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With aging, hematopoietic stem cells (HSCs) have an
impaired ability to regenerate, differentiate, and
produce an entire repertoire of mature blood and
immune cells. Owing to dysfunctional hematopoiesis,
the incidence of hematologic malignancies increases
among elderly individuals. Here, we provide an
update on HSC-intrinsic and -extrinsic factors and
processes that were recently discovered to contribute
to the functional decline of HSCs during aging. In
addition, we discuss the targets and timing of inter-
vention approaches to maintain HSC function during
aging and the extent to which these same targets
may prevent or delay transformation to hematologic
malignancies.
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Introduction
Aging is a major risk factor for the development of hematologic
malignancies. In 2020, blood cancers were diagnosed world-
wide in more than 600 000 adults aged ≥65.1 Although not fully
understood, the relationship between aging and the develop-
ment of blood cancers is partly a consequence of functional
decline of the hematopoietic system. Because hematopoietic
stem cells (HSCs) are primarily responsible for sustaining the
production of all hematopoietic and immune cells throughout
life, understanding how aging affects HSCs is necessary
to understand how and why hematopoietic function declines
with increase in age. Much effort has focused on the compre-
hensive identification of the hallmarks of HSC aging, including
transcriptional and epigenetic changes, altered inflammatory
cytokine signaling, myeloid bias, impaired autophagy, mito-
chondrial dysfunction, and impaired regenerative capacity.2

These HSC aging phenotypes overlap mechanistically with the
processes that cause transformation and hematologic malig-
nancy. Whether interventions to prevent HSC aging or rejuve-
nate the functionality of aged HSCs can effectively prevent or
delay the development of leukemia remaina a long-standing
question. Here, we provide an updated synthesis of recent
discoveries and a perspective on intervention opportunities.

HSC function in young vs middle-aged
vs elderly adults
Extensive literature describes the phenotypic and functional
differences between cell surface marker–defined HSCs isolated
from young mice (age, 3-6 months) and old mice (age, 18-24
months), typically studied in mice of a C57BL/6 inbred strain
background. These studies reported that old HSCs have
impaired hematopoiesis,3 myeloid bias at the transcriptome
and functional levels,4 dysfunctional mitochondria,5 decreased
polarity of Cdc42,6 increased reactive oxygen species (ROSs),7

increased γH2.AX caused by ineffective H2.AX dephosphory-
lation rather than sustained DNA damage,8 altered DNA
methylation,9 changes in histone modification patterns10 (which
are also observed in aged human hematopoietic stem and
progenitor cells [HSPCs]),11 and increased transformation to
leukemia.2 An important nuance revealed by single-cell trans-
plantation assays and inducible lineage tracing systems is that
old mice contain a greater number of functional HSCs
compared with young mice, although on a per HSC basis, they
have reduced mature hematopoietic cell output.12,13 Recently,
integrative analysis of transcriptome and chromatin accessibility
of old HSCs revealed selective accessibility of enhancers with
stress-responsive transcription factor motifs, suggesting chronic
or historical exposure to external stress may be inscribed at an
epigenetic level in old HSCs.14

