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• First report, to our
knowledge, of clinical
findings from a
comprehensive
longitudinal natural
history study of
patients with germ line
RUNX1 variants.

•A total of 91% patients
had low platelets, 62%
families had history of
hematologic cancer;
93% and 80% patients
had allergic and GI
symptoms,
respectively.
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Deleterious germ line RUNX1 variants cause the autosomal dominant familial platelet
disorder with associated myeloid malignancy (FPDMM), characterized by thrombocyto-
penia, platelet dysfunction, and a predisposition to hematologic malignancies (HMs). We
launched a FPDMM natural history study and, from January 2019 to December 2021,
enrolled 214 participants, including 111 patients with 39 different RUNX1 variants from
45 unrelated families. Seventy of 77 patients had thrombocytopenia, 18 of 18 had
abnormal platelet aggregometry, 16 of 35 had decreased platelet dense granules, and 28
of 55 had abnormal bleeding scores. Nonmalignant bone marrows showed increased
numbers of megakaryocytes in 12 of 55 patients, dysmegakaryopoiesis in 42 of 55, and
reduced cellularity for age in 30 of 55 adult and 17 of 21 pediatric cases. Of 111 patients,
19 were diagnosed with HMs, including myelodysplastic syndrome, acute myeloid leu-
kemia, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and smoldering
myeloma. Of those 19, 18 were relapsed or refractory to upfront therapy and referred for
stem cell transplantation. In addition, 28 of 45 families had at least 1 member with HM.
Moreover, 42 of 45 patients had allergic symptoms, and 24 of 30 had gastrointestinal (GI)
symptoms. Our results highlight the importance of a multidisciplinary approach, early
n 08 June 2024
malignancy detection, and wider awareness of inherited disorders. This actively accruing, longitudinal study will
genotype and phenotype more patients with FPDMM, which may lead to a better understanding of the disease
pathogenesis and clinical course, which may then inform preventive and therapeutic interventions. This trial was
registered at www.clinicaltrials.gov as #NCT03854318.
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Introduction
The RUNX1 gene encodes a master regulator of definitive
hematopoiesis.1 RUNX1 somatic variants and translocations are
among the most frequently identified defects in hematologic
malignancies (HMs).2-7 In contrast, germ line RUNX1 variants are
thought to be relatively rare, having been described in ~200
families worldwide.8 In 1999, Song et al reported that germ line
RUNX1 variants cause an autosomal dominant syndrome char-
acterized by lifelong mild/moderate thrombocytopenia, qualita-
tive platelet dysfunction, and predisposition to HMs,9,10 called
familial platelet disorder with associated myeloid malignancy
(FPDMM; Online Mendelian Inheritance in Man [OMIM]
601399).11 Additional symptoms have also been associated with
FPDMM, including eczema and psoriasis.12-14 RUNX1 variants
may exert pathologic effects through either haploinsufficiency or
dominant-negative interference with normal RUNX1 function.15

Pathogenic germ line RUNX1 variants can be of any type (eg,
nonsense, missense, alternative splicing, insertions, deletions,
and duplications) and have been found throughout the RUNX1
gene.8,16,17 However, no correlations have been identified
between the types of RUNX1 variants and clinical phenotype.8

Predisposition to HM is a chief concern for patients, families,
and health care providers. The reported lifetime incidence of
HM in patients with FPDMM is between 35% and 45%, with a
median age of 33 years.7,18 The most common HMs reported in
patients with FPDMM are myelodysplastic syndrome (MDS) and
acute myeloid leukemia (AML), but B-cell acute lymphoblastic
leukemia (B-ALL) and T-cell ALL (T-ALL), hairy-cell leukemia,
non-Hodgkin lymphoma, and chronic myelomonocytic leuke-
mia (CMML) have also been reported.8,19-21 The development
of HMs in the setting of inherited RUNX1 variation is usually
associated with the acquisition of somatic variants in
HM-associated genes.22-24 Previous work suggests that somatic
NATURAL HISTORY STUDY OF PATIENTS WITH FPDMM
variants of the second RUNX1 allele are common in HMs from
patients with FPDMM.8,25

Comprehensive characterization of rare disorders via deep
phenotyping and genotyping can provide a better under-
standing of underlying pathophysiology, help optimize clinical
care, and inform future research directions.26,27 We opened a
prospective, longitudinal natural history study for patients with
FPDMM at the National Institutes of Health (NIH) Clinical
Center. This report describes the clinical findings of patients
enrolled in the study between early 2019 and December 2021.
Methods
Patients
The protocol was approved by the NIH Institutional Review
Board in January 2019 (#NCT03854318). Participants with germ
line RUNX1 variants are referred to as patients, and noncarrier
family members are referred to as controls. Known or suspected
RUNX1 variant carriers of any age were eligible. Probands were
initially identified through several subspecialty clinics
(supplemental Figure 1; supplemental Table 1, available on the
Blood website).

