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Genetic subdivisions of follicular lymphoma defined
by distinct coding and noncoding mutation patterns
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KEY PO INT S

•Genome sequencing of
FL identifies genetic
features that are rare in
DLBCL.

•A classifier based on
coding and noncoding
mutations divides FL
into subgroups
predictive of HT.
42/6
Follicular lymphoma (FL) accounts for ~20% of all new lymphoma cases. Increases in
cytological grade are a feature of the clinical progression of this malignancy, and eventual
histologic transformation (HT) to the aggressive diffuse large B-cell lymphoma (DLBCL)
occurs in up to 15% of patients. Clinical or genetic features to predict the risk and timing
of HT have not been described comprehensively. In this study, we analyzed whole-
genome sequencing data from 423 patients to compare the protein coding and non-
coding mutation landscapes of untransformed FL, transformed FL, and de novo DLBCL.
This revealed 2 genetically distinct subgroups of FL, which we have named DLBCL-like
(dFL) and constrained FL (cFL). Each subgroup has distinguishing mutational patterns,
aberrant somatic hypermutation rates, and biological and clinical characteristics. We
implemented a machine learning–derived classification approach to stratify patients with
/561/2070108/blood
FL into cFL and dFL subgroups based on their genomic features. Using separate validation cohorts, we demonstrate
that cFL status, whether assigned with this full classifier or a single-gene approximation, is associated with a reduced
rate of HT. This implies distinct biological features of cFL that constrain its evolution, and we highlight the potential
for this classification to predict HT from genetic features present at diagnosis.
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Introduction
Follicular lymphoma (FL) is an indolent cancer that accounts for
~20% of all new lymphoma diagnoses in adults.1,2 The highest
incidence rates are reported in the United States and Western
Europe, whereas FL is less common in Eastern Europe, Asia,
and developing countries.3-5 FL predominantly affects adults,
with a median age at diagnosis ranging from 60 to 65 years.6,7

Although patients diagnosed with FL generally experience
long-term survival (median overall survival of >15 years),4 some
eventually experience progressive disease and 8% to 15%
undergo histologic transformation (HT) to aggressive diffuse
large B-cell lymphoma (DLBCL),8,9 a process that is currently
unpredictable and poorly understood at the molecular level.
Because FL is generally a manageable cancer until patients
experience HT, there is an unmet need for methods to identify
patients at higher risk of this event.

Genetic analysis of FL has identified many significantly mutated
genes (SMGs) affected by driver mutations and aberrant
somatic hypermutation (aSHM). There is a considerable overlap
of shared drivers between FL and DLBCL.10,11 Some subsets of
FL, such as BCL2-negative and pediatric cases, also have distinct
genetic repertoires.12,13 A series of studies have sought to
identify genetic changes associated with transformation, often
through comparisons of FL with transformed FL (tFL).8,9,14-19

Individually, these studies used small patient cohorts and/or
restrictively targeted approaches. Abnormalities affecting TP53,
MYC, and CDKN2A, genes involved in NF-κB signaling are
frequently acquired between diagnosis and transformation. The
presence of such mutations suggests that specific acquired
genetic features promote the HT process, but it remains unclear
whether the risk of HT is also influenced by mutations present at
diagnosis.20-25

The existence of considerable genetic heterogeneity at the
gene expression26,27 and genetic levels28-30 is well established
in DLBCL. This has led to the establishment of a new system of
molecular subtyping that relies on both genetic and gene
expression features. Similar efforts have recently been applied
to Burkitt lymphoma,31 mantle cell lymphoma,32 and FL.19 FL
classification through genetics is an emerging area but the
number of subgroups and relevant genetic or biological fea-
tures remain unresolved. A recent study used genetic features
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derived from panel-based sequencing to divide FL cases into 3
genetic subgroups, relying on a combination of driver muta-
tions (eg, STAT6 and CREBBP) and aSHM features.33 None of
the subgroups described in that study were found to be asso-
ciated with risk of transformation. Such work highlights the
potential for genetic heterogeneity within adult FL yet leaves
unanswered questions regarding the role of rare variants and
noncoding mutations including genome-wide aSHM in HT.
Comprehensive classification models that stratify FLs based on
distinct biological underpinnings and that predict clinical risk
factors such as HT could improve prognostics and open ave-
nues to explore targeted therapies.

