapid progression
in several cases of indolent ATLL.10

Therefore, a better understanding of the
biology of PD-L1/PD-1 in ATLL is
essential to allow for safe use of a new
class of potent drugs (immune check-
point inhibitors), which are potentially
dangerous in the context of ATLL.

In conclusion, despite the absence of an
animal model to reinforce these novel
results, the findings are of interest for
scientists investigating ATLL molecular
and cell biology, for clinicians who treat
patients with ATLL, and more broadly for
biologists interested in the regulation of
immune checkpoint molecule expression.
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Uncovering new layers of
Ph+ ALL biology
Rathana Kim and Emmanuelle Clappier | Université Paris Cité

In this issue of Blood, Bastian et al1 report that Philadelphia chromosome-
positive acute lymphoblastic leukemias (Ph+ ALLs) are more heterogeneous
than previously thought. The authors identified subtypes with distinct tran-
scriptomic and genomic profiles, which correlate with multilineage or
lymphoid-only BCR::ABL1 involvement and have distinct clinical phenotypes.
f/143/14/1320/2
It has been 5 decades since Janet Row-
ley’s groundbreaking discovery of the
translocation t(9;22) and its association
with chronic myeloid leukemia (CML)
and Ph+ ALL. The identification of the
BCR::ABL1 fusion gene marked a turning
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point in understanding these hematologic
malignancies, leading to the development
of targeted therapies that transformed the
landscape of leukemia treatment.2

Since then, it has been assumed that dis-
ease heterogeneity within BCR::ABL1-
driven malignancies, specifically CML or
de novo Ph+ ALL, largely depended on

p210 isoform associated with CML
occurred in an hematopoietic stem cell,
and the minor fusion producing p190 was
confined to the B-cell precursor compart-
ment.3 Although a subset of Ph+ ALL
presented with major fusion, there was a
persistent doubt as to whether those cases
represented authentic de novo Ph+ ALL or
CML blast crisis with an unrecognized
chronic stage. Recent studies challenged
this view by demonstrating BCR::ABL1
multilineage involvement in a subset of
Ph+ ALL, regardless of the fusion break-
point.4-6 This dichotomy within Ph+ ALL,
namely “multilineage” or “lymphoid-only”
has been recently recognized in the
International Consensus Classification of
acute leukemias.7 However, little is known
regarding the distinctive biology of these
subtypes and their associated clinical and
prognostic features. Moreover, there is
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