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Waking up exhausted
BCMA-specific T cells in
myeloma
Antonio Sacco and Aldo M. Roccaro | Azienda Socio Sanitaria Territoriale
Spedali Civili di Brescia

In this issue of Blood, Bae et al1 have elegantly shown that an induced
pluripotent stem cell strategy may epigenetically reprogram precursor
exhausted B-cell maturation antigen (BCMA)–specific cytotoxic T lympho-
cytes into hematopoietic progenitor cells, which, in turn, differentiate into
functional cognate antigen-specific CD8αβ+ memory T cells that exert an
antitumor effect in multiple myeloma (MM). Overall, these novel studies pave
the path to novel strategies for targeting MM cells via an effective antitumor
immunity-based approach.
Adoptive cell therapy with the use of
tumor cell–targeting chimeric antigen
receptor T (CAR-T) cells has certainly
shown significant clinical benefits in
certain cancers, leading to prolonged
remissions, and is probably curative in a
subset of cases.2-8 Within the field of MM,
antitumor activity of BCMA-targeting
CAR-T cells has been shown.2-4
However, the challenge of T-cell exhaus-
tion and impaired immune function remain
hurdles for the persistence of the antitumor
activity of CAR-T cells. One of the main
drivers of T-cell exhaustion is persistent
antigen stimulation. This study, led by Bae
et al, has implemented an induced plurip-
otent stem cell (iPSC) approach to revitalize
and reprogram BCMA-specific T cells.
BER 10
BCMA-specific CD8+ memory cytotoxic T
lymphocytes (CTLs) were epigenetically
successfully reprogrammed, returning
them to a pluripotent state that then
developed into hematopoietic progenitor
cells and differentiated into the T-cell line-
age. These T cells were fully characterized,
confirming the mature CD8ab+ memory
phenotype; coupled with a robust expres-
sion of costimulatory molecules, including
CD38, CD28, and 41BB; and lack immune
checkpoint or senescencemarkers, such as
CTLA4, PD1, LAG3, TIM3, or CD57. These
same markers were enriched within the
parental precursor, exhausted BCMA-CTL.

Next, the authors investigated the func-
tional status of the iPSC T cells, demon-
strating their ability to proliferate and to
exert an antitumor effect. In addition,
the use of RNA sequencing showed
specific transcriptional signatures mirror-
ing the successful differentiation of iPSC
clones into CD8+ memory T cells. This
sequencing approach is an important tool
to facilitate the identification and selection
of the most appropriate iPSC clones to be

tiation, especially when thinking about
clinical application.

Overall, Bae et al have developed a well-
defined, robust, and scientifically sound
proof-of-principle platform to epigenet-
ically reprogram BCMA-specific CD8+

memory cytotoxic T lymphocytes as a
promising strategy to promote an effi-
cacious and long-term anti-MM immu-
nity. More important, the findings of
these studies may apply to a wider
spectrum of cancers, thus covering solid
tumors and hematologic malignancies.

We now anxiously await the translation of
these exciting data to the clinical setting.
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The brain may devise laws
for the blood
David S. Ritchie | Peter MacCallum Cancer Centre and Royal Melbourne
Hospital

In this issue of Blood, Adams and colleagues have explored the impact of
monoclonal antibody blockade of colony-stimulating factor 1 receptor
(CSF1R) in models of central nervous system (CNS) chronic graft-versus-host
disease (cGVHD).1 Chronic GVHD is a pervasive syndrome of destructive
donor-derived immune activation, uncontrolled acute and chronic inflamma-
tion, and progressive organ dysfunction following allogeneic stem cell
transplantation. Overall, cGVHD is a major cause of mortality and morbidity
following allogeneic stem cell transplantation and the major cause of
impairment of activities of daily living and reduced quality-of-life mea-
sures.2,3 Prior modeling from the same laboratory as the current article has
determined that CNS cGVHD is driven by a unique population of CSF1-
dependent, brain-infiltrating, bone marrow-derived major histocompatibil-
ity complex (MHC) class II-positive macrophages (BMDM), which promote a
late CD4+ T-cell CNS infiltration and interferon gamma (IFN-γ)-dependent
chronic neuroinflammation, impaired neurological synapse function, and
impaired behavior.4
ay 2024
Given the recent and promising devel-
opment of a clinical strategy using
CSF1R-directed monoclonal antibody
axatilimab to deplete donor-derived
inflammatory macrophages and thereby
reverse sclerodermatous skin GVHD,5 the
authors hypothesized that therapeutic
use of CSF1R-blockade and subsequent
depletion of CNS BMDM could also
prevent or improve the onset of CNS
cGVHD. Surprisingly, in this model sys-
tem, anti-CSF1R therapy was found to
exacerbate behavioral and anatomic
features of CNS acute GVHD when
administered in the early posttransplant
period. Cellular changes within the CNS
included depletion of microglia, a finding
that was duplicated, along with acute
GVHD behaviors, even in untransplanted
control subjects treated with anti-CSF1R
therapy. When anti-CSF1R therapy was
used in the setting of established CNS
cGVHD, therapeutic efficacy was limited
as measured by nondepletion of BMDM
and nonreversal of cGVHD-associated
behaviors. All of these findings were
reproduced by conditional depletion of
CSF1R expression on BMDM, high-
lighting the regulatory role of the CSF1R
pathway in the activation and
7

proinflammatory status of BMDM.
Importantly, when IFN-γ receptor-
deficient grafts were used in these
model systems, decreased expression of
MHC class II on BMDM was observed
and the animals did not develop neuro-
logical inflammation, reiterating the
importance of IFN-γ in the pathogenicity
of CNS GVHD and the possible oppor-
tunities to disrupt this pathway with
anticytokine strategies including the
JAK-inhibitor ruxolitinib or IFN-γ
blockade with emapalumab. No doubt

by Adams and colleagues.

How, then, are we to interpret these
model systems in clinical practice con-
siderations of the prevention and man-
agement of cGVHD, particularly in the
setting of the development of novel
immune-modifying therapies such as
anti-CSF1R monoclonal antibodies?

The apparent separation in the onset of
beneficial treatment of systemic cGVHD
while exacerbating CNS GVHD serves
as a potentially cautionary tale in the
development and monitoring of new
anti-GVHD therapies. Neurotoxicity in
allogeneic transplantation is a protean
and multifactorial complication and may
reflect the accumulated treatment burden
of prior chemotherapy, nutritional defi-
ciencies, polypharmacy, biochemical per-
turbations, chronic infections, and the
psychological burden of chronic illness in
addition to the potential vascular and
immune-inflammatory effects of GVHD.
Manifestation of neurological pathology is
recorded in a third of transplant recipients
acutely and in 60% of cases in long-term
follow-up patients who often report
symptoms of fatigue, decreased cogni-
tion, or impaired memory.6 In most
instances the causes of neurological
symptoms are not definitively identified,
and the possibility of CNS GVHD remains
part of the differential diagnosis. Reported
symptoms do not necessarily imply the
presence of CNS cGVHD. In particular,
fatigue alone does not appear to be
associated with specific features of neu-
roinflammation,7 and cognitive decline
has shown evidence of CNS immune
activation.8 Collectively, although both
the importance of identifying GVHD in the
development of neurological sequelae of
allogeneic transplant and the knowledge
gaps of how best to incorporate and
report CNS GVHD in prospective studies
MARCH 2024 | VOLUME 143, NUMBER 10 841
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