Some attempts have been made to integrate both clinical and
molecular features to enhance FL prognostication. The Follicular
Lymphoma International Prognostic Index (FLIPI)6 was integrated
with genetic features into the m7-FLIPI model34 but its prognostic
value varies between studies35,36 and it is not able to predict HT.
More recently, early clinical events, such as progression or relapse
within 2 years after diagnosis (POD24),37-39 were reported to
predict shorter overall survival and have been suggested as an
end point for clinical decision making. Importantly, neither m7-
FLIPI nor POD24 can stratify patients based on a risk of subse-
quent transformation, and therefore the prognostic markers of HT
remain of further interest to decrease patient risk and diversify
treatment opportunities.

Here, we comprehensively analyzed whole-genome sequencing
(WGS) data from 423 patients with DLBCL or FL (with and without
transformation) to survey structural variants, copy number variants
(CNVs), and simple somatic mutations (SSMs). We identified 88
SMGs displaying variable frequency across analyzed groups.
Using the diagnostic FL samples, a random forest (RF) classifier
was trained to distinguish de novo DLBCL from FL, and this
identified 2 genetic subgroups within FL. The constrained FL
group (cFL) is highly enriched for missense mutations in the lysine
acetyltransferase (KAT) domain of CREBBP, as well as mutations in
RRAGC, ATP6AP1, and ATP6V1B2, and was less likely to undergo
HT. In contrast, the remaining DLBCL-like FL (dFL) are further
characterized by increased rates of aSHM and higher risk of
transformation. These findings provide utility for identifying
patients at the highest risk of transformation.

Methods
WGS of FL and DLBCL
Our analysis included a compendium of WGS of 443 tumors
representing 423 patients, all with matched normal genomes.
We included DLBCLs from several previously published
studies,40-42 with 186 (45%) of the genomes from the MMML-seq
project43 and 92 newly sequenced genomes from patients in
British Columbia, Canada. We also included FL and tFL
genomes from a previous study of the genetics of FL trans-
formation.9 Unpublished genomes were sequenced using the
same approach as previously described41 and were assessed for
sufficient sequencing depth as previously described.44 The
patients with WGS data (Table 1) were split into a discovery
cohort, representing cases with definitive pathology (de novo
DLBCL) and FL with no recorded transformations (no-HT), and a
comparison cohort, comprising composites and diagnostic
samples from patients with FL who subsequently experienced
HT (post-HT; Figure 1A). Supplemental Table 1, available on the
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Blood website, provides details for all genomes, including
coverage statistics.

WGS and RNA sequencing analysis
Mutations and SMGs were detected as previously described.31

The coding SSMs identified using this approach are provided in
the supplemental Table 2 and the CNVs are provided in the
supplemental Table 3. Detailed procedures for mutation
detection and RNA sequencing analysis are detailed in the
supplemental Materials and Methods. The presence of any
nonsilent SSMs in a gene was considered in comparisons of the
mutation frequency for individual genes between FL and
DLBCL. Genes with significant mutation differences were
identified using Fisher exact test with multiple test correction
using the Benjamini-Hochberg method.

Construction of feature matrix for machine
learning
A binarized matrix for RF classification was created using an
approach similar to our previous study.31 Briefly, nonsilent SSMs
were tabulated for individual SMGs, and recurrent mutations
within hotspots and other regions determined to be signifi-
cantly enriched for mutations by OncodriveCLUSTL (Q value
cutoff of 0.1) were counted separately. These include a region
in FOXO1, MYD88L265P, EZH2Y646, MEF2B, and STAT6 and
missense mutations around CREBBP KAT domain. Among 88
curated aSHM targets (average length, 12 Kbp; supplemental
Table 4), only those determined to be differentially mutated
between FL and DLBCL and covered in the capture panel from
Kridel et al were included (Wilcoxon rank sum test with multiple
test correction using the Benjamini-Hochberg method).9 For the
19 aSHM features, we first calculated the median number of
mutations across the region in all DLBCLs. A sample was
considered positive for aSHM when the number of mutations in
this region was at least 3 above the median.

RF classification model
To perform genetic subgroup discovery, we used the feature set
constructed as described earlier. Our discovery cohort included
diagnostic biopsies from 195 de novo DLBCL, defined as patients
with DLBCL with no prior indolent disease, and 184 no-HT FL,
defined as patients with no recorded transformation during the
follow-up period. Genetic subgroups derived from this comparison
were then explored within 25 pre-HT FL cases (those with a known
subsequent transformation), 21 post-HT DLBCL (tFL), and 18 com-
posite (COMFL) tumors with morphology consistent with both FL
andaggressivedisease. TheRF classifier trainingdata only included
mutations from 1 biopsy per patient from de novo DLBCL and no-
HT diagnostic FL biopsies (total of 379 tumors, supplemental
Table 1). The R randomForest package (version 4.6-14) was used
with the following nondefault parameters: seed = 42, importance =
TRUE, na.action = "drop," mtry = 3. Based on the optimal Youden
Index point, a tumorwas defined as cFL if the confidence of its label
as FL was >0.8, otherwise it was classified as dFL.

