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MYELOID NEOPLASIA
Germ line variant GFI1-36N affects DNA repair and
sensitizes AML cells to DNA damage and repair
therapy
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KEY PO INT S

• Presence of GFI1-36N
impedes HR- and
MGMT-mediated DNA
repair selectively in
AML cells.

•Use of temozolomide
and olaparib allows for
selective targeting of
GFI1-36N leukemic
cells.
Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key
regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S)
to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a
prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to
7% among healthy Caucasians and promotes the development of this disease. Using a
multiomics approach, we show here that GFI1-36N expression is associated with
increased frequencies of chromosomal aberrations, mutational burden, and mutational
signatures in both murine and human AML and impedes homologous recombination
(HR)–directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc
downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1
levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT)
expression levels, as illustrated by both transcriptome and proteome analyses. Targeting
MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor,
caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were
21 DECEMBER 2023 | VOLUME 142, NUMBER 25 2175
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insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-
36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free sur-
vival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT
expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our
data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
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Introduction
GFI1 transcriptionally regulates the development of hematopoi-
etic, neuronal, and intestinal epithelial cells.1-5 A variant of GFI1
denominated GFI1-36N and characterized by an exchange of
serine (S) to asparagine (N) at position 36 has a prevalence of 5%
to 7% in different healthy control populations. The prevalence of
the GFI1-36N allele is increased (10%-15%) among patients with
MDS, acute myeloid leukemia (AML), and multiple myeloma, and
the presence of the GFI1-36N allele is associated with a poor
prognosis.6-8 GFI1-36N leukemic cells feature increased H3K9
acetylation at target genes, resulting in higher expression of genes
such as Hoxa9, Pbx1, Meis1, CSF1, and CSFR1,9 driving cell sur-
vival and proliferation.10-16 GFI1 also regulates apoptosis through
regulating the methylation status of p53 in lymphoblastic leuke-
mia17 and MRE11 and 53BP1 in DNA repair.18 However, it is not
known how these nontranscriptional activities are affected in the
GFI1-36N variant.

We leveraged multiomics profiling to gain mechanistic insights
into the molecular architecture that drives myeloid leukemia in
the presence of GFI1-36N. GFI1-36N interferes with DNA repair
in leukemic cells and sensitizes malignant cells to treatment with
olaparib and temozolomide, opening a new therapeutic
approach to treat AML/MDS.

Materials and methods
Patient cohort
Patients with AML treated in Essen, Hannover, and Dresden (Study
Alliance Leukemia AML registry biobank [IRB no. EK98032010]) as
well as the MLL cohort were described previously.6,19-22 All
experiments with human samples were carried out in accordance
with the approved protocol of the respective competent authority.
All the patients provided written informed consent and performed
according to the Declaration of Helsinki.

Mouse strains and approval
Mice carrying either the GFI1-36N or GFI1-36S allele were
generated as described previously.17 NUP98-HOXD13 trans-
genic mice were obtained from The Jackson Laboratory (Bar
Harbor, ME).9,22 PiggyBac Transposon mouse models were
donated by the Trust Sanger Institute, Hinxton-Cambridge.23,24

All mice were kept under specific-pathogen-free conditions,
and all animal experiments were approved by the respective
animal ethics committee (North Rhine-Westphalia: 84-
02.04.2015.A076, 81-02.04.2019.A440 or Regierungsbezirk
Oberbayern: 55.2Vet-2532.Vet_03-16-56).

Generation of leukemic cells
Lineage-negative (Lin–) cells were isolated from the total bone
marrow (BM) of knockin mice carrying either human GFI1-36N
2176 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
or human GFI1-36S using the Lineage Cell Depletion Kit (Mil-
tenyi Biotec, catalog no. 130-090-858 and catalog no. 130-042-
401). Lin– cells were then cultured in IMDM media containing
20% fetal bovine serum, 1% penicillin/streptomycyn, 10 ng/ml
murine interleukin-3 (mIL-3), 10 ng/mL mIL-6, and 20 ng/ml
murine stem cell factor (Miltenyi Biotec, catalog no. 130-101-
741, catalog no. 130-096-687, and catalog no. 130-094-065) for
expansion. Lin– cells were then transduced retrovirally with the
MSCV (murine stem cell virus)-MLL (mixed lineage leukemia)-
AF9-IRES (internal ribosomal entry site)–green fluorescent pro-
tein (GFP) (MLL-AF9; kindly provided by Jay Hess) plasmid9,25

expressing GFP. A total of 1 × 105 positive transduced (GFP+)
Lin− cells were transplanted IV together with 1 × 105 competi-
tive BM cells into lethal (7 + 3 Gy)-irradiated C57BL/6 mice.
Leukemic BM cells corresponding to 1 × 105 GFP+ cells were
retransplanted IV into sublethal irradiated C57BL/6 mice (3 Gy),
as previously described.9,25