Whether the aforementioned numerous alterations coincide or
occur in a particular order or sequence over time and age is
unknown because longitudinal studies collecting phenotypic
data on a cohort of animals, from young adulthood into old age,
have yet to be reported. We can glean insights from cross-
sectional studies, including the midage point(s) between
young and old animals. Many phenotypes considered to be
hallmarks of aged hematopoiesis are observed in C57BL/6 mice
at 9 or12 months of age,15 estimated to be equivalent to ~37 to
47 years for humans16 (Figure 1). These phenotypes include
increased frequency and number of cell surface marker–defined
HSCs and myeloid bias in the HSC compartment and have been
described in both mice and humans.15,17 These observations
are consistent with the mathematical modeling of hematopoi-
etic aging within C57BL/6 mice from young age (10-16 weeks
old) to middle age (40-54 weeks old).18 This approach found a
rapid decrease in the ratio of short-term HSCs to long-term
HSCs during middle age that remained constant into old age
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Figure 1. Phenotypic alterations in adult HSCs with increasing age in C57BL/6 mice and humans. *Supporting studies in mice and humans. #Supporting studies in mice.
Illustration created using BioRender.com.
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(>86 weeks old),18 suggesting impairment in the first steps of
differentiation from HSCs to their progeny approximately at
middle age. A stress signaling pathway mediated by p38MAPK,
known to be activated in old mouse HSCs,7 was also recently
found to be more active in middle-aged HSCs than in younger
HSCs.19 In humans, HSCs isolated from middle-aged individuals
(42-61 years old) have increased expression of aging-associated
myeloid lineage genes such as P-selectin (SELP) and HOXA9
compared with that in young individuals.17 Although there are
many molecular similarities between middle-aged HSCs and
old HSCs, transplantation experiments using mouse models
have revealed that middle-aged HSCs, but not old HSCs, can
be functionally rejuvenated by a young bone marrow (BM)
microenvironment.20 This work suggests that there may be a
therapeutic window of opportunity at or before middle age to
effectively intervene to prevent functional HSC decline, which is
discussed in detail later in this review.
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Aging-associated CH: friend or foe?
Age-associated clonal hematopoiesis (CH) is a natural conse-
quence of somatic mutations in the human hematopoietic stem
and/or progenitor cells. A subset of acquired somatic mutations
can confer a selective advantage to HSCs and their progeny
such that they clonally expand and become overrepresented
within the total pool of hematopoietic cells. The most common
mutations found in human CH are the epigenetic regulatory
genes DNA methyltransferase 3a (DNMT3A), Tet methyl-
cytosine dioxygenase 2 (TET2), and additional sex combs like
1 (ASXL1).21,22 Although CH is not a disease, it is associated
with a modestly enhanced risk of hematologic malignancy.21

Using genetically engineered mouse models, the functions of
DNMT3A, TET2, and ASXL1 in HSCs and hematopoiesis have
been well described.23-25 However, the manner and reason for
human hematopoietic cells with these mutations to undergo
positive selection during aging, leading to clonal expansion and
534 10 AUGUST 2023 | VOLUME 142, NUMBER 6
leukemic transformation remains to be determined. Some hints
have emerged regarding the relevant mechanisms from related
studies, using stress and inflammation as selective pressures.

Allogeneic HSC transplantation is a context in which, the impact
of stress on CH can be directly studied in humans by comparing
donors and recipients. Recent reports have found a larger clone
size in transplantation recipients with donor-engrafted CH than
that in donors.26,27 Similarly, in C57BL/6 mice, mutations in
recurrent human CH genes were detectable only after trans-
plantation.28 Together, these data support that transplantation
stress contributes to positive clonal selection/expansion.
Importantly, the latter study suggests that the lifetime of healthy
laboratory mice is not sufficient to allow most clones with
mutations in human CH-relevant genes to expand to a level
detectable via the current methodology.28 Although this may
preclude modeling of human CH in aging wild-type C57BL/6
mice, it does support the study of aging mice with genetically
engineered human CH mutations to reveal mechanisms rele-
vant to humans.

Studies using Mycobacterium avium infection of genetically
engineered Dnmt3a-mutant mouse models have found that
interferon gamma–mediated inflammation promotes expansion
of Dnmt3a-mutant HSCs.29 Tumor necrosis factor α (TNF-α) also
promotes the selective advantage of mouse Dnmt3a-mutant
HSCs, and specific targeting of TNF receptor 1 but not TNF
receptor 2 selectively impaired Dnmt3a-mutant HSC fitness.30

TNF-α has also been found to favor mouse Tet2-mutant
hematopoiesis.31 Not only do CH-mutant HSCs have differen-
tial responses to proinflammatory cytokine signaling, new work
also suggests that CH-mutant hematopoietic cells can induce
and maintain a proinflammatory state. In a zebrafish model of a
human ASXL1 mutation, mature mutant myeloid cells produce
proinflammatory cytokines, whereas mutant HSPCs remain
resistant to this inflammatory environment via the expression of
COLOM DÍAZ et al
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immunomodulatory genes.32 Inflammation also affects the
transformation of CH to hematologic malignancy. In Tet2-
mutant mice, activation of inflammatory signaling is an essential
trigger of chronic myelomonocytic leukemia–like disease.31

Together, literature primarily using mouse models supports
the concept that inflammatory processes provide selective
pressure favoring survival of HSPCs with CH mutations, leading
to clonal expansion and contributing to transformation to
hematologic malignancies. This will need to be critically eval-
uated in future human studies. Because chronic low-grade
elevation of circulating proinflammatory cytokines has been
widely reported during aging,33 this is a potential mechanistic
link between aging, CH, and hematologic malignancy.