Results
Structural variation in FL
We identified structural variants and annotated all trans-
locations occurring near the oncogenes MYC, BCL2, and BCL6
along with the translocation partner locus. We compared the
DREVAL et al
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representation of these oncogenic rearrangements between
the FL cohort and de novo DLBCLs (Figure 1A). Overall, in no-
HT FLs, the proportion of BCL2-translocated tumors was 0.86
and was significantly higher in both pre- and no-HT FLs than
that in de novo DLBCL (30.1%, P < .001; Fisher exact test). All
paired pre-HT and post-HT tumors were concordant for BCL2
translocations by both fluorescence in situ hybridization and
exact breakpoint identified by WGS, consistent with the origin
of BCL2 translocations during variable diversity joining recom-
bination in early B-cell development (Figure 1B). Translocations
of BCL6 were more abundant among DLBCLs compared with
no-HT FLs (28.2% and 14.7% respectively, P = .002; Fisher exact
test) but with comparable rates between pre-HT (25%; n = 5 of
20 and post-HT (35%; n = 7 of 20) FLs (P = .73; Fisher exact
test).

MYC translocations to an immunoglobulin gene or other part-
ner were less common among no-HT and pre-HT FLs and had
similar frequencies across DLBCL and post-HT FLs (Figure 1A).
Within the group of patients having data from paired tumors
before and after transformation (Figure 1C), we noted signifi-
cant increase in the frequency of MYC translocations after HT
(P = .001; Fisher exact test). Both observations are consistent
with reports that acquisition of mutations deregulating MYC are
a feature of HT.9 The single MYC-translocated pre-HT tumor
harbored a translocation involving the DMD locus, 1 of the
many documented nonimmunoglobulin translocation part-
ners45 (Figure 1D), and the paired post-HT tumor from this
patient has a discordant MYC-IGH translocation. The remaining
post-HT tumors, in which MYC rearrangements were more
common, had a variety of partners also consistent with those
seen in de novo DLBCL, namely BCL6, PAX5, and LRMP.42,45

The genetic relationship and distinctions between
FL and DLBCL
FLs share many genetic features with DLBCL, in particular with
the germinal center B cell–like (GCB) cell of origin and the EZB/
C3 genetic subgroups. We hypothesized that a meta-analysis of
FL and DLBCL whole genomes could help identify a more
complete set of recurrently mutated and driver genes in both
diseases. To test this, we first identified all SMGs using all WGS
cases including FL, COMFL, and DLBCLs. This enabled the
curation of an extensive set of 88 SMGs, many of which have
significantly different mutation rates between DLBCL and FL
(Figure 2A; supplemental Table 7). We noted that CREBBP
exhibits different mutation patterns between these entities
(Figure 2B), with 60.4% (n = 84 of 139) of CREBBP mutations in
FL being missense mutations in the KAT domain. In contrast, in
DLBCL only 25.6% (n = 10 of 39) of CREBBP mutations are
missense KAT domain mutations, whereas 61% (n = 24 of 39)
are nonsense, frame shift, or splice site mutations. As such, we
have treated CREBBP KAT missense mutations separate from
other CREBBP mutations throughout all subsequent analyses.

Overall, the burden of coding mutations was significantly higher
in DLBCL compared with no-HT FLs (P < .001, Tukey honestly
significant difference [HSD] test). Post-HT tumors had a higher
number of coding mutations compared with no-HT (P < .001,
Tukey HSD test) or pre-HT (P = .05, Tukey HSD test) FLs,
implying that a higher mutation burden is a feature of trans-
formed FL (supplemental Figure 1A). Considering all nonsilent
GENETIC SUBGROUPS OF FOLLICULAR LYMPHOMA
mutations, 11 genes were significantly enriched for mutations in
FL relative to de novo DLBCL (supplemental Table 7), including
CREBBP (odds ratio [OR], 2.3; Q < 0.001), RRAGC (OR, 2.15;
Q = 0.001), and ATP6V1B2 (OR, 2.28;Q = 0.003) (supplemental
Figure 1B). The de novo DLBCLs were enriched for mutations in
45 genes including MYD88 (OR, 2.26; Q < 0.001), CD58 (OR,
2.79; Q = 0.003), HLA-B (OR, 2.79; Q = 0.003), and other genes
associated with genetic subgroups of DLBCL other than EZB/C3
(supplemental Figure 1B; supplemental Table 7). GISTIC anal-
ysis for regions recurrently affected by CNVs identified dele-
tions affecting CD58 (OR, 2.42; Q < 0.001) and amplifications
encompassing MIR17HG (OR, 1.81; Q < 0.001) and FCGR2B
(OR, 0.65; Q = 0.014) among the CNVs most strongly associ-
ated with DLBCL compared with FL (supplemental Figure 2;
supplemental Table 8).