Label-free proteome quantification
Fluorescence activated cell–sorted GFI1-36N or GFI1-36S MLL-
AF9–expressing leukemic cells (0.5-1 × 106 cells per sample)
from the mouse BM were thoroughly washed in plain phosphate
buffered saline (PBS), lysed in 1% sodium deoxycholate (SDC)
buffer (1% SDC, 100 mM Tris pH8.5, 40 mM 2-chloroacetamide,
and 10 mM tris(2-carboxyethyl)phosphine), incubated on ice for
20 minutes, boiled at 95◦C, and sonicated for 5 minutes on a
Biorupter plus, as described previously.26 Samples were diges-
ted with the proteases LysC (1:100 ratio) for 2 hours, followed by
trypsin (1:100 ratio) overnight at 37◦C. To the digested peptide
volume, 5 times the volume of isopropanol/1% trifluoroacetic
acid (TFA) was added and vortexed to stop the digestion. The
peptides were desalted on equilibrated styrenedivinylbenzene-
reversed phase sulfonated StageTips, washed once in iso-
propanol/1% TFA and twice with 0.2% TFA. Purified peptides
were eluted with 60 μL of elution buffer (80% acetonitrile and
1.25% NH4OH). The dried elutes were resuspended in MS
loading buffer (3% ACN, 0.3% TFA) and stored at −20◦C until MS
measurement. For liquid chromatography mass spectrometry
(LC-MS/MS) measurement, we used 200 ng peptide (concen-
tration determined by nanodrop) per sample. Further details can
be found in supplemental Methods, available on the Blood
website. For samples from patients with AML, mononuclear cells
were ficoll-enriched, washed twice in PBS, lysed, and processed
as mentioned earlier.

In vitro and in vivo treatment of primary cells with
temozolomide and olaparib
Temozolomide (Sigma) and olaparib (Selleckchem or MedChem-
Express or AstraZeneca) were dissolved in dimethyl sulfoxide (39
mg/ml and 86 mg/mL, respectively). For the colony-forming unit
assays, 0.5 × 103 to 1 × 104 primary murine cells were plated in 1
mL MethoCult media (M3434, Stemcell) and 0.5 × 103 primary
FRANK et al
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Figure 1. More genetic aberrations in human and murine GFI1-36N AML samples. (A) Percentage of patients with MDS/AML of 3 different cohorts with >2 chromosomal
aberrations. Patient samples were genotyped for the presence of GFI1-36N or GFI1-36S with real time (RT)-PCR. (B) Number of patients in individual cohorts corelating to
gender and age of the patients. (C) Schematic experimental setup to generate leukemic mice and the serial transplantation experiments. (D) Serial transplanted BM cells from
leukemic MLL-AF9 mice and nonleukemic Lin– cells were analyzed using RNA-seq followed by variant calling analysis. Shown is the number of variations in leukemic cells
minus the number of variations in nonleukemic cells. n = 3; mean ± standard deviation. (E) Variations from (D) divided according to the functional class of mutation. Shown is
the total number of mutations per genotype (left). The Venn diagram (right) represents the overlaps of missense mutations between GFI1-36S and GFI1-36N leukemic cells. (F)
Scheme of the PiggyBac transposon-based mouse model. GFI1-36S or GFI1-36N mice were crossed with the PiggyBac transposon mice (Mx-Cre × Rosa26 × ATP2). Mice were
injected with poly(I:C) to activate the transposon system. (G) The PiggyBac transposon-based mouse model was used to check the number of common insertion sites (CISs) of
the transposon sequence. The number of CISs were calculated for each genotype. WT: n = 4, GFI1-36S (heterozygous [n = 6] and homozygous [n = 1]): n = 7, and GFI1-36N
(heterozygous [n = 2] and homozygous [n = 7]): n = 9. *P < .05; **P < .01; ***P < .001. M, men; W, women; WT, wild-type.
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Figure 2. Somatic signatures in GFI1-36S and -36N leukemic mice and de novo identification of mutational signatures in human GFI1-36N–mutated samples. (A-C)
RNA-seq data of BM cells from leukemic GFI1-36S (n = 3) and GFI1-36S (n = 3) mice were analyzed regarding their somatic signatures. (A) The optimal number of signatures is
estimated based on silhouette coefficient (black) and L2 error (red). (B) SBS profiles considering the mutated base but also the bases immediately 5′ and 3′ for each signature
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human AML cells were plated in 1 mL MethoCult media (H4434,
Stemcell) in 6-well plates, and the colonies were counted after 10
days of incubation. To measure the cell viability, metabolic activity
was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assay (Abcam), which was per-
formed according to the manufacturer’s protocol. For the MTT
assay, cells were plated at a density of 3 × 105 cells per mL, and
temozolomide was added in a range between 5 μg/mL and 400
GFI1-36N AND DNA REPAIR
μg/mL and incubated at 37◦C and 5% CO2 for 48 hours. After the
drug treatment, the media was replaced with MTT reagent and
incubated for 3 hours, followed by MTT solvent for 15 minutes.
The absorption was measured at 590 nm using a Victor X3
Multimode Plate Reader (Perkin Elmer). For in vivo drug treat-
ments, working solutions of 10 mg/mL temozolomide and 20 mg/
mL olaparib were prepared freshly on the day of treatment with
PBS. Mice were treated intraperitoneally according to their weight
21 DECEMBER 2023 | VOLUME 142, NUMBER 25 2179
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with olaparib and with temozolomide (temozolomide 50 mg/kg
[days 2-4] and olaparib 100 mg/kg [days 2-3]). The procedure was
repeated if mice were deemed suitable according to their status
and scoring.
2180 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
Statistical analysis
GraphPad Prism 6 was used for the statistical analyses.
Significance was calculated using paired or unpaired two-sided
t tests.
FRANK et al
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Clinical trial NCT04207190
This phase 1/1b trial studies the safety profile and potential
efficacy of talazoparib in combination with gemtuzumab ozo-
gamicinin CD33-positive patients with AML who are relapsed or
refractory. Patient samples were genotyped as previously
described.6

Routine protocols and procedures are described in detail in
supplemental Methods.