RUNX1 variants (reference sequence NM_001754.4) were
confirmed with Clinical Laboratory Improvement Amendments
[CLIA]-certified Sanger sequencing for all suspected carriers.
Family members included as controls were sequenced to confirm
the absence of the variant. Skin biopsy testing was conducted for
cases in which it was uncertain whether the variant was germ line
or somatic. All variants were classified using ClinGen criteria.28

Patients and their referring providers submitted medical
records and completed medical intake questionnaires. All
patients or their legal guardians gave written informed consent in
accordance with the Declaration of Helsinki.
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Clinical evaluation
Families were offered annual in-person visits at the NIH Clinical
Center in Bethesda, MD, and/or telehealth evaluations. History
and physical examination, peripheral blood (PB) laboratory
work, and bone marrow (BM) aspirate and biopsy were offered
annually. The bleeding phenotype was determined by medical
history and the administration of the International Society on
Thrombosis and Haemostasis Bleeding Assessment Tool
(ISTH-BAT).29 Families opting for remote enrollment had a
review of their medical history, medical records, and blood and/
or BM pathology materials obtained by mail. The PB laboratory
values reported are for the first in-person visit to the NIH.

BM and platelet evaluation
BM aspirates and biopsy cores were obtained from the poste-
rior superior iliac crest. Platelets were analyzed by electron
microscopy and lumiaggregometer. Healthy BM control data
were provided by the Department of Laboratory Medicine at
the NIH (not from the controls enrolled in our study).

See additional details in supplemental Materials.

Evaluations by other specialists
Evaluations by the gastroenterology/hepatology team, allergy/
immunology team, and dermatology team, and specialists are
described in supplemental Materials.

Results
Participants
Between January 2019 and December 2021, we enrolled 214
participants, including 126 with confirmed germ line RUNX1
variants and 85 familial controls without RUNX1 variants. From
the 126, we excluded 15 with variants categorized as benign,
likely benign, or of uncertain significance without a clinical
picture consistent with FPDMM. Three families (FPD_5, FPD_8,
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and FPD_38) with variants of uncertain significance were
included in the analysis because their RUNX1 variants coseg-
regated with mild/moderate thrombocytopenia plus either
clinical bleeding/bruising or abnormal platelet function testing
consistent with FPDMM (ie, aspirinlike defect on platelet
aggregometry or decreased δ-granules on electron micro-
scopy). This left 111 patients for analysis, together with 85
controls (supplemental Figure 2; supplemental Table 2). The
demographics of the enrolled participants are listed in
supplemental Table 3. These 111 patients represent 45 unre-
lated families (supplemental Table 4). A total of 77 patients had
baseline platelet counts from either the NIH or outside hospitals
(supplemental Table 2). Of these, 70 (91%) had counts below
the stated reference range, consistent with existing literature
that thrombocytopenia is a main feature of FPDMM. A total of 8
probands carried an initial diagnosis of immune thrombocyto-
penia (ITP) before their RUNX1 variant was found. Looking at all
probands, the elapsed time between clinical evaluation for
thrombocytopenia, bleeding/bruising, or malignancy and
detection of their RUNX1 variants averaged 8.5 years, with a
median of 6 years (supplemental Table 1).

Germ line variants
The enrolled 45 families had 39 unique RUNX1 variants
(Figure 1). A total of 18 families had nonsense or frameshift
variants, 9 had a missense variant in the RHD domain, 10 had a
partial or whole deletion of the RUNX1 locus, 7 had variants
affecting splice sites, and 1 had an intragenic duplication. Two
hot spots were notable: 6 families had a missense or nonsense
variant at p.R201 and 4 had variants in the c.351-352 splice sites
between exons 4 and 5. Although most families had multi-
generational inheritance, 3 unrelated patients had RUNX1 var-
iants that were not present in fibroblast DNA from their parents,
suggestive of either de novo acquisition or germ cell mosaicism
in a parent; these variants were 2 unrelated c.601C>T p.R201*
nonsense variants and 1 c.1208_1322del frameshift variant. No
438 480
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p.Y
41

4*
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fs

Figure 1. Germ line variants in RUNX1 cohort. The
pathologic or likely pathologic germ line variants aligned to
NM_001754.4 coding sequence. The type of variant is
coded as per the shape and color. Each shape represents
one family; similarly, the number in parentheses for dele-
tions/duplications show number of families. Amino acid
residue number is indicated by black numbers; exons are
indicated by blue and white numbers, with exon bound-
aries marked by dotted blue lines. RHD, runt homology
domain; TAD, transactivation domain.
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revertant phenotypes were found by comparing DNA from skin
fibroblasts to DNA from PB or BM.