Restricting to GCB DLBCL, the subgroup that shares more
genetic features with FL, we found that coding mutations in
RRAGC, ATP6V1B2, and CREBBP remained significantly
enriched in FL (OR, 1.95; Q = 0.02; OR, 2.37; Q = 0.033; and
OR, 2.02; Q < 0.001, respectively; supplemental Figure 3A;
supplemental Table 9). GCB DLBCL–associated genes included
4 of the 10 genes that had previously been associated with early
FL progression, namely B2M, TP53, MYC, and SOCS19

(supplemental Table 9). A similar comparison of the mutation
frequencies between FL and EZB DLBCL identified only
CREBBP KAT missense mutations as significantly enriched in FL
(supplemental Figure 3B; supplemental Table 10). As has pre-
viously been described,30 the striking genetic similarities
between FL and EZB DLBCL are consistent with the hypothesis
that these entities arise from similar precursor cell populations,
and in some cases apparent de novo EZB DLBCL may even
represent occult transformation from FL.

We separately compared the rate of mutations at genomic loci
commonly affected by aSHM in DLBCL41 (supplemental
Figure 4; supplemental Table 4). Although many of these sites
showed evidence of aSHM among FL genomes, there was a
tendency toward fewer mutations relative to DLBCLs
(supplemental Figure 4A-B). A higher aSHM load in de novo
DLBCL was also supported by significantly higher genome-wide
signal for the mutational signature SBS9 compared with no-HT
FL (supplemental Figure 4C). Within the no-HT FLs, no muta-
tions were observed at the transcription start sites ofMYC, IRF4,
or GRHPR, and mutations were sparse at other common aSHM
sites such as PIM1 and SGK1. Importantly, the observed dif-
ference in the aSHM burden between de novo DLBCL and no-
HT FLs cannot be attributed to the difference in tumor purity,
which was not significantly different across cohorts
(supplemental Figure 4D). The pattern indicates that aSHM is an
unappreciated feature of FL, but the regions affected by this
process and the abundance of resulting mutations is variable.
Resolution of FL genetic subgroups
Having identified genes and aSHM regions specifically enriched in
either FL or DLBCL, we investigated whether mutations in these
regions could collectively inform on distinguishing features of FL
biology. Working under the assumption that no-HT FL is the most
distinct from de novo DLBCL, we developed a classifier to
distinguish these 2 groups based on their mutation status within
genes (n = 43), hotspots (n = 6), or aSHM regions (n = 19). This
10 AUGUST 2023 | VOLUME 142, NUMBER 6 563
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Figure 1. Oncogene translocations in FL. (A) Translocations involving oncogenes in FL and DLBCL genomes. The frequency is shown relative to the total number of tumors
within each group. (B-C) Proportion of tumors with BCL2 (B) and MYC (C) translocations in the paired pre- and post-HT genomes. (D) Circos plots showing the MYC
translocation partners in the paired pre- and post-HT genomes. The color of the breakpoint represents an individual patient.
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naive classifier assigned a probability that each tumor rep-
resented FL. Based on the distribution of this probability
(Figure 3A) and the optimal Youden Index point, we selected
a cutoff value of 0.8 to stratify FL. Using this cutoff, 97% (n =
GENETIC SUBGROUPS OF FOLLICULAR LYMPHOMA
189 of 195) of de novo DLBCLs were classified as DLBCL,
indicating a high sensitivity for detecting tumors with DLBCL-
like genetics (Figure 3A). Among no-HT FLs, 53% (n = 97 of
184) were classified as FL, but 47% (87 of 184) of tumors were
10 AUGUST 2023 | VOLUME 142, NUMBER 6 565
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classified as DLBCL. We named FLs in these 2 classes cFL and
dFL. We then used the model to classify the remaining cases
held out from training including the pre-HT and COM FLs.
The pre-HTs were not enriched for dFL relative to the no-HT
cases (P = .83, Fisher exact test) and the tFLs were almost
entirely classified as dFL (Figure 3B-C).