Results
Presence of GFI1-36N is associated with increased
DNA damage and compromised DNA repair
The presence of a GFI1-36N allele was associated with an
increased frequency of chromosomal aberrations in 3 cohorts of
patients with AML (Essen, Dresden, and Hannover) indepen-
dent of age, sex, and French American British (FAB) classifica-
tion (Figure 1A-B; supplemental Tables 1 and 2). The allele did
not correlate with a particular molecular alteration, confirming
our previous observations for patients with MDS.7 The demo-
graphic details, FAB type, blood analysis, and mutational status
of the Hannover patient cohort are shown in supplemental
Tables 3 to 8. To gain further molecular insight, we used
GFI1-36S and GFI1-36N knockin mice.9,17 We generated GFI1-
36S or GFI1-36N myeloid leukemia cells expressing the MLL-
AF9 oncofusion protein25 and performed 4 rounds of serial
GFI1-36N AND DNA REPAIR
transplantation to allow sufficient time for the effects of reduced
DNA repair capacity to become detectable (Figure 1C). The
frequency of deletions, insertions, and mutations was signifi-
cantly higher in GFI1-36N than those in GFI1-36S leukemic cells
(Figure 1D). Furthermore, GFI1-36N leukemic cells showed
more missense mutations than GFI1-36S leukemic cells
(Figure 1E), but the frequency of large-scale chromosomal
aberrations remained the same in both types of leukemic cells
(supplemental Figure 1A). However, microdeletions (detected
by array–comparative genomic hybridization) were observed
more frequently in GFI1-36N leukemic cells, with 3.33 ± 0.33
more microdeletions than GFI1-36S–expressing leukemic cells
(supplemental Figure 1B) but did not reach significance, likely
because of the small sample size. To confirm our results, we
used an additional murine AML model that causes insertional
mutagenesis specifically in hematopoietic cells by means of a
transposon-transposase system (Figure 1F),23 allowing for the
targeted sequencing of the genomic areas to which the trans-
poson has been relocated. The presence of GFI1-36N was
associated with a significantly increased number of common
insertion sites of the transposon compared to GFI1-36S–
expressing cells (Figure 1G). GFI1-36N–associated insertion
sites were frequently found proximal to genes involved in DNA
repair such as TRIM44, MECOM, and ZEB2 (supplemental
Figure 2A). The presence of GFI1-36N correlated with clonal
aberrant karyotypes, yet the overall sample number was too low
to gain statistical significance (supplemental Figure 2B).
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We determined the mutational signature of murine GFI1-36S
and GFI1-36N leukemic cells from our MLL-AF9 model, per-
forming analyses on synonymous and nonsynonymous variants
and identifying 2 different clusters (k = 2; Figure 2A). Matching
the corresponding signatures to Catalogue of Somatic Muta-
tions in Cancer (COSMIC) signatures,27 both signatures (Sig1
and Sig2) were similar to single-base substitution 5 (SBS5;
similarity > 0.70), which is potentially associated with mutational
processes related to aging and nucleotide excision repair.
However, each mouse line (GFI1-36N and -36S) was matched to
a different subtype of SBS5 (Figure 2C), mainly driven by
different adjacent bases (5′ and 3′ of the mutation) of C>T and
T>C mutations (Figure 2B).

To test whether these results can be recapitulated in humans, a
cohort of 1530 patients diagnosed with AML or MDS with 182
carriers of the GFI1-36N variant was investigated. Using de
novo mutational signature identification for these 182 patients,
we identified 4 different signatures (Figure 2D; supplemental
Figure 3A-B). Sign.01 likely has a technical origin, because we
see it consistently in other cohorts as well. However, Sign.02,
Sign.03, and Sign.04 showed similarity to COSMIC reference
signatures SBS6, SBS5, SBS1, and SBS87 (Figure 2E) and were
similar to Sig1 and Sig2 observed in murine samples
(Figure 2B). A comparison of the murine and human results
indicated that there are signatures in both data sets that are
based on C>T mutations and, to a lesser extent, on T>C
(Figure 2B,D).

To further investigate global DNA damage response and repair,
we first used murine thymocytes, an immune cell type
expressing higher levels of GFI1 than BM cells, and tested their
response to DNA damage with comet assays and by measuring
γH2AX foci after exposure to irradiation. An 80% increased tail
moment and a 40% higher number of γH2AX foci (both P ≤ .05)
were observed in GFI1-36N thymocytes than in GFI1-36S cells
(Figure 3A-B). However, the slope of the decreasing number of
foci and tail moment during the repair phase was similar
between GFI1-36N and GFI1-36S–expressing cells. In addition,
GFI1-36N Lin– cells from the mouse BM showed a higher
number of γH2AX foci than GFI1-36S control cells, but both cell
types had a similar rate of DNA repair slope (Figure 3C).
Although leukemic GFI1-36N cells also demonstrated higher
DNA damage upon exposure to the same dose of irradiation
compared with leukemic GFI1-36S control cells, they showed a
reduced DNA repair capacity compared with GFI1-36S
leukemic cells (Figure 3D).