Hematologic manifestations
A total of 47 patients without HM had PB laboratory studies at
the NIH. As expected, the patients demonstrated decreased
platelet counts compared with controls (122 × 103/μL ± 64 ×
103/μL vs 253 × 103/μL ± 56 × 103/μL, mean ± standard devi-
ation; P < .0001; Figure 2A). Of these, 11 patients had platelet
counts >150 × 103/μL, but 7 of these were still less than the
reference range for age and sex, leaving 4 of 47 (9%) with
normal platelet counts (supplemental Table 5). Average mean
platelet volume was not significantly different between patients
and controls (9.9 vs 10.0 fL), though the standard deviation was
increased for patients (1.2 vs 0.79; the variance F test P < .03;
Figure 2B). There was also no difference in immature platelet
fraction (Figure 2C), and the mean platelet volume correlated
with the immature platelet fraction for both patients and con-
trols (supplemental Figure 3A-B).

Hemoglobin levels were lower in patients than in controls (13.0 ±
1.4 g/dL vs 14.2 ± 1.6 g/dL; P < .002; Figure 2D). Hemoglobin
was significantly lower in male patients than in male controls
(13.6 vs 15.0 g/dL; P < .01), but there was no significant differ-
ence between the female groups (12.4 vs 13.0 g/dL; P = .19;
Figure 2E). The absolute reticulocyte count was comparable
between groups (Figure 2G-H). Three patients had a low/normal
absolute reticulocyte count and a low reticulocyte production
index in the setting of low hemoglobin, suggesting insufficient
red cell production (Figure 2I; supplemental Figure 3J). The
absolute eosinophil counts (AECs) were significantly increased in
patients (0.31 × 103/μL ± 0.33 × 103/μL vs 0.15 × 103/μL ± 0.09 ×
103/μL; P < .03; Figure 2F). Broken down based on sex, the
mean AEC was significantly increased for female patients
(0.25 × 103/μL ± 0.17 × 103/μL vs 0.12 × 103/μL ± 0.06 × 103/μL;
P < .03; supplemental Figure 3C) and a subset of male patients
(supplemental Table 6). Mean corpuscular volume, mean
corpuscular hemoglobin concentration, RBC distribution width,
and absolute monocyte counts were not significantly different
between groups (supplemental Figure 3D-F,I).

To quantify bleeding symptoms, the ISTH-BAT was adminis-
tered to patients, where scores ≥6 for women, ≥4 for men, and
≥3 for children were considered abnormal.29,30 Abnormal
scores were noted for 50% of adult women (11 of 22), 59% of
adult men (10 of 17), and 44% of children (7 of 16) and, thus,
51% (28 of 55) for patients overall (Figure 2J). Adult women with
missense variants tended to have normal ISTH-BAT scores (5 of
7), but 1 notable exception was a 60-year-old woman with the
RUNX1 p.G170R variant (Figure 2K). Frameshift variants tended
to be associated with abnormal ISTH-BAT scores in 2 of 2
women and 4 of 6 men and children (Figure 2K-L).

Platelets in patients with FPDMM may show a functional defect
similar to an aspirin effect, and they may have α- and/or
δ-granule abnormalities.31-33 In our study, 16 of 35 tested
patients (46%) had decreased δ-granule averages (less than 1.2
dense granules per platelet per the laboratory’s internal refer-
ence cutoff for adults34) on platelet electron microscopy
(supplemental Table 7; supplemental Figure 4). Patients with
frameshift variants and variants in exons 4-5 had lower average
NIH NATURAL HISTORY STUDY OF PATIENTS WITH FPDMM
dense granule numbers (Figure 3A). In 39 patients with
α-granule testing, 27 patients (69%) had abnormal alpha gran-
ules, 6 patients (15%) had normal alpha granules, and 6 patients
(15%) had alternately normal and abnormal alpha granules from
different timepoints. Lumiaggregometry was performed for
18 patients (23 time points; 5 patients had second time points a
year later) with pathogenic or likely pathogenic RUNX1 variants
(supplemental Table 8). All 18 patients showed decreased or
absent aggregation to at least some agonists (Figure 3B).
Notably, abnormal platelet aggregation in response to low-
dose collagen was detected in 17 of 18 patients (94%). All 18
patients demonstrated abnormal adenosine triphosphate
release in response with at least some agonists (Figure 3C).
Abnormal adenosine triphosphate release in response to
low-dose adenosine diphosphate was noted in all 18 patients
(100%). It is notable that 2 of these 18 patients with abnormal
aggregometry had normal baseline platelet counts.