Because the model relies partly on coding mutations
(Figure 3D), the dFL tumors resemble DLBCLs. In contrast, cFL
had lower frequencies of mutations relative to DLBCL in histone
H1 family members B (OR, 2.52; Q = 0.009), C (OR, 1.31; Q =
0.067), SOCS1 (OR, 1.7; Q = 0.003), and BTG1 (OR, 1.4; Q =
0.033), among others (supplemental Figure 5A; supplemental
Table 11). Of note, the paucity of these mutations in cFL
cannot be explained by tumor purities because there was no
566 10 AUGUST 2023 | VOLUME 142, NUMBER 6
significant difference between subgroups (P = .86, Tukey HSD
test; supplemental Figure 5B). The frequency of EZH2 muta-
tions was not significantly different between dFL and cFL (OR,
0.26; Q = 0.726), which suggests that they share some potential
therapeutic vulnerabilities. Overall, cFL is characterized by
enrichment of mutations in ATP6AP1 (OR, Infinity; Q = 0.013),
ATP6V1B2 (OR, 1.54; Q = 0.1), RRAGC (OR, 2.25; Q = 0.001),
and CREBBP KAT domain missense mutations (OR, 4.3; Q <
0.001) relative to dFL (Figure 3E; supplemental Table 12). The
dFL was characterized by a higher frequency of mutations
across 3 aSHM loci (the transcription start sites of BCL6, BCL7A,
RHOH, and ZFP36L1; Figure 3E-F; supplemental Table 12).
When all mutations in regions affected by aSHM are considered
rather than coding mutations, the mutation burden at these 3
aSHM loci was also significantly lower in cFL relative to dFL
DREVAL et al
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(Figure 3F). The importance of aSHM features in distinguishing
these subgroups implies differential exposure to the germinal
center reaction.

In addition, we investigated the relation of the CREBBP muta-
tions, loss of heterozygosity (LOH), and the genetic subgroups.
The CREBBP mutations were characterized by higher variant
allele frequency when LOH was identified from copy-number
profiles, and the difference compared with variant allele fre-
quency in tumors without LOH was significant (P < .001, Wil-
coxon test). We note that these events often cooccur, because
39.4% (n = 43 of 109) of tumors mutated in the CREBBP KAT
domain also contained LOH events, whereas only 10.2% (n = 32
of 314) of tumors lacking this type of mutation had LOH at the
CREBBP locus. This difference in distribution of LOH events in
tumors with or without CREBBP KAT domain mutation was
significant (P < .001, Fisher exact test).

Biological differences between FL genetic
subgroups
To evaluate whether the cFL and dFL represent subgroups with
other biological distinctions, we performed analyses on cases
with additional available molecular data. Considering the strik-
ingly different patterns of CREBBP mutations between de novo
DLBCL tumors and FL stratified on genetic subgroup, we
analyzed its expression in parallel with FOXP1, a prognostic
biomarker in FL,46,47 and MYC, which was previously reported
to be elevated in DLBCL harboring frameshift/nonsense muta-
tions in the CREBBP KAT domain but not in FL with missense
mutations48 (supplemental Table 13). Despite the significantly
GENETIC SUBGROUPS OF FOLLICULAR LYMPHOMA
lower expression of CREBBP in DLBCL compared with dFL (P <
.001, Tukey HSD test) and significant difference in its mutation
pattern, we did not observe differential expression of CREBBP
between the FL subgroups (Figure 4A, left panel). Expression of
FOXP1 was significantly higher in cFL than in dFL (P < .01,
Tukey HSD test; Figure 4A, middle panel). MYC messenger
RNA levels were significantly lower in cFL (Figure 4A, right
panel) relative to both DLBCL (P < .001, Tukey HSD test) and
dFL (P = .04, Tukey HSD test), possibly suggesting a difference
in the presence of cells undergoing germinal center reentry.