The risks and benefits of age-associated CH continue to be
explored. CH has been associated with an increased risk of
nonhematologic diseases, such as atherosclerosis34 and osteo-
porosis.35 In contrast, evidence supports that specific CH
mutations may enhance adaptive immune cell functionality. For
example, improved overall survival and reduced risk of relapse
after BM transplantation were reported in transplantation
recipients of DNMT3A-mutant donor hematopoietic cells,36

which could be related to the enhanced function of
DNMT3A-mutant T lymphoid cells discovered in mouse
Table 1. Genes and processes recently revealed to have rol

Gene
Expression in old vs

young HSCs HSC phenotype

Selp HSC aging (RNA and
protein38)

Knockout increases hematopoietic
regeneration39

Nupr1 HSC aging (RNA38) Knockout increases HSC
quiescence and engraftment
potency41

Sema4a HSC aging (RNA38) Knockout increases myeloid-
biased HSC proliferation and
impairs regenerative capacity44

Cited2 HSC aging (RNA38) Knockout depletes functional
HSCs in young mice46

Hsf1 HSC aging (protein48) Dispensable in young HSCs;
knockout impairs hematopoietic
regeneration by middle age48

Igf2bp2 HSC aging (RNA51) Knockout impairs HSC function in
young mice51

Egr1 HSC aging (RNA53) Knockout increases HSC cycling
and mobilization54

Twist1 HSC aging (RNA56) Knockout reduces HSC self-
renewal and causes myeloid-
biased hematopoiesis56

Gata2 No change (RNA38) Haploinsufficiency promotes HSC
proliferation and functional
decline58

HSC AGING AND LEUKEMIA
models.37 Dissecting mechanisms by which CH can have a
protective benefit in the context of certain diseases yet accel-
erate or positively contribute to the development of others,
particularly within the hematopoietic system, will be critical in
considering appropriate intervention strategies.
Update on HSC-intrinsic mechanisms
causing hematopoietic aging and
initiation of hematologic malignancies
Here, we provide an update on recent literature and emerging
genes and mechanisms responsible for HSC aging and hema-
tologic malignancy initiation (Table 1).

An integrative analysis of 16 distinct transcriptomics studies of
murine HSC aging from different research groups worldwide
has provided a unified perspective on aged HSCs and a
centralized resource for the field.38 This work has identified
altered expression of genes in physiological HSC aging,
including Selp, nuclear protein 1, Semaphorin 4a (Sema4a), and
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-
terminal domain 2 (Cited2). Selp expression at the transcrip-
tional and protein levels in old HSCs has been found to
es in both HSC aging and transformation

Hematologic malignancy
phenotype Function

Knockout accelerates
leukemogenesis in CML39,40

Cell adhesion molecule produced
by platelets and endothelial
cells for leukocyte adhesion38

Targeted inhibition reduces the
growth of AML, T-cell ALL,
lymphoma, and multiple
myeloma cell lines42,43

High-mobility group protein
family member involved in
apoptosis, stress response, and
cancer progression41

Knockout impairs multiple
myeloma cell growth45

Binds to surface receptor Plexin-
D1, essential for HSC self-
renewal and protection from
stress44

Knockdown decreases AML
pathogenesis and induces
apoptosis47

Binding partner of the
acetyltransferase CBP/p300 in
transcriptional regulation46

Knockout impairs initiation and
maintenance of AML and T-cell
ALL49,50

Maintains proteostasis and self-
renewal in response to stress48

Knockdown inhibits the growth of
AML cell lines52

RNA-binding protein that
regulates messenger RNA
stability and translation51

Tumor suppressor in ALL, CML,
and AML55

Transcription factor that regulates
cell growth, differentiation, and
depolarization55