BM evaluation
Evaluation of BM biopsies and aspirates from 55 patients was
performed at NIH, including 24 adults and 21 pediatric patients
without malignancy and 7 adult and 3 pediatric patients with
malignancy (Table 1). Of the nonmalignant adult marrows,
54.2% were hypocellular for age and 45.5% were normocellular.
In contrast, 81% of the nonmalignant pediatric marrows were
hypocellular. Of the nonmalignant marrows, 20.8% showed an
increased number of megakaryocytes. Of the nonmalignant
marrows, 95.8% had some degree (>10%) of megakaryocytic
atypia with features of dysmegakaryopoiesis, including small
hypolobated megakaryocytes, some with eccentric nuclei or
separated nuclear lobes (Figure 3D-E), consistent with previous
reports.35,36 Only 3 of 21 pediatric patients had decreased
numbers of megakaryocytes. Variability in megakaryocyte
quantity is previously described in FPDMM.35-37 In the patients
without overt myeloid neoplasia, aside from megakaryocytic
atypia and hypocellularity, there was normal trilineage hema-
topoiesis and no increase in blasts or overt dysplasia in myeloid
or erythroid precursors. Focally increased eosinophils were
found in 13% of marrows. Of the 10 cases with evidence of
neoplasia in the marrow, there were 3 MDS (MDS with mutated
SF3B1, MDS with excess blasts, and MDS not otherwise spec-
ified with single lineage dysplasia), 1 CMML, 3 AML, 1 B-ALL, 1
T-ALL, and 1 smoldering multiple myeloma diagnoses. Most
malignant cases had hypercellular marrows and multilineage
dysplasia, which were not seen in the nonmalignant cases. In
addition, 2 cases of MDS diagnosed by outside institutions and
later referred to the NIH did not subsequently meet criteria for
MDS,6 because the only atypical finding was dysmegakar-
yopoiesis, which is a baseline finding for patients with FPDMM.

Flow cytometry analysis was performed on marrows of 24 adult
patients without myeloid malignancy, 3 adult patients with
myeloid malignancy (2 CMML and 1 MDS), 15 pediatric patient
marrows without malignancy, and 16 healthy adult controls.
When comparing adult patient marrows (nonmalignant) with
adult control marrows, several differences were detected
(Figure 3F-J; supplemental Figure 5, black dots). Adult patient
marrows had increased monocytes (5.05% vs 3.95% [P = .0019];
Figure 3F), eosinophils (2.73% vs 1.29% [P = .013]; Figure 3G),
and lymphocytes (13.80 vs 9.03% [P = .029]; Figure 3H). In
addition, the CD4:CD8 ratio was reduced (Figure 3I). Findings
of a paucity of B-cell precursors by flow cytometry were seen in
21 DECEMBER 2023 | VOLUME 142, NUMBER 25 2149
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Figure 2. Hematologic findings and clinical bleeding severity. Comparison of laboratory values between patients and controls for platelet counts (A), mean platelet volume
(B), immature platelet fraction based on the sex (C), hemoglobin (D), absolute eosinophil count (F), and ARC (G). The hemoglobin and ARC comparisons are further separated
into sex categories (E) and (H), respectively, showing a statistically significant difference between the 2 male groups for hemoglobin. Patient ARC plotted vs hemoglobin values
(I). ISTH-BAT scores for patients with FPDMM separated according to sex (J). Scores are further divided by the patient’s type of RUNX1 variant for adult women (K), and for
adult male and children combined (L). Children are ages ≤14 years, men and women are ages ≥17 years. Dotted green lines indicate abnormal cutoff for sex/age. In panel L,
the cutoff for adult males is used, which is higher than the cutoff for children. Bars in panels A-H indicate mean and 1 standard deviation. Hgb, hemoglobin.
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Figure 3. Platelet electron microscopy, aggregometry, and BMw evaluation. Average number of dense granules per platelet in each patient tested, compared according
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a subset of patients (supplemental Figure 5D; Figure 3K-L;
supplemental Table 9): 10 adults and 1 child at baseline health
as well as 2 adults with hematologic neoplasms (CMML and
MDS). The number of CD34+ cells was not significantly different
between patients and controls, except for 1 patient with CMML
who had increased blasts (Figure 3J). The 2 MDS cases analyzed
did not have increased blasts.
NIH NATURAL HISTORY STUDY OF PATIENTS WITH FPDMM
Flow cytometric cell counts from our pediatric patient marrows
were compared with published pediatric normal values.38-41

Eosinophil percentages were elevated compared with the
2.3% to 2.8% medians and 0.6% to 4.9% range reported for
healthy marrows, for age <18 years40 (Figure 3G). Monocytes,40

mature CD20+ B cells,38,40,42 natural killer cells,43,44 and
T-lymphocyte CD4:CD8 ratios44-46 were all comparable with the
21 DECEMBER 2023 | VOLUME 142, NUMBER 25 2151



Table 1. BM histologic features of patients with FPDMM

All
(N = 55)

Adult (n = 24)
nonmalignant

Pediatric (n = 21)
nonmalignant

Adult malignant
(n = 7)