To further examine the role of different mutational processes
among these classes, we quantified exposure to mutational
signatures and compared exposure for all signatures that were
detected in at least 20% of genomes (Figure 4B). Whereas SBS8
(associated with late replicating regions49) exposure was not
significantly different between groups (Figure 4B, middle right
panel), 2 clock-like signatures (SBS1 and 5) were significantly
lower in cFL relative to DLBCL (P = .001 and P < .001,
respectively, Wilcoxon test). SBS9, which has been attributed to
SHM, is significantly depleted in cFL relative to both dFL and
DLBCL (P < .001 for both, Wilcoxon test). This finding is
consistent with the observation that differentially mutated
aSHM loci are strong distinguishing features of cFL and dFL.
Validation of FL subgroup classification
To evaluate the clinical relevance of FL subgroups, we
reanalyzed data from a collection of 334 FL tumors, which
included 127 pre-HT FLs, 84 no-HT FLs, and 123 tFLs.9 Within
the FL cases in this validation cohort, we found a similar
10 AUGUST 2023 | VOLUME 142, NUMBER 6 567
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distribution of cFL and dFL tumors (Figure 5A). Among the
tFLs, 103 (83.7%) were classified as dFL (Figure 5A). Among
the no-HT FLs, 47 (56.0%) were classified as cFL and 37
(44.0%) as dFL (Figure 5B). In striking contrast, the diagnostic
tissues from patients with eventual transformation into DLBCL
(pre-HT) were significantly more frequently classified as dFL
(69.3%; n = 88 of 127) than cFL (30.7%; n = 39 of 127; OR,
2.85; P = .0003, Figure 4B) compared with no-HT FLs. This
strong underrepresentation of cFL in cases that did not
transform is consistent with the notion that cFL have a
reduced propensity to undergo HT.

Consistent with the discovery cohort, the mutations in ATP6AP1
(OR, 0; Q = 0.016), RRAGC (OR, 0; Q < 0.001), ATP6V1B2 (OR,
0.239; Q = 0.06), and CREBBP KAT missense mutations (OR,
0.01; Q = 0.001) were significantly more abundant in cFL
(Figure 5C; supplemental Figure 6), and the cFL tumors from
the validation cohort had reduced numbers of mutations in
regions associated with aSHM, namely BCL7A (Q = 0.034,
Wilcoxon test) and BCL6 (Q = 0.025, Wilcoxon test), when
compared with dFL (Figure 5D).
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Corroborating the findings of the differential FOXP1 expression
between FL subgroups in the training data, the immunohisto-
chemistry staining of the 334 tumors from the validation cohort
revealed higher FOXP1 staining in cFL compared with dFL
(Figure 5E, top panel). Relative to cFL, dFL showed a signifi-
cantly higher proliferation (P = .025, Wilcoxon test) measured
by KI-67 scored using Aperio ScanScope XT system, suggesting
a higher proliferation rate among dFL tumors (Figure 5E, bot-
tom panel).

Although the existence of distinct genetic subgroups in FL has
been proposed, neither of the preceding studies identified
subgroups associated with transformation. To this end, we
separately explored whether the cFL and dFL in our validation
cohort had different clinical characteristics. Both genetic sub-
groups had comparable median patient age and a similar bal-
ance of sex (Table 2). The FLIPI scores and proportion of
patients with POD24 were not significantly different between
cFL and dFL, which might be because of selection bias of the
validation cohort featuring the patients who eventually trans-
form and is therefore not necessarily representative of cFL as a
DREVAL et al
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whole. However, significantly more patients with FL grade 3A
were in the dFL subgroup (OR, 3.18; P = .020; Table 2). This is
consistent with a previous report that CREBBP missense muta-
tions, a feature of cFL, are more common among FL grade 1
GENETIC SUBGROUPS OF FOLLICULAR LYMPHOMA
and 2.50 In our validation cohort, which did not contain samples
from any of the cases in our discovery cohort, the FL tumors
classified as dFL were associated with a 10-year shorter median
time to transformation (TTT) (Figure 5F).
10 AUGUST 2023 | VOLUME 142, NUMBER 6 569



Table 1. Overview of the patients with FL included in this study

No-HT (n = 184) pre-HT (n = 25) Overall (n = 209)

Age, y

Mean (SD) 59.8 (11.5) 60.0 (13.2) 59.8 (11.7)

Median (min, max) 61.0 (33.0, 86.0) 58.0 (36.0, 84.0) 61.0 (33.0, 86.0)

Sex

Female 91 (49.5%) 11 (44.0%) 102 (48.8%)

Male 93 (50.5%) 14 (56.0%) 107 (51.2%)

FLIPI score

High 33 (17.9%) 6 (24.0%) 39 (18.7%)

Low/intermediate 62 (33.7%) 7 (28.0%) 69 (33.0%)

Missing 89 (48.4%) 12 (48.0%) 101 (48.3%)