Knockdown reduces AML cell line
proliferation and sensitizes to
decitabine57

Transcription factor essential for
embryonic mesoderm
development56

Haploinsufficiency causes long
latency but aggressive MDS and
AML59

Essential transcription factor for
fetal and adult hematopoiesis60
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contribute to myeloid-biased hematopoiesis and HSC activa-
tion phenotypes.38 In a BCR/ABL-induced chronic myelogenous
leukemia (CML) model, knockout of Selp accelerated leuke-
mogenesis, increased cell surface marker–defined leukemia
stem cells, and altered adhesion of myeloid progenitors to the
marrow stroma.39,40 Taken together, more studies are needed
to fully elucidate the contribution of SELPhi vs SELPlo old HSCs
to leukemogenesis and to determine whether fine-tuning levels
of Selp would facilitate the rejuvenation of old HSCs without
increasing susceptibility to hematologic malignancies.

Nupr1, encoding a stress response factor, is elevated at the
transcript level in old HSCs. In young mice, conditional
knockout of Nupr1 caused HSCs to exit quiescence
and conferred a competitive repopulation advantage.41 In
hematologic malignancy, Nupr1 is significantly higher in
multiple myeloid cell lines and primary multiple meyloid BM
samples than in healthy BM, and short hairpin RNA knock-
down of Nupr1 resulted in reduced proliferation, induction of
apoptosis, and arrest of cell cycle.42 A modified small mole-
cule capable of targeting NUPR1 has shown dose-dependent
growth inhibition of multiple cancer cell lines, including acute
myeloid leukemia (AML) (THP-1), lymphoma (Daudi), and
acute T-cell leukemia (Jurkat).43 Further investigation is
needed to determine whether Nupr1 is an effective target to
both deplete dysfunctional old HSCs and inhibit hematologic
malignancy.

Sema4a is elevated at the transcript level in old HSCs. In
a recent nonpeer-reviewed preprint, knockout of Sema4a
resulted in proliferation and expansion of myeloid-biased HSCs
at the expense of their regenerative capacity.44 Surprisingly,
this was noncell-autonomous because the transplantation of
wild-type myeloid-biased HSCs into Sema4a-deficient recipient
mice also resulted in excessive proliferation and engraftment
failure in the long term. In hematologic malignancy, cell surface
expression of SEMA4A was found to be essential for myeloma
cell growth, and a potent antibody-drug conjugate has been
engineered for therapeutic targeting of myeloma based on
SEMA4A expression.45 Further studies will be critical to define
Sema4a-cell context dependencies for aging and malignancies,
both with hematopoietic and nonhematopoietic cell fractions of
the BM, to assess the potential therapeutic index for SEMA4A
targeting.

Levels of Cited2, encoding a binding partner of the acetyl-
transferase CBP/p300, are also elevated in old HSCs at the
transcript level. Knockout of Cited2 in young mice reduced
HSCs but had no effect on steady-state hematopoiesis.46 Mice
survived normally, and the HSC pool failed to expand upon
aging. In contrast, Cited2 is necessary for the functional
regenerative capacity after HSC transplantation. In hematologic
malignancies, RNA interference–mediated knockdown of
Cited2 in AML cell lines decreased their pathogenicities in vivo
and increased apoptosis.47 Taken together, targeting Cited2 in
steady-state hematopoiesis may prevent the expansion of
phenotypic HSCs with aging and achieve selective targeting of
AML.

Heat shock factor 1 (Hsf1) levels increased in old HSCs at the
protein level, maintain proteostasis and are critical for HSC
536 10 AUGUST 2023 | VOLUME 142, NUMBER 6
regenerative capacity.48 A similar function for Hsf1 has been
recently reported in AML. Deletion of Hsf1 reduced the initia-
tion and maintenance of murine MLL-AF9–induced AML, and
knockdown or small molecule inhibition of HSF1 reduced the
growth of primary human AML cells.49 Because nuclear HSF1
expression is increased in human AML samples relative to that
in healthy BM controls and is correlated with disease status, it
has been suggested to be used as a biomarker as well as a
therapeutic target.49 This is consistent with elevated Hsf1 in
T-cell acute lymphoblastic leukemia (ALL), in which Hsf1 abla-
tion was found to suppress the growth of both mouse and
human T-cell ALL cells.50 A multitude of small molecules and
naturally derived compounds to inhibit HSF1 have been
developed, but most show off-target effects, precluding further
clinical testing.61 Additional studies are needed to determine
whether HSC rejuvenation strategies can reduce the depen-
dence of old HSCs on Hsf1, or whether a sufficient therapeutic
window exists between the reliance of malignant and healthy,
old HSCs on Hsf1, enabling this to be a targetable factor in the
treatment of hematologic malignancies.