Pediatric malignant
(n = 3)

Marrow cellularity

Hypercellular 7 (12.7%) 0 (0%) 0 (0%) 4 (57.1%)
1 CMML, 1 MDS, and

2 AML

3 (100%)
1 T-ALL, 1 B-ALL, and
1 AML

Hypocellular 30 (54.5%) 13 (54.2%) 17 (81%) 0 (0%) 0 (0%)

Normocellular 18 (32.7%) 11 (45.8%) 4 (19.0%) 3 (42.9%)
1 SMM and 2 MDS

0 (0%)

Megakaryocyte quantity

Normal number 30 (54.5%) 18 (75%) 9 (42.9%) 3 (42.9%)
1 SMM and 2 MDS

0 (0%)

Increased number 12 (21.8%) 5 (20.8%) 4 (19.0%) 3 (42.9%)
1 CMML, 1 AML, and

1 MDS

0 (0%)

Decreased number 7 (12.7%) 0 3 (14.3%) 1 (14.3%)
1 AML

3 (100%)
1 T-ALL, 1 B-ALL, and
1 AML

Dysmegakaryopoiesis 42 (76.4%) 23 (95.8%) 14 (66.7%) 5 (71.4%)
3 MDS and 2 AML

NE

Multilineage dysplasia 3 (5.5%) 0 (0%) 0 (0%) 3 (42.9%)
1 CMML, 1 AML, and

1 MDS

NE

Increased blasts (5%-19%) 2 (3.6%) 0 (0%) 0 (0%) 2 (28.6%)
1 CMML and 1 MDS

0

Increased blasts (>20%) 5 (9.1%) 0 (0%) 0 (0%) 2 (28.6%)
2 AML

3 (100%)
1 T-ALL, 1-B-ALL, and
1 AML

BM diagnosis

Nonmalignant 45 (81.8%) 24 21

MDS 3 (5.5%) 3 (42.9%)

AML 3 (5.5%) 2 (28.6%) 1 (33.3%)

CMML 1 (3.6%) 1 (14.3%)

T-ALL 1 (1.8%) 1 (33.3%)

B-ALL 1 (1.8%) 1 (33.3%)

SMM 1 (1.8%) 1 (14.3%)

SMM, smoldering multiple myeloma.
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literature reference ranges (Figure 3F,I; supplemental
Figure 5B-C). Such comparisons were limited because of the
methodological and analytic differences.

All 55 patients had chromosome karyotyping performed from
BM; 1 patient (without malignancy) initially had a small marker
chromosome of unclear significance, but its frequency
decreased in 3 subsequent BM samples. The patient with
smoldering myeloma had a normal karyotype, but fluorescence
in situ hybridization (FISH) testing with probes targeting plasma
cell neoplasms found clonal populations with a 14q32/IGH
translocation (34 of 50 cells) and a t(11;14) CCND1-IGH fusion
(40 of 50 cells). Two patients with MDS had a 5q deletion on
FISH that was not captured on cytogenetics. Three patients with
myeloid malignancies had a complex karyotype, including
2152 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
t(11;19), and the patient with B-ALL had a EBF1-PDGFRB fusion
detected by sequencing but missed by FISH.

Hematologic malignancies
A total of 19 patients had a history of past or present HM
(Table 2). Adult HMs included 4 MDS, 6 AML, 2 CMML, and 1
smoldering myeloma (1 patient initially diagnosed with CMML
progressed to AML). The pediatric HMs (<18 years) included 4
AML, 1 Philadelphia chromosome–like B-ALL, and 1 T-ALL. All
patients except for the 1 with smoldering myeloma had been
referred for hematopoietic stem cell transplantation (HSCT;
supplemental Table 10). Of these, 14 had completed at least 1
HSCT. One patient (FPD_10.4) needed a second transplant
because of graft failure. One patient (FPD_68.1) had a relapse
of AML after transplant.
CUNNINGHAM et al



Table 2. Hematologic malignancies past and present in enrolled patients

Patient
Age at HM

Dx (y) Sex
RUNX1 variant DNA

(NM_001754.4 or NC_000021) Variant type

RUNX1 variant
amino acid

(NP_001745.2) Malignancy Somatic variants/cytogenetics

FPD_53.1 34 M g.(?_36193766)_(36265301_?)dup Large duplication MDS-EB

FPD_42.4 71 F g.(?_36252569)_(36265636_?)del Partial deletion MDS with mutated SF3B1 EZH2, SF3B1, NF1, SH2B2

FPD_10.4 50 M c.861C>A Nonsense p.Y287* MDS NOS-SLD 45,X,-Y,del(11)(q14q25)[5]/46,XY[15]. nuc ish
11q23(MLLx1)[14/200]