We first performed an assay to follow homologous recombi-
nation (HR) with a polymerase chain reaction (PCR) approach.28

Murine GFI1-36N leukemic cells had a 75% diminished capacity
Figure 5. MGMT downregulation in GFI1-36N cells due to low levels of NDRG1.
leukemic BM cells at different time points after actinomycin D (10 μg/mL) treatment. Mgm
NDRG1 protein level in GFI1-36S- and GFI1-36N-MLL-AF9 leukemic BM cells (proteom
murine leukemic GFI1-36S- and GFI1-36N-MLL-AF9 BM cells. n = 3; mean ± SD. (D) Ndr
PCR. GFI1-36S: n = 3 and GFI1-36N: n = 3; mean ± SD. (E) Published GFI1-ChIP-seq data
sides of GFI1 (red square) at regulatory elements of Ndrg1. (F) GFI1-ChIP-quantitative
leukemic BM cells. Gapdh and Runx1 were used as a control (right). (G) Comparison betw
found using find individual motif occurrence (FIMO) at sites occupied by GFI1 in 21 gene
-36S animals. (H) Ndrg1 expression (RNA-seq) in murine leukemic GFI1-36S- and GFI1
Normalized read counts of treated samples were normalized to the untreated samples. n
from GFI1-36S and GFI1-36N leukemic mice without and with TMZ (50 μg/mL) treatmen
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for HR compared with GFI1-36N nonleukemic Lin– progenitor
cells, GFI1-36S MLL-AF9 leukemic cells, or GFI1-36S non-
leukemic Lin– progenitor cells (Figure 3E). To confirm this
observation in an independent human leukemia model, K562
cell lines with 1 GFI1-36N allele were generated using CRISPR/
Cas. Upon irradiation or treatment with the alkylans temozolo-
mide, K562 cells with a GFI1-36N allele showed reduced HR
repair capacity compared with cells carrying both GFI1-36S
alleles (Figure 3F). This diminished rate of HR in the murine or
human models was not due to reduced expression of RAD51 (a
key HR facilitator)29-31 at steady state (supplemental Figure 3C).
To check whether a potentially different binding between GFI1-
36S and GFI1-36N with RAD51 could explain the detected
impeded HR and the different RAD51 foci formation in GFI1-
36N leukemic cells, we performed immunofluorescence
experiments, and we did not observe a different colocalization
of GFI1-36S or GFI1-36N with RAD51 (supplemental
Figure 3D). However, the number of RAD51 foci appearing
after 5 Gy irradiation was significantly reduced in GFI1-36N
leukemic cells compared with that in GFI1-36S leukemic cells,
confirming the results obtained with the plasmid-based HR
assay (Figure 3G).

53BP1 regulates the double-stranded break repair pathway
choice between HR and nonhomologous end joining (NHEJ) by
promoting the NHEJ S phase.31 We probed the formation of
53BP1 foci but did not find significant differences between GFI1-
36S and GFI1-36N leukemic cells (supplemental Figure 3E) nor a
colocalization between GFI1 and 53BP1 (supplemental
Figure 3F), indicating that the capacity for NHEJ remained
unchanged in the presence of the variant GFI1 allele. Coordi-
nated DNA repair depends on proper control of cell-cycle status,
and HR-directed DNA repair occurs mostly in G2 or S phases.
The observed reduction of HR-directed DNA repair in the pres-
ence of a GFI1-36N allele was not due to a reduction of cells in
the S or G2/M phases. On the contrary, a higher proportion of
GFI1-36N leukemic cells was in S phase compared with GFI1-36S
leukemic cells (Figure 3H), suggesting a direct involvement of the
GFI1 variant of the DNA repair machinery.

Presence of GFI1-36N deregulates MGMT levels
Using in-depth quantitative proteome analysis of murine GFI1-
36S and GFI1-36N leukemic cells (n = 4, biological replicates.
Figure 4A), we quantified nearly 7000 proteins at a peptide and
protein false discovery rate of 1%, of which we found 1353
proteins to be differentially regulated (permutation-based false
discovery rate [FDR] < 0.05; Figure 4A; supplemental Data 1)
between the genotypes. We then performed biological process
and pathway enrichment analysis using Cytoscape. DNA meta-
bolism, DNA double-strand break and repair, DNA damage and
repair pathway, base excision repair pathway, chromatin
(A) Fold change expression of Mgmt in murine GFI1-36S- and GFI1-36N-MLL-AF9
t level was normalized to Hprt and to the untreated controls. n = 3; mean ± SD. (B)