In old HSCs, Igf2bp2 has been found to be decreased in
expression at the transcript level.51 Igf2bp2 encodes an RNA-
binding protein that regulates messenger RNA stability and
translation. The role of Igf2bp2 in HSC aging is multifaceted. In
younger individuals, Igf2bp2 contributes to aging-associated
HSC expansion and myeloid lineage bias, whereas age-
related loss of Igf2bp2 impairs the growth and repopulation
capacity of old HSCs.51 Igf2bp2-deficient mice did not exhibit
aging-associated phenotypes, such as increase in phenotypic
HSCs or myeloid-biased hematopoiesis. Notably, IGF2BP2 is
found to be increased in expression in adult AML, and such
increased expression is associated with poor prognosis.52

Together, despite a natural decline in Igf2bp2 levels in old
HSCs, targeting this molecule could achieve beneficial effects
with respect to reducing old HSC attributes and their trans-
formation into hematologic malignancies.

The transcriptional factors early growth response factor 1 (Egr1),
Twist-related protein 1 (Twist1), and Gata binding protein 2
(Gata2) have also recently been implicated, or reimplicated, in
HSC aging and transformation. Egr1, an immediate-early
response transcription factor, is increased in expression in old
HSCs.53 Mice lacking Egr1 have expansion in steady-state levels
of cycling HSCs and spontaneous mobilization.54 In contrast, in
a variety of studies conducted for human AML, chronic lym-
phocytic leukemia, and ALL cell lines, EGR1 has been identified
as a tumor suppressor.55 Twist1, an essential regulator of
mesoderm development, is increased in old HSCs, at the
transcript level. Unexpectedly, Twist1 knockout mice have been
reported exhibit aging-associated phenotypes of reduced HSC
self-renewal and myeloid-biased hematopoiesis.56 In AML cell
lines, knockdown of TWIST1 was found to reduce proliferation
and increase sensitivity to the hypomethylating agent decita-
bine.57 Gata2, known to be essential for proliferation, mainte-
nance, and function of HSCs, is not reported to be altered in
transcript expression with aging. In hematologic malignancy,
overexpression of GATA2 is observed in myelodysplastic syn-
drome (MDS) and AML.60 In addition, gain-of-function muta-
tions in GATA2 are correlated with poor prognosis in CML.59 In
contrast, individuals with germ line or acquired GATA2
COLOM DÍAZ et al
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haploinsufficiency also have a high propensity to develop MDS
or AML, typically preceded by immunodeficiency. A recent
report provides evidence that Gata2 haploinsufficiency in mice
exacerbates the decline in HSC function and decreases
lymphoid progenitor cell production during aging,58 providing
a mechanistic link between aging and propensity for the
transformation. In an independent study, Gata2 hap-
loinsufficiency was found to delay leukemia onset in a mouse
model of human inv(16) AML (Cbfb-MYH11 knock in) but
paradoxically resulted in a more aggressive leukemia pheno-
type.62 Taken together, these data suggests that Egr1, Twist1,
and Gata2 may not be ideal targets for effective intervention
strategies based on their complex roles.

Update on HSC-extrinsic mechanisms
causing hematopoietic aging and
leukemia initiation
Numerous changes have been described in aging BM micro-
environments, including vascular remodeling, BMmesenchymal
stromal cell dysfunction, altered adrenergic signaling, proin-
flammatory cytokine production, and frequent senescence.63

The aging BM microenvironment can induce HSC aging phe-
notypes and contribute to the pathogenesis of hematologic
malignancies. Moreover, leukemia cells can remodel the BM
microenvironment and accelerate aging phenotypes in a feed-
forward loop. Here, we provide an update on the recent liter-
ature in this area.