Grade

1/2 174 (94.6%) 19 (76.0%) 193 (92.3%)

3A 9 (4.8%) 6 (24.0%) 15 (7.2%)

Missing 1 (0.5%) 0 (0%) 1 (0.5%)

BCL2 translocated

Yes 158 (85.9%) 20 (80.0%) 178 (85.2%)

No 26 (14.1%) 5 (20.0%) 31 (14.8%)

LDH ratio

Mean (SD) 0.835 (0.270) 1.13 (0.693) 0.883 (0.383)

Median (min, max) 0.759 (0.470, 1.86) 0.945 (0.573, 3.24) 0.791 (0.470, 3.24)

Missing 85 (46.2%) 6 (24.0%) 91 (43.5%)

Overall survival, y

Mean (SD) 5.94 (4.36) 9.37 (6.42) 6.35 (4.77)

Median (min, max) 5.29 (0.0960, 24.1) 8.53 (0.680, 21.4) 5.38 (0.0960, 24.1)

Progression-free survival, y

Mean (SD) 3.13 (4.44) 2.25 (2.09) 3.03 (4.24)

Median (min, max) 0.755 (0, 22.2) 1.17 (0.390, 7.65) 0.920 (0, 22.2)

LDH, lactate dehydrogenase; max, maximum; min, minimum; SD, standard deviation.
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Stratification on genetic subgroup membership preserved sig-
nificant association with transformation timing in patients with
FL from low/intermediate FLIPI (P = .01) and POD24-negative
(P < .01) groups (supplemental Figure 7). This indicates that
the cFL/dFL classifier is informative within the patient popula-
tion conventionally considered as clinically favorable. When
combined with POD24 and m7-FLIPI in a multivariate Cox
model, the genetic subgroup stratification was independently
predictive of transformation risk (supplemental Figure 7).

As CREBBP KAT domain mutations were the strongest feature
associated with cFL, we explored the relevance of this feature to
approximate the FL subgroups. Here, samples with a single
CREBBP KAT domain missense mutation were considered cFL,
whereas samples with multiple or no CREBBP mutations were
labeled dFL. Although this had a reduced sensitivity for detecting
known cFL cases, using this approximation preserved a significant
association with TTT (supplemental Figure 7). Supporting the
value of the genetic subgroup, the hazard ratio of TTT was higher
when patients were stratified based on the genetic membership
570 10 AUGUST 2023 | VOLUME 142, NUMBER 6
status (1.52) compared with CREBBP KAT domain mutation status
(1.21). To explore this further, we obtained the targeted
sequencing data from the recent FL study by Crouch et al.33 Their
panel was missing 16 (23.5%) of the 68 features required by our
classifier, including key cFL genes ATP6AP1, RRAGC, and
ATP6V1B2. Again, we approximated cFL status using CREBBP
KAT domain mutation status. Despite the substantially lower
number of transformations in that cohort, cFL cases were signifi-
cantly associated with a longer TTT (supplemental Figure 7).
Discussion
FL is an indolent disease that transforms to DLBCL in up to 15%
of patients. Several studies have attempted to identify acquired
genetic features contributing to transformation or inherent
driver mutations that can inform on the potential of eventual
HT.9,14-16 We hypothesized that many de novo DLBCLs repre-
sent FLs that have transformed. Accordingly, by comparing the
genetic features of FL and DLBCL, we sought to identify FL
DREVAL et al



Table 2. Overview of the clinical characteristics of patients with cFL or dFL at the time of initial diagnosis in the
validation cohort

cFL (n = 79) dFL (n = 124) Overall (n = 203)

Age, y

Mean (SD) 57.5 (12.1) 59.2 (12.6) 58.5 (12.4)

Median (min, max) 57.0 (28.0, 85.0) 59.5 (29.0, 84.0) 58.0 (28.0, 84.0)

Sex

Female 39 (49.4%) 63 (50.8%) 102 (50.2%)

Male 40 (50.6%) 61 (49.2%) 101 (49.8%)

FLIPI score

High 21 (26.6%) 25 (20.2%) 46 (22.7%)

Low/intermediate 39 (49.4%) 58 (46.8%) 97 (47.8%)

Missing 19 (24.1%) 41 (33.1%) 60 (29.6%)

Grade

1/2 74 (93.7%) 102 (82.3%) 176 (86.7%)

3A 5 (6.3%) 22 (17.7%) 27 (13.3%)

BCL2 translocated

Yes 57 (72.2%) 87 (70.2%) 144 (70.9%)