ic). n = 4; mean ± SD. (C) Ndrg1 expression (normalized read counts; RNA-seq) of
g1 gene expression measured in GFI1-36S- and GFI1-36N-MLL-AF9 BM cells by RT-
sets showing the Ndrg1 gene and its regulatory elements with the possible binding
PCR of the Ndrg1 upper regulatory elements of murine GFI1-36S and GFI1-36N
een the GFI1 binding motif from the Jasper database (top) and the consensus motif
s differentially expressed in granulocyte/monocyte progenitors s from GFI1-36N or
-36N-MLL-AF9 cells after treatment with 50 μg/mL TMZ for 20 hours and without.
= 3; mean ± SD. (I) NDRG1 protein level was analyzed by immunoblotting in BM cells
t for 24 hours. *P < .05; ***P < .001; ****P < .0001.
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silencing, and cell-cycle checkpoint signaling (Figure 4B) were
among these pathways, and this was in congruence with the
functional data presented in Figure 3 regarding these processes.
We found DNA damage, cell-cycle, cellular Myc (c-Myc) targets,
CHEK2 network, ataxia-telangiectasia mutated (ATM) network,
BRCA1 and -2 network specifically enriched in a GFI1-36N–

dependent fashion (Figure 4C), suggesting that GFI1-36N cells
undergo extensive DNA damage and repair. We focused then
on DNA damage and repair pathways and could identify 66
proteins that were either upregulated or downregulated
depending on the presence of GFI1-36N (Figure 4D,
permutation-based FDR < 0.05). Most of the DNA damage-
sensor proteins were upregulated in GFI1-36N leukemic cells
(Figure 4E), supporting the notion that these cells experience
more DNA damage than GFI1-36S leukemic cells.

To explore whether these changes might be explained by altered
gene expression, we first performed RT2 profiler PCR arrays for
DNA repair genes and observed that 40 out of 84 genes were
differentially expressed (supplemental Table 9). We further
confirmed this by bulk transcriptome analysis on BM cells from
leukemic GFI1-36S and GFI1-36N mice (MLL-AF9 model). A gene
set enrichment analysis revealed differentially expressed genes
belonging to the DNA repair and p53 pathways and genes such
as Gen1, Cul4b, and Dna (supplemental Figure 4A-C), although
not all genes deregulated in the RT2 approach were deregulated
in the RNA sequencing (RNA-seq) approach and vice versa.

The enzyme O6-methylguanine-DNA-methyltransferase (MGMT)
catalyzes the transfer of methyl groups from O(6)-alkylguanine in
the DNA to itself, thereby repairing these lesions.32 MGMT was
among the most downregulated protein and transcript levels in
GFI1-36N leukemic cells compared with that in GFI1-36S leukemic
cells (Figure 4D-E; supplemental Figure 4D-F). The Mgmt RNA
and protein expression remained unchanged in nonleukemic
progenitor cells expressing GFI1-36S or -36N (supplemental
Figure 4G-H), suggesting that the leukemic condition contrib-
uted to the reduced expression of Mgmt and Mgmt. To further
explore this, we performed a deep proteome analysis of samples
of patients with AML (genotypes GFI1-36S [n = 11] and GFI1-36N
[n = 9]). The details of the patient samples used for proteomics
analysis are listed in supplemental Tables 10 and 11). We profiled
165 patients with AML to identify 9 samples as GFI1-36N het-
erozygous carriers. The samples were selected evenly across dis-
ease stages and cytogenetic groups to counteract a potential
subtype-specific bias. From a total of 8027 proteins identified,
6058 proteins were quantified in 70% of at least 1 genotype;
significant analysis found 12 proteins were differentially regulated
(permutation-based FDR < 0.05; details in supplemental Methods)
between the 2 genotypes (supplemental Figure 4I; supplemental
Data 2), and these include poly-ADP ribose polymerase (PARP) 14,
KIN, HAUS5, and RAD18, involved in DNA damage, genome
stability, and the DNA-binding protein PAPD5. Of these, 2 pro-
teins were shared between murine and human samples
(Figure 4F). Both murine and human AML samples showed
downregulated Mgmt/MGMT levels in leukemic GFI1-36N cells
Figure 6 (continued) relative to the control. n = 3; mean ± SD. (G) CFU assay was per
HOXD13 mice. Cells were treated with 50 μg/mL TMZ and as a control with DMSO. T
relative to the control. n = 2, each triplicate, mean ± SD. (H) MGMT protein level was me
and with TMZ (50 μg/mL) treatment for 24 hours. *P < .05; **P < .01; ***P < .001; ****P < .
50% inhibitory concentration.

GFI1-36N AND DNA REPAIR
compared with GFI-36S cells (Figure 4G-H). This strongly suggests
that the expression of MGMT is reduced in AML cells expressing
GFI1-36N, both at the RNA and protein levels. We further
confirmed our findings in a published AML proteome data set of
177 samples.33 TheGFI1-36Nwere identified by single nucleotide
variant calling using the RNA-seq data (supplemental Figure 4J)
and compared those for all GFI1-36S samples or the top 10 most
GFI1-36S–expressing samples for equal variance comparison
(supplemental Figure 4K-L).