Acute and chronic inflammation
Inflammation influences both HSCs and the BM microenviron-
ment, and increasing evidence suggests that this can perma-
nently change the HSC pool. Young adult mice exposed to
acute inflammatory challenges show accelerated HSC aging
and impaired hematopoietic regeneration capacity.64 Increased
levels of interleukin 1β (IL-1β) produced by old and damaged
endosteum65 reduces HSC self-renewal66 and increases
myeloid cell proliferation.67 Pharmacologic inhibition of IL-1
mitigates myeloid-biased hematopoietic output from HSCs,67

reverses deterioration of the aging BM microenvironment,
and restores HSC regenerative function.65 In contrast, phar-
macologic inhibition of IL-6 increases the frequency and func-
tionality of aging erythroid progenitor cell populations rather
than directly affecting aging HSCs.68 This observation high-
lights that pharmacologic strategies to broadly ameliorate
hematopoietic aging phenotypes may require an expanded
viewpoint to replenish critical factors for both HSC and pro-
genitor cell function.

Chronic inflammation has been shown to promote the growth
of mutant HSC clones, leading to leukemic transformation.
Proinflammatory IL-6 signaling drives progression of MDS to
AML, and the knockout of IL-6 was sufficient to extend survival
in murine models.69 Increased IL-1β predicts poor prognosis in
CML, and inhibition of IL-1 signaling in combination with a
tyrosine kinase inhibitor enhanced targeting of CML stem
cells.70 IL-1 has also been shown to affect disease progression
in AML through p38MAPK.71 Together, this work suggests an
intriguing possibility that persistent exposure to inflammation
early in adulthood may influence the process and timing of
aging HSC phenotypes, and continuous elevation of
HSC AGING AND LEUKEMIA
inflammation later in life may increase the susceptibility to
hematologic malignancies.

The gut microbiome is a source of inflammatory signaling that
affects hematopoiesis and HSC function. In old germ-free mice,
the HSC pool remains lineage balanced compared with specific
pathogen-free mice with expanded myeloid-biased HSCs.72

Old mice have increased levels of microbial compounds stim-
ulating IL-1 production,67 which reduces HSC self-renewal and
increases myeloid cell proliferation, as described earlier. Fecal
microbiota transplantation from young mice into old mice
rejuvenated HSC function, mitigated inflammatory signaling,
and restored lymphoid differentiation capacity of aging HSCs.73

In young mice genetically predisposed to develop precursor
B-cell ALL, antibiotic treatment accelerates leukemia develop-
ment.74 Antibiotic treatment also accelerates leukemia devel-
opment in a mouse model of AML driven by MLL-AF9, which
can be reversed by fecal microbiota transplantation.75 Autolo-
gous fecal microbiota transfer has been shown to be safe in
patients with AML in a recent phase 2 clinical trial.76 These
observations supports alterations in gut microbiota and intes-
tinal barrier damage during aging dysregulates HSC function
and provides a therapeutic option for restoring HSC function
and preventing hematologic malignancies.
BM microenvironment senescence
Senescent cells accumulate with aging, and recent evidence
suggests that senescence can be induced throughout the body
of young mice by the transfer of blood from old mice.77 In the
BM microenvironment, senescent cells have been found to
directly affect HSC function. In a model of induced senescence,
Terc knockout BM stromal cells (BMSCs) impair HSC functional
regenerative capacity and accelerate myelopoiesis.78 Aging
human BMSCs have been found to impair the clonogenic
potential of young human CD34+ HSPCs and induce a proin-
flammatory gene expression program.79 Interventions targeting
senescent cells using senolytics have shown effects on both
nonhematopoietic and hematopoietic cells within the BM
microenvironment. An important nuance is that senescence has
been shown not to be a major mechanism intrinsically regu-
lating HSC aging,80 therefore, studies targeting senescence in
the rejuvenation of HSC function are likely to occur through
non–cell-autonomous mechanisms. For example, aging mice
treated with the senolytic drug ABT263 (Navitoclax) induced
apoptosis of HSCs and non-HSCs, expressing markers of
senescence and resulting in rejuvenated HSC function.81 In
addition, a senolytic cocktail of dasatinib and quercetin has
recently been shown to improve the osteogenic capacity
of aging BMSCs in vitro and in vivo,82 which has the potential
to improve aging HSC function in a non–cell-autonomous
manner.