No 8 (10.1%) 19 (15.3%) 27 (13.3%)

Failed FISH 12 (15.2%) 13 (10.5%) 25 (12.3%)

Missing 2 (2.5%) 5 (4.0%) 7 (3.4%)

Clinical trajectory

Nonprogressed FL 32 (40.5%) 33 (26.6%) 65 (32.0%)

Pre-HT 36 (45.6%) 82 (66.1%) 118 (58.1%)

Progressed FL 11 (13.9%) 9 (7.3%) 20 (9.9%)

POD24

No 46 (58.2%) 74 (59.7%) 120 (59.1%)

Yes 33 (41.8%) 50 (40.3%) 83 (40.9%)

FISH, fluorescence in situ hybridization; max, maximum; min, minimum; SD, standard deviation.
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tumors, and genetic features thereof, with a greater propensity
to undergo HT. To this end, we assembled a cohort of WGS
data from diagnostic biopsies from 423 de novo DLBCL, no-HT
FL, or paired pre- and post-HT tumors, along with a small
number of composite lymphomas presenting with both FL and
DLBCL morphology. We subjected these to a comprehensive
analysis of genomic abnormalities, including structural varia-
tions, CNAs, and SSMs with specific focus on the noncoding
variants. Focusing on the pre-HT and no-HT FLs, our supervised
machine learning approach identified a subset of FL tumors that
more closely resemble DLBCL in genetic profile, called dFL
(“DLBCL-like”), and another enriched for CREBBP missense
mutations and depleted for aSHM, called cFL (“constrained”).

Through targeted sequencing of a separate set of cases, we
recapitulated the newly defined subgroups using a model
trained on our WGS data. Most notably, the pre-HT tumors
were significantly enriched for dFL, implying a higher pro-
pensity of such cases to eventually transform. Consistent with
this, dFLs had a median TTT 10 years shorter than cFLs.
Approximating the cFL subgroup using the mutation status of
CREBBP recapitulated this association in this cohort and the
GENETIC SUBGROUPS OF FOLLICULAR LYMPHOMA
data from another recent study. We speculate that early
acquisition of certain driver mutations, including most
frequently missense mutations in the CREBBP KAT domain, may
limit the ability of these tumors to acquire genetic features
required for HT. The relative paucity of aSHM among cFL
tumors is consistent with a reduced exposure to the germinal
center reaction. These results bear some similarity to those from
a recent study of the genetic substructure of FL by Crouch
et al,33 which also described a subgroup of FL characterized by
higher aSHM rates. In that study, none of the genetic subgroups
described were associated with an increased risk of HT.
Notably, the study by Crouch et al had several limitations; their
analysis relied on a targeted sequencing panel that lacked
some of the genes more commonly mutated in FL than in
DLBCL, and their analysis did not separately annotate CREBBP
KAT domain mutations.

cFL tumors were also characterized by distinct biological fea-
tures including higher transcript abundances of FOXP1 and
CREBBP, lower expression of MYC transcripts, and lower KI-67
and FOXP1 protein abundance relative to dFL. Specifically, the
expression of MYC, an oncogene whose overexpression is
10 AUGUST 2023 | VOLUME 142, NUMBER 6 571
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associated with a dark-zone germinal center–like program in
Burkitt lymphoma51 and DLBCL,27 was the lowest in cFL. The
relationship between FOXP1 expression and transformation in FL
has been explored previously. One study identified elevated
FOXP1 only after transformation,47 whereas another found that
stratifying on diagnostic tissues with high FOXP1 staining identi-
fied a set of FLs with a dark-zone gene expression profile.46

Further exploration of the interplay between FOXP1 expression
in transformation and in the dFL/cFL classification is warranted.

Missense mutations in the KAT domain of CREBBP were the
strongest distinguishing feature of cFL. Previous studies have
exclusively focused on the function of CREBBP knockouts rather
than these missense changes. Particularly in light of higher
CREBBP expression observed in cFL compared with dFL/
DLBCL, the effect of KAT domain missense mutations is likely
distinct from other mutations.48,52 A clearer understanding of
the differential functions of CREBBP KAT domain mutations
may elucidate their role in constraining the evolutionary tra-
jectory of FL and reducing the risk of transformation, which may
help refine our genetic subgroups and improve their prognostic
value. Considering the lack of currently available stratification
models to predict HT of FL into DLBCL, this study nominates
the membership in genetic subgroups of cFL and dFL as a
promising framework for eventual clinical application.
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