Of note, we assessed the 66 DNA damage repair proteins and
their transcript regulation systematically by correlation analysis.
In general, the overall and genotype-specific sample
transcriptome-to-proteome correlation was Pearson R = 0.46 to
0.48 (supplemental Figure 5A-C; supplemental Data 3), similar
to that of our previous work.34 We performed comparative
analysis to find shared and unique genes between the data sets
(supplemental Figure 5D). The gene ontology enrichment anal-
ysis identified genes changing in both RNA proteins that are
enriched for protein binding, translation, ribosomal RNA pro-
cessing, ribosome subunits, DNA break and repair pathway, and
caspase complex (supplemental Figure 5E). In the transcript
only, upregulated genes enrich for terms such as protein bind-
ing, ribonucleo protein complex, noncoding RNA processing,
messenger RNA processing, and splicing (supplemental
Figure 5F). Genes upregulated at the protein but not at the
transcript level were enriched for response to stress, translation,
DNA replication, DNA repair proteins, the MCM complex, his-
tone modifications, and catalytic activity (supplemental
Figure 5G). This analysis points out that the DNA break and
repair pathways are subjected to changes, as reflected in both
RNA-protein levels in our data set. A direct transcriptome-
proteome correlation suggests MGMT might not be regulated
by posttranscriptional regulation (supplemental Figure 5H).
However, when looking at the 66 selected DNA damage repair
proteins in both the overall and genotype-specific tran-
scriptome-to-proteome correlation, the data suggest some of
these genes might undergo posttranscriptional regulation
(supplemental Figure 5I-K; supplemental Data 3) because their
transcript abundance correlates inversely to protein.

NDRG1 regulates MGMT levels in GFI1-36N AML
cells
We next investigated why the presence of GFI1-36N in leukemic
cells leads to lower levels of Mgmt/ MGMT. An altered methyl-
ation status of the MGMT promoter was not the reason
(supplemental Figure 6A-C),35,36 nor does GFI1 bind to regula-
tory elements of the MGMT locus, based on published chromatin
immunoprecipitation (ChIP)-seq data sets from CODEX
(GSE31657, GSE69101, GSE50806, and GSE42518).17,33,37,38

The presence of GFI1-36N also had no effect on the RNA sta-
bility of Mgmt of murine GFI1-36S and -36N leukemic cells
(Figure 5A). The GFI1 interactome (using mass spectrometry [AP-
MS]) revealed known interactors, such as Histon deacetylase and
protein-arginine methyltransferase 1 but did not reveal a direct
interaction of GFI1 with MGMT (supplemental Figure 6D-F).
formed with malignant BM cells from transgenic GFI1-36Sx and GFI1-36NxNUP98-
he colony number after 14 days in culture of the treated samples was calculated
asured by immunoblotting in BM of GFI1-36S and GFI1-36N leukemic mice without
0001. AFU, arbitrary fluorescence units (O6MeG/4′ ,6-diamidino-2-phenylindole); IC50,
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NDRG1 (stress-responsive protein involved in DNA damage
response) positively regulates and stabilizes MGMT in human
glioblastoma cells by direct protein-protein binding.39,40

NDRG1 protein levels were reduced in GFI1-36N leukemic
cells (Figure 5B). Additionally, using our RNA-seq data sets from
murine leukemic cells, the expression of Ndrg1 was also
significantly lower in GFI1-36N leukemic cells than in GFI1-36S
leukemic cells (Figure 5C). We validated these results using
reverse transcription PCR (Figure 5D). Reanalysis of published
GFI1 ChIP-seq data from CODEX (GSE31657, GSE69101,
GSE50806, and GSE42518)17,33,37,38 revealed 2 potential GFI1
binding sites at the upper regulatory regions of Ndrg1 in 3 out
of 4 data sets (Figure 5E). Although GFI1 has been described as
a transcriptional repressor, it can also act as an activator, as
demonstrated in the case of medulloblastoma41 or in T-cell
leukemia for Ikaros.42,43 Using ChIP–quantitative PCR with a
GFI1 targeting antibody, we found that GFI1-36S bound to a
higher degree to both upper regulatory elements of Ndrg1 than
GFI1-36N in murine leukemic cells (Figure 5E-F). Repeated
attempts to examine the binding of GFI1-36S and GFI1-36N on
a genome-wide level did not yield sufficient reads; hence, this
must be done in future studies. In line with this, PNKP and
APEX1, 2 additional proteins bound and stabilized by
NDRG1,39 were downregulated at both RNA and protein levels
in GFI1-36N compared with in GFI1-36S leukemic cells
(supplemental Figure 6G-H). To assess whether decreased
binding of GFI1-36N to its target genes was due to a different
binding sequence, we analyzed genes differentially expressed
between granulocyte/monocyte progenitors from animals car-
rying either GFI1 variant. The consensus binding sequence of
GFI1-36S and GFI1-36N was not different based on selected 21
genes with a GFI1 peak using the program FIMO (Figure 5G)44

and almost identical to the published GFI1-binding consensus
motif.45

Next, we treated GFI1-36S and GFI1-36N leukemic cells with
temozolomide, leading to the upregulation of Ndrg1 expres-
sion in GFI1-36S but not in GFI1-36N leukemic cells (Figure 5H),
and this was confirmed at protein levels 24 hours after
temozolomide treatment (Figure 5I). These data suggest that
GFI1-36S more efficiently binds to regulatory elements in the
Ndrg1 locus than GFI1-36N and suggest that GFI1-36S occu-
pation leads to increased Ndrg1 expression. However, more
future work is required to fully understand this.