FPD_50.1 38 M g.(?_ 35734654)_( 36422677 _?)del Whole deletion MDS 48,XY,+Y,+21[1]/46,XY[8]. nuc ish
11q23(5′MLLx2,3′MLLx1)(5′MLL con 3′MLLx1)[42/
200]

FPD_52.9 25 M c.601C>T Nonsense p.R201* MDS

FPD_35.1 42 M c.1242C>G Nonsense p.Y414* AML with myelodysplasia-related gene
mutations; progressing from MDS

BCOR, PHF6, U2AF1
46,XY[7].nuc ish 5q31(EGR1x1)[14/200]

FPD_14.3 56 M c.1412_1413dup Frameshift p.L472fs AML NOS progressing from MDS

FPD_60.1 52 M c.830delC Frameshift p.P277Hfs*34 AML NOS progressing from MDS GATA2

FPD_29.5 47 F c.484A>G Missense p.R162G AML NOS 92,XXXX,add(2)(q12),idic(17)(q11.2)[6]

FPD_17.1 45 F c.352-1G>T Splice site AML NOS progressing from MDS

FPD_10.9 12 F c.861C>A Nonsense p.Y287* AML NOS

FPD_10.6 19 M c.861C>A Nonsense p.Y287* AML NOS 51,XY,+4,+8,+9,t(11;19),+13,del19,+21

FPD_68.1 8 F c.602G>A Missense p.R201Q AML NOS KRAS G13D

FPD_52.14 8 F c.601C>T Nonsense p.R201* AML NOS

FPD_42.1 63 M g.(?_36252569)_(36265636_?)del Partial deletion CMML JAK2 V617F, ASXL1, and SRSF2

FPD_12.1 58 F c.508+3del Splice site CMML progressing from MDS BCOR, PHF6, KMT2D, NRAS, KRAS, SUZ12,
CCND2, and SLX4

46,XX[20].ish del(5)(q31q31)(EGR1-)[3]

FPD_23.2 17 M c.719del Frameshift p.P240Hfs*14 B-ALL with PDGFRB rearrangement 46,XY[20]. FISH-negative result
EBF1-PDGRFB fusion by sequencing

FPD_49.1 2 M g.(?_35423737)_(37592741_?)del Whole deletion T-ALL, NOS MARS
46,XY,der(5)t(5;13)(q23;q14),del(11)(q13q23)[8]/

47,idem,+19[3]/46,XY[10]

FPD_5.2 73 F c.477T>G Missense p.N159K Smoldering myeloma 46,XX[20].nuc ish 11q13(CCND1-XT),14q32(IGH-
XT))x3

(CCND1-XT con IGH-XTx2)[40/50]

All RUNX1 variants are described using the NM_001754.5, NP_001745.2, and NC_000021.

Dx, diagnosis; F, female; M, male; MDS NOS-SLD, MDS, not otherwise specified, with single lineage dysplasia; MDS-EB, MDS with excess blasts.
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Figure 4. Familial hematologic malignancy frequency in the FPDMM cohort. (A) Histogram showing the number of cases of HM malignancy by history in each of the 47
enrolled families. Cases were counted only if they were of a person who was suspected to have FPDMM and could have had the RUNX1 variant according to Mendelian
inheritance. Cases included deceased family members and members not enrolled in the study. The families are sorted as decreasing numbers of cases. (B) Bar graph showing
number of cases with HM for each decade of life in which the HM was initially diagnosed. Only cases that had age of diagnosis data available were included. (C) Frequency of
HM organized by type of RUNX1 variant. Each data point represents the frequency for a single family, in which the denominator is the number of potential FPDMM cases in the
family (supplemental Table 4, column 2) and the numerator is the number of cases with HM (supplemental Table 4, column 3). (D) A scatterplot showing the relationship of
number of hematologic malignancies to the size of the family for the different variant types. Each data point represents 1 family, in which the x-coordinate is the number of
FPDMM cases in the family, and the y-coordinate is the number of cases with hematologic malignancy reported for that family (enrolled and historical). The dotted line shows a
theoretical 100% penetrance for HM. Larger families are predicted to have more cases than smaller families.
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Using the family history data reported by the patients, we tallied
the total number of potential FPDMM cases for each family
(supplemental Table 4, column 2). This case count included both
enrolled patients and family members (alive or dead) suspected
to have had FPDMM based on a report of thrombocytopenia,
bleeding history, or hematologic malignancy and in accordance
with Mendelian inheritance. Out of 45 families, 28 (62%) had at
least 1 case with HM, and 15 of 45 of the families (33%) had 3 or
more cases with HM (Figure 4A). For those cases that had age of
diagnosis data, the average age of HM diagnosis was 46 years,
with a median of 48.5 years and a range of 6 to 77 years
(Figure 4B). HM frequencies were calculated for each family by
taking the number of cases with HMs (supplemental Table 4,
column 3) and dividing it by the total number of cases in that
family. These family HM frequencies did not correlate with the
RUNX1 variant type (Figure 4C). Of the 6 families with p.Arg201
hot spot variants, all 4 families with more than 1 case had at least
1 HM, whereas the 2 patients who were the only cases in their
respective families (FPD_15.1 and FPD_48.1, aged 8 and 4 years,
respectively) had not developed HM. Notably, 3 of the 4 families
with a c.351+1 or c.352–1 splicesite variant had a history of HM.
Taking family sizes into account, the larger families with frame-
shift and nonsense variants roughly follow the expected linear
2154 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
relationship; the smaller families had noisier frequencies
(Figure 4D). All 17 large families with 7 or more cases had at least
1 HM (in fact, each had 2 or more).