In hematologic malignancy, AML cells have been shown to
contribute to the induction of BMSC senescence, and the
resulting senescence-associated secretory phenotype promotes
leukemia proliferation and survival.83 Targeting the senescent
microenvironment by deleting p16INK4a-expressing BMSCs
slows AML progression and extends survival.83 Because the
senesecent microenvironment appears to be a vital component
in the progression of hematologic malignancy, it warrants
further investigation for therapeutic intervention.
10 AUGUST 2023 | VOLUME 142, NUMBER 6 537
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Adipogenesis and metabolic changes in the BM
microenvironment
BM adipocyte tissue volume increases with aging in humans.84

In mouse models, assessments of adipocyte abundance with
aging show varying conclusions, and this abundance may be
influenced by diet.65,85,86 A further dissent in the field is with
respect to the role of BM adipocytes in regulating HSC function.
Multiple studies have suggested that increased mature adipo-
cytes negatively regulate HSC number and function.86,87

Although accumulation of BM adipocytes due to the loss of
Bmi1 expression was reported to reduce HSC proliferation and
number, these alterations were insufficient to broadly cause
HSC aging phenotypes,88 suggesting that they may cooperate
with other aging-associated changes in the BM microenviron-
ment, causing a decline in HSC function. In contrast, a distinct
report has robustly determined that adipocytes are a critical
source of stem cell factors required to support hematopoietic
regeneration. Deletion of Scf using an Adipoq-Cre/ER mouse
model impaired hematopoietic regeneration, depleted HSCs,
and reduced mouse survival after irradiation or 5-fluorouracil
treatment.89 Before moving toward therapeutic intervention,
further studies are needed to clarify the effect of adipocyte
populations on HSC function in distinct contexts of steady-
state, regenerative, and aging hematopoiesis.

Age-related adipocyte expansion clearly plays a role in the
promotion of hematologic malignancies. ALL cells have been
shown to use free fatty acids released from adipocytes as a fuel
source to enhance leukemia progression.90 Additionally, AML
cells stimulate lipolysis of BM adipocytes to release free fatty
acids taken up by blast cells. This process enhances AML pro-
liferation by increasing mitochondrial fatty acid β-oxidation.91

Leukemia cells use mitochondrial respiration to meet their
metabolic demands, and inhibition of amino acid metabolism
by venetoclax can target human leukemia stem cells and is
effective in combination with azacytidine for extending survival
in patients with AML.92-94 It has been reported that human AML
generates reduced NAD phosphate oxidase to promote mito-
chondrial transfer from BMSCs to AML cells through tunneling
nanotubes.95 Recent studies have shown that inhibiting this
mitochondrial transfer decreases AML metabolic capacity and
inhibits leukemia proliferation.96,97

New insights into therapeutic
interventions for hematopoietic aging:
is rejuvenation of aged HSCs possible?
Recent literature generated by independent groups strongly
supports that HSCs in old mice resist functional rejuvenation by
circulating factors present in young blood.20,98 Old HSCs did
not show functional rejuvenation upon plasma transfer from
young animals, caloric restriction, exercise, parabiosis with
young animals,98 or transplantation into unconditioned young
recipient mice.20 Surprisingly, transplantation into uncondi-
tioned young recipient mice restored the transcriptome, but not
DNA methylation patterns, in old HSCs such that they closely
resemble young HSCs.20 This suggests a disconnect between
transcriptional, epigenetic, and functional rejuvenation at
the HSC level. In addition to DNA methylation,20 HSCs in old
mice have posttranscriptional alterations in autophagy and
metabolism,99 micro RNA regulation, protein translation,100 and
538 10 AUGUST 2023 | VOLUME 142, NUMBER 6
proteostasis,48 which represent potential mechanisms by which
old HSCs are not functionally restored despite the reset tran-
scriptional profiles. Of the remaining transcriptional signatures
that were not restored upon transplantation of old HSCs into
young recipient mice, these were enriched for proteasome,
calcium ion transport, and specific metabolic (phosphate and
phosphorus) processes,20 further pointing to specific processes
that may be essential for functional rejuvenation.