Combination of temozolomide and olaparib is
selectively cytotoxic to GFI1-36N leukemic cells
in vitro and in vivo
The alkylating agent temozolomide methylates guanine resi-
dues at O-6 positions (O6MeG). In a subset of patients with
Figure 7 (continued) after treatment with either the combination of 10 μg/mL TMZ and 0
from MLL-AF9 BM cells from mice that received transplantation after treatment with eit
triplicate) and as a control DMSO (n = 3). Colony number was determined, and treated sa
K562 cells expressing GFI1-36S and GFI1-36N, treated with 10 μg/mL TMZ and 0.2 μM O
triplicate). (E) Primary human GFI1-36S (GFI1-36S/S: 2 × BM and 2 × peripheral blood) and
cells from patients with AML were plated 14 days in methylcellulose media and treated a
calculated relative to the control. n = 4; mean ± SD. (F) AML-free survival of mice that rece
MLL-AF9 BM cells were transplanted into sublethally irradiated WT mice and on day 3 a
started. n = 6. (G) In an ongoing clinical trial (NCT04207190) of treating patients with AML
showed CRi, whereas 1 out of 12 GFI1-36S patients showed CRi. (H) Scheme elucidates G
GFI1-36S. *P < .05; **P < .01; ***P < .001. FDA, Food and Drug Administration; SPL, sp

GFI1-36N AND DNA REPAIR
glioblastoma, DNA methylation of the MGMT locus promoter
sequences leads to a downregulation of the MGMT protein
level, which sensitizes the tumor cells to treatment with temo-
zolomide.32,35,36 A reduced level of MGMT could open the
possibility of targeting GFI1-36N–expressing leukemic cells. To
probe for this, we explored MGMT-mediated clearance of
O6MeG adducts induced by temozolomide but found no dif-
ference in nonleukemic Lin– cells of Gfi1-36S and -36N knockin
mice (Figure 6A). However, GFI1-36N leukemic cells showed
significantly lower efficiency to repair O6MeG than GFI1-36S
leukemic cells (Figure 6B). The 50% inhibitory concentration
value of temozolomide was eightfold lower in leukemic GFI1-
36N cells than in leukemic GFI1-36S cells (Figure 6C). At low
concentrations, temozolomide did not affect the expansion of
nonleukemic hematopoietic cells (Figure 6D-E; supplemental
Figure 7A), but at these same concentrations, temozolomide
significantly inhibited the growth of leukemic GFI1-36N cells
and caused extensive apoptosis (Figure 6F; supplemental
Figure 7B-D). RNA-seq data showed that GFI1-36N leukemic
cells were enriched for gene set enrichment analysis terms
related to p53 pathway activation and apoptosis after 20 hours
of treatment with temozolomide compared with GFI1-36S
leukemic cells (supplemental Figure 8). We validated these
findings in another murine AML model in which GFI1-36N or
GFI1-36S cells were generated that coexpressed the AML
oncofusion protein NUP98-HOXD13. Similar to the previously
generated MLL-AF9–expressing cells, these NUP98-HOXD13
leukemic cells were more sensitive toward temozolomide when
the GFI1-36N allele was present compared with the GFI1-36S
allele (Figure 6G; supplemental Figure 9A). Further on, GFI1-
36S leukemic cells upregulated MGMT levels after temozolo-
mide treatment, which was not the case for GFI1-36N leukemic
cells (Figure 6H).

We performed a network analysis of deregulated DNA repair
proteins and queried for drugs targeting either the proteins or
repair pathways. In this analysis, we found that the use of
temozolomide to target MGMT repair pathways or olaparib to
target PARP1 would be a possible approach (see details in
supplemental Methods for data analysis and bioinformatics;
Figure 7A). Olaparib can target cells with HR defects and
potentiate the effect of temozolomide.46-49 We observed that a
combination of temozolomide and olaparib caused increased
apoptosis in GFI1-36S leukemic cells in our system and signifi-
cantly inhibited the growth of GFI1-36N leukemic cells
compared with GFI1-36S leukemic cells without affecting non-
leukemic cells in colony assays in vitro (Figure 7B,C;
supplemental Figure 9B-E). We also confirmed this effect using
K562 cells with a GFI1-36N allele or primary human AML cells
from GFI1-36N carriers treated with TMZ and olaparib
.2 μM olaparib (Olap) or DMSO as a control. n = 3, mean ± SD (C) CFU assay results
her 10 μg/mL TMZ (n = 2), 0.2 μM Olap (n = 2), or the combination of both (n = 3,
mples were calculated relative to the control. mean ± SD (D) CFU assay results from
lap. Relative colony numbers were calculated with respect to DMSO control (n = 3,
GFI1-36N (GFI1-36S/N: 1 × BM and 1 × SPL and GFI1-36N/N: 2 × peripheral blood)
s described in (B). Number of live cells was determined, and treated samples were
ived transplantatiob with TMZ and Olap treatment or without. GFI1-36S or GFI1-36N
fter transplantation, the treatment with 100 mg/kg olaparib and 50 mg/kg TMZ was
with talazoparib along with gemtuzumab ozogamicin, 3 out of 4 GFI1-36N patients
FI1-36N influence on DNA repair and genome stability in AML cells compared with
leen. Scheme created with BioRender.com.
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(Figure 7D-E; supplemental Figure 9F). In both instances, GFI1-
36N leukemic cells were highly sensitive to temozolomide, alone
or in combination with olaparib. To characterize how the sensi-
tivity to these compounds in GFI1-36N leukemic cells was
mediated by downregulated MGMT levels, we assessed AML
cell lines for MGMT expression. We performed lentiviral-
mediated stable knockdown of MGMT in THP1 cells with the
GFI1-36S genotype that showed abundant MGMT protein levels
to mimic the phenotype (supplemental Figure 10A-C). Knock-
down of MGMT in THP1 cells phenocopied the sensitivity to
temozolomide or in combination with olaparib in cell growth and
viability assays (supplemental Figure 10D). This is another indi-
cation that MGMT levels explain the sensitivity of GFI1-36N
leukemic cells to DNA-damaging drugs. Additionally, we tested
the sensitivity of GFI1-36N leukemic cells to standard chemo-
therapeutic agents. We treated another set of primary AML cells
from the Dresden cohort (GFI1-36S, n = 15 and GFI1-36N,
n = 11) with the drugs. We observed that GFI1-36N cells were
more responsive to the drugs daunorubicin, gilteritinib, and
venetoclax (supplemental Figure 11A-C), which might be related
to the function of GFI1 regulating p53 and associated apoptosis
signaling pathways.50,51 However, there was no difference in the
treatment response to the drugs cytarabine, azacytidine, sor-
afenib, and glasdegib (supplemental Figure 11D-G).