Allergy and immunology
A group of 45 consecutive patients (19 female) with germ line
RUNX1 variants and a median age of 36 years (interquartile
range, 12-53 years) were prospectively evaluated by the allergy/
immunology team. A total of 3 male and 2 female patients were
evaluated after undergoing HSCT for AML. Out of 45, 42
patients (93%) had at least 1 doctor-diagnosed allergic disorder,
with allergic rhinitis (33 of 45; 73%) being the most common,
followed by eczema (20 of 45; 44%), allergic conjunctivitis (17 of
45; 38%), and asthma (14 of 45; 31%; Figure 5A; supplemental
table 11). Of those with allergic rhinitis, 3 were monosensitized
and 21 polysensitized to environmental allergens. The frequency
of all these conditions in our cohort was higher than the rates
self-reported in the AllofUs database.47 Immunoglobulin E (IgE)-
mediated food allergy, confirmed by clinical history and positive
skin prick and/or serum food-specific IgE testing, was identified
in 5 of 45 patients (11%). Food-pollen syndrome, manifesting as
oral pruritus after eating specific foods because of cross-reactive
allergens present in pollen and raw fruits and vegetables, was
CUNNINGHAM et al
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noted in 6 of 45 patients (13%). All patients with food-pollen
syndrome had allergic rhinitis and were sensitized to either
birch pollen or ragweed pollen. Of the 45 patients evaluated, 2
had been previously diagnosed with eosinophilic esophagitis, 4
with acute intermittent urticaria, and 3 with venom anaphylaxis.
Although the overall prevalence of allergic disorders increased in
FPDMM, few cases were severe or refractory to treatment. No
correlation was found between rhinitis or eczema and AEC
(supplemental Figure 3G-H). PB immunoglobulin and tryptase
levels are shown in supplemental Figure 6.

Gastroenterology
A total of 30 consecutive patients were evaluated by the
gastroenterology team (supplemental Table 12). Gastroesoph-
ageal reflux was the most common history reported (13 of 30;
43%), followed by constipation (12 of 30; 40%), dysphagia (8 of
30; 27%), cholecystectomy (6 of 30; 20%), diarrhea (6 of 30;
20%), nausea, and/or vomiting (2 of 30; 7%; Figure 5B). A total
of 24 of 30 (80%) had 1 or more of these symptoms. Out of 7
patients who underwent barium swallow studies, 2 had
detectable abnormalities: oral dysphagia in a mother and poor
esophageal motility in her daughter, both with p.N159K
variants.48

Four patients underwent esophagogastroduodenoscopy for
dysphagia. For those with esophageal biopsies, none met
the criteria for active eosinophilic esophagitis at NIH. One
patient with hematochezia was endoscopically normal. No
patients experienced bleeding complications at NIH after
endoscopy.

Pulmonology
Pulmonary function tests were performed at the NIH Clinical
Center Pulmonary Function Laboratory on 29 patients
(supplemental Table 13), 5 of whom were evaluated after HSCT
(highlighted in yellow). The data for the 24 patients who never
underwent transplantation are shown in Figure 5C. Of these,
9 patients demonstrated an obstructive pattern on spirometry,
2 had a restrictive ventilatory defect based on lung volume
NIH NATURAL HISTORY STUDY OF PATIENTS WITH FPDMM
measurement, and 13 had a diffusion capacity (adjusted for
hemoglobin levels) <80% predicted. Nine of the patients had a
diagnosis of sleep apnea, prompting continuous positive airway
pressure (CPAP) usage.

Dermatology
Among 30 patients evaluated by the dermatology team, most
reported a history of skin problems (29 of 30; 97%). A history of
eczema was reported in 11 of 30 (37%). Out of 30, 7 (23%) had
active eczema at the time of evaluation, 4 of whom were boys
under the age of 12 years. The most frequently reported skin
finding was bruising (22 of 30; 73%). Other findings on exami-
nation included nevi, lentigines, keratosis pilaris, alopecia areata,
molluscum contagiosum, verruca vulgaris, seborrheic keratosis,
seborrheic dermatitis, psoriasis, and epidermal inclusion cysts.