In contrast to old HSCs, transplantation of HSCs from middle-
aged donor mice into young mice could, in part, functionally
rejuvenates middle-aged HSCs.20 Our group has performed
transcriptional comparisons between middle-aged and old
C57BL/6 HSCs and have found key differences, including that
middle-aged HSCs have higher fatty acid metabolism, oxidative
phosphorylation, and ribosomal protein translation initiation
and less inflammatory signaling (mediated by TNFα, IL-6, and
interferon gamma, IL-2), myeloid transcriptional network acti-
vation, and ROS signatures compared with old HSCs.15 Upon
examining hematopoietic-extrinsic contributions toward aging
and rejuvenation, reduction of insulin-like growth factor 1 in the
middle-aged BM microenvironment causes HSCs aging phe-
notypes, including myeloid bias and expansion of phenotypic
HSCs.15 Stimulation of middle-aged HSCs with insulin-like
growth factor 1 expanded lymphoid-biased HSCs and
restored lymphoid cell output from HSCs.15 In addition, a report
describing the use of mitoquinol to enhance the mitochondrial
membrane potential of aged HSCs found that supplementing
drinking water of mice, starting at middle age (14 months old),
delayed the onset of myeloid-biased hematopoiesis, prevented
the onset of anemia, and reduced phenotypic HSC expansion
over a 5-month period.101 Taken together, targeting HSCs at
middle age may be a window of opportunity for rejuvenation.
Beyond the transcriptome, investigation of biomarkers of
functional HSC rejuvenation is needed to enable high-
throughput screening approaches and clinical assessment of
the success of rejuvenation factors.

The question “can interventions to prevent HSC aging or reju-
venate the functionality of aged HSCs effectively prevent or
delay the development of leukemia?” remains unanswered.
However, recent findings of HSC-intrinsic and -extrinsic mech-
anisms contributing to hematopoietic aging and leukemogen-
esis (Figure 2) provide compelling potential intervention
mechanisms, including targeting the proteasome and trans-
lational processes, resetting metabolism and chromatin/
epigenome patterning, chronic inflammation, senescence, and
senescence-associated secretory phenotype.

Emerging research directions to pursue
in HSC aging and hematologic
malignancy
In a forward-thinking manner of emerging research directions,
intriguing new findings that HSCs express major histocompati-
bility complex II, act as antigen-presenting cells to protect the
integrity of the HSC pool, and delay the development of leu-
kemia102 have revealed new biological aspects to be explored
during aging. If the antigen-presentation capacity is compro-
mised in aging HSCs, restoring this capacity could be a valuable
therapeutic strategy to decrease the risk of hematologic
malignancies, in the context of aging.
COLOM DÍAZ et al
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Figure 2. Potential targetable mechanisms to rejuvenate aged HSCs and prevent hematologic malignancy. Phenotypes and biological mechanisms implicated in HSC
aging, hematologic malignancy, or both are shown on the left. As overlapping mechanisms represent the most compelling targets for intervention, the inset table outlines the
potential targetable mechanisms discussed in detail in this review. Illustration created using BioRender.com.
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It has very recently been discovered that macrophages groom
the HSC compartment during development, depleting HSCs
high in ROSs, and stimulating proliferation and expansion of
HSCs passing through this checkpoint.103 During aging, HSCs
with high ROSs accumulate and are associated with myeloid-
biased hematopoiesis.104 Exploring HSC grooming in adults
and the elderly may open new avenues of exploration and
intervention or rejuvenation strategies.

A historical challenge in this field is in the translation of the
findings from animal models into human interventions. The
development of an innovative new human BM organoid plat-
form from induced pluripotent stem cells enables healthy and
malignant human hematopoietic cell engraftment and sur-
vival.105 The adaptation of this technology offers a means to
evaluate the efficacy of small molecules or other therapeutic
strategies in the prevention or reversal of human HSC aging
phenotypes and transformation to malignancy.
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