To recapitulate this in vivo, we transplanted GFI1-36S-MLL-AF9
or GFI1-36N-MLL-AF9 leukemic BM cells into sublethal irradi-
ated wild-type mice and treated the mice with a combination of
olaparib and temozolomide. The cohorts of treated mice with
either genotype survived significantly longer than those that
were untreated. However, the treated GFI1-36N-MLL-AF9 mice
survived significantly longer (mean, 7 days; P = .0049) than the
GFI1-36S-MLL-AF9–treated mice (Figure 7F), again confirming
the effect of GFI1-36N in sensitizing AML cells to combination
treatment with olaparib and temozolomide. We also searched for
clinical trials using temozolomide and/ or a PARP inhibitor. From
5 publicly recorded trials, 1 ongoing trial (NCT04207190) is
examining talazoparib given together with gemtuzumab ozoga-
micin in patients with CD33+ refractory or relapsed AML. In this
cohort of patients, a statistically significant different response rate
was observed, with only 1 of 12 patients with GFI1-36S homo-
zygous showing complete remission with incomplete recovery
(CRi) according to European Leukemia Network recommenda-
tion,52 whereas 3 out of 4 patients with GFI1-36N heterozygous
or homozygous achieved CRi during the course of treatment
(Figure 7G).

Discussion
Alterations of DNA repair pathways contribute to the develop-
ment of various solid cancer entities as well as hematologic
malignancies.53-56 GFI1 regulates DNA repair by coordinating the
methylation of MRE11 and 53BP1. Consecutively, the loss of GFI1
affects HR but not NHEJ.18 In line with this, GFI1-36N leukemic
cells are compromised with regard to HR and MGMT but not for
NHEJ-mediated repair. Molecularly, GFI1 transcriptionally regu-
lates the activity of MGMT by activating the expression of
NDRG1, a protein that stabilizes MGMT.39 Although GFI1 has
been originally described as a transcriptional repressor, it also
associates with coactivators and other transcription factors, such
as Ikaros, or with components of the nucleosome remodeling
deacetylase complex to upregulate the expression of respective
2188 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
target genes.42,43,57 GFI1-36N fails to bind to the same extent to
regulatory elements of Ndrg1 as GFI1-36S. This could explain the
lower levels of MGMT in cells expressing the GFI1-36N variant
and the failed upregulation of Ndrg1 after treatment of GFI1-
36N–expressing cells with temozolomide.

Both in human and murine cells, the presence of GFI1-36N is
associated with a mutational signature because of an altered
DNA-repair capacity. We also observed a higher susceptibility
of GFI1-36N cells to DNA damage than of GFI1-36S cells. This
might be partly due to more open chromatin as a result of
increased H3K9 acetylation and H3K4 dimethylation, as
reported before for GFI1-36N cells.9,17 This explanation is
consistent with other studies that have reported a correlation
between the number of open chromatin states and suscepti-
bility to DNA damage.58 In summary, the presence of GFI1-36N
in leukemic cells leads to higher chromatin accessibility and
reduced HR- and MGMT-mediated DNA repair.

Targeting MGMT via temozolomide with tumors coopting
mutations in the DNA damage repair gene was shown to
achieve an exceptional response to cancer therapy.59 Both
HR-directed and MGMT-mediated DNA repair pathways
have been targeted in different cancer entities using temo-
zolomide and/or olaparib.32,47,49,60-62 Temozolomide alone
or in combination with olaparib significantly reduced the
expansion of murine and human GFI1-36N leukemic cells
in vitro and in vivo without affecting nonleukemic cells.
Finally, use of another PARP inhibitor induced in an albeit
small cohort a 75% rate of CRi among patients with hetero-
zygous or homozygous GFI1-36N. PARP inhibitors and
temozolomide in combination with, for example, cytotoxic
therapy have well-manageable side effects, which could
prove to be particularly beneficial for older patients with
GFI1-36N–positive AML. Although temozolomide and ola-
parib can induce further mutations, which is also true for
other chemotherapeutic approaches, PARP inhibitors and
alkylating agents offer the possibility of selectively targeting
GFI1-36N leukemic cells in potential future trials.
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