Discussion
Here, we report the largest, prospective, single-center cohort of
patients with germ line RUNX1 variants. The 39 RUNX1 variants
span the coding sequence, covering all reported variant types
associated with FPDMM (supplemental Figure 7). Common
findings include splicesite variants between exons 4 and 5, var-
iants involving the p.R201 hot spot, and large genomic rear-
rangements (including deletions and duplications). These
findings highlight the need for analysis of all exons and introns as
well as copy number to ensure accurate detection of RUNX1
variants, as has been called for in diagnostic guidelines and
previous literature.8,25,28 Our data do not yet show a correlation
of cancer risk with particular RUNX1 variants, but longer follow-
up, a growing cohort size, and analysis of data at the level of
gene expression may reveal such correlations.

Our data show that a high degree of suspicion may be necessary
to diagnose cases of FPDMM. Although lifelong mild or mod-
erate thrombocytopenia is a core feature of the FPDMM
phenotype, 9% of the patients in our cohort had normal platelet
counts. Of the patients evaluated with an ISTH-BAT, about only
half had an abnormal score. As a result, neither normal platelet
counts nor an absence of clinically appreciable bleeding can rule
21 DECEMBER 2023 | VOLUME 142, NUMBER 25 2155



D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/142/25/2146/2177507/blood_bld-2023-019746-m

ain.pdf by guest on 08 June 2024
out FPDMM. It took an average of 7 years for each proband to
receive a correct diagnosis. Conversely, for patients who did
have a history of bleeding and bruising, even to the point of
requiring platelet transfusions or antifibrinolytics, diagnosis could
elude them for decades. A total of 11 of our patients (8 pro-
bands) initially received a diagnosis of ITP. All 18 patients tested
with platelet aggregometry had abnormal response patterns,
including 2 patients with baseline platelet counts normal for their
age.

BM evaluation showed the presence of dysmegakaryopoiesis in
76% of patients. Our results were consistent with previous
reports noting >5% atypical megakaryocytes in most marrow
evaluations35 and fit mechanistic studies demonstrating low
ploidy levels in megakaryocytes in patients with FPDMM.49

These findings suggest that atypical megakaryocytes or dysme-
gakaryopoiesis are common features of FPDMM. However,
megakaryocytic atypia is nonspecific and can be seen with germ
line variants in other genes associated with inherited platelet
disorders and hematologic malignancies, such as ETV6 and
ANKRD26.4 Caution is also recommended not to overdiagnose
MDS in patients with germ line RUNX1 variants based solely on
isolated thrombocytopenia and megakaryocytic atypia. The
numbers of megakaryocytes may be variable, and increased
numbers should not be confused with ITP. Half of the adult and
85% of the pediatric patients without HM in our study had
hypocellular marrows for age, supporting the possibility that a
hypocellular stage may precede the hypercellular stage in
neoplastic transformation in FPDMM.4,36

Symptoms of asthma and eczema have been previously
described for FPDMM. As expected, there is a subset of the NIH
FPDMM population with a strong atopic phenotype. The AECs in
the total patient population were significantly higher than in the
controls. We found that elevated IgE levels and PB eosinophil
counts did not generally segregate with RUNX1 variant type, but
there was a subset of patients with splicesite and frameshift
variants that did have elevated IgE levels. Additionally, we have
expanded the potential FPDMM clinical spectrum to include
diseases of GI tract motility (particularly gastroesophageal reflux
disease [GERD], constipation, and dysphagia).

This study is not without limitations. There is likely an ascer-
tainment bias in this cohort. Almost all probands were referred
to the study after their germ line RUNX1 variants had been
detected and/or FPDMM had already been diagnosed, risking
overrepresentation of patients with a more severe clinical
phenotype or those with better access to medical care. To
mitigate this, cascade testing of family members allows us to
find and evaluate patients with milder presentations. Though
the cost of evaluation and travel is covered by the study, clinical
evaluation at the NIH Clinical Center requires participants to
take significant time and is not accessible to all. Efforts are
underway to recruit more patients through large population
cohorts and more underrepresented populations to better
assess the true landscape of FPDMM. Remote patient evalua-
tion will also improve study recruitment and accessibility.

This study allows for deep genotyping, phenotyping, and
biobanking at repeat time points over potentially decades
of follow-up, including documenting novel findings not
previously associated with FPDMM. Given the high lifetime
risk of HM in this population, a longitudinal protocol
2156 21 DECEMBER 2023 | VOLUME 142, NUMBER 25
may enable us to study transitions from patients’ baseline
BMs to clonal hematopoiesis to overt neoplasm to create a
validated, individualized risk score for malignant trans-
formation. A risk score could inform personalized and holistic
care, including optimizing the timing of preventive and/or
therapeutic interventions such as targeted small molecules or
early HSCT.
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