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Oncogene-induced MALT1 protease activity drives
posttranscriptional gene expression in malignant
lymphomas
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•MALT1 paracaspase
acts as a bifurcation
point for inducing
transcriptional and
posttranscriptional
gene expression in
malignant lymphomas.

•MALT1 cleaves mRNA-
destabilizing factors to
enhance NF-κB–
dependent and
–independent gene
induction in ABC DLBCL
and MALT lymphoma.
-2023
Constitutive mucosa-associated lymphoid tissue lymphoma translocation protein 1
(MALT1) activity drives survival of malignant lymphomas addicted to chronic B-cell
receptor signaling, oncogenic CARD11, or the API2-MALT1 (also BIRC3::MALT1) fusion
oncoprotein. Although MALT1 scaffolding induces NF-κB–dependent survival signaling,
MALT1 protease function is thought to augment NF-κB activation by cleaving signaling
mediators and transcriptional regulators in B-cell lymphomas. However, the pathological
role of MALT1 protease function in lymphomagenesis is not well understood. Here, we
show that TRAF6 controls MALT1-dependent activation of NF-κB transcriptional
responses but is dispensable for MALT1 protease activation driven by oncogenic
CARD11. To uncouple enzymatic and nonenzymatic functions of MALT1, we analyzed
TRAF6-dependent and -independent as well as MALT1 protease–dependent gene
expression profiles downstream of oncogenic CARD11 and API2-MALT1. The data sug-
gest that by cleaving and inactivating the RNA binding proteins Regnase-1 and Roquin-
1/2, MALT1 protease induces posttranscriptional upregulation of many genes including
NFKBIZ/IκBζ, NFKBID/IκBNS, and ZC3H12A/Regnase-1 in activated B-cell–like diffuse
-021299-m
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large B-cell lymphoma (ABC DLBCL). We demonstrate that oncogene-driven MALT1 activity in ABC DLBCL cells
regulates NFKBIZ and NFKBID induction on an mRNA level via releasing a brake imposed by Regnase-1 and Roquin-
1/2. Furthermore, MALT1 protease drives posttranscriptional gene induction in the context of the API2-MALT1 fusion
created by the recurrent t(11;18)(q21;q21) translocation in MALT lymphoma. Thus, MALT1 paracaspase acts as a
bifurcation point for enhancing transcriptional and posttranscriptional gene expression in malignant lymphomas.
Moreover, the identification of MALT1 protease–selective target genes provides specific biomarkers for the clinical
evaluation of MALT1 inhibitors.
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Introduction
Mucosa-associated lymphoid tissue lymphoma translocation
protein 1 (MALT1), also known as paracaspase 1, is a human
protease that emerged as a promising drug target, especially for
treatment of hematologic malignancies.1,2 MALT1 is an integral
subunit of the CARD11/CARMA1-BCL10-MALT1 (CBM) signal-
osome that initiates immune effector responses upon B-cell
receptor (BCR) and T-cell receptor ligation on lymphocytes.3

MALT1 has a dual function in the CBM complex: by recruiting
the E3 ligase TRAF6 to the CBM complex, MALT1 acts as a
noncatalytic scaffold to induce Jun N-terminal kinase and
canonical nuclear factor κB (NF-κB) signaling.4 Furthermore, the
MALT1 protease is activated at the CBM complex and cleaves
regulators of cell signaling (eg, A20, CYLD, and HOIL-1/RBCK1),
transcription (RelB), and messenger RNA (mRNA) metabolism
(eg, Regnase-1 and Roquin1/2).5 Although MALT1 protease
activity is dispensable for initial antigenic stimulation, substrate
cleavage modulates immune-cell functions.6-8

In the heterogeneous group of non-Hodgkin lymphomas (NHL),
many B-cell lymphomas are characterized by oncogenic lesions
affecting key components of the BCR pathway, which leads to
the concomitant induction of NF-κB signaling and MALT1
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protease activation.9 Diffuse large B-cell lymphoma (DLBCL)
represents an aggressive lymphoid malignancy with the highest
incident rate of all NHLs.10 Gene expression profiling defined 2
major subtypes: the germinal center B-cell–like (GCB) and the
activated B-cell–like (ABC) DLBCL.11 ABC DLBCLs have an
inferior prognosis and are characterized by chronic BCR
signaling and recurrent oncogenic mutations in BCR mediators
CD79A, CD79B, CARD11, and BCL10.12-15 Besides canonical
NF-κB signaling, constitutive MALT1 protease activation con-
tributes to growth and survival of BCR-addicted ABC
DLBCLs.16-18 MALT1 acts downstream of Bruton tyrosine kinase
(BTK) and therefore MALT1 inhibition represents an intriguing
opportunity for patients with NHL exhibiting primary or sec-
ondary resistance to BTK inhibitors and in combinatorial treat-
ment protocols.15,19-22 Several MALT1 inhibitors comprising
different chemical entities have been developed23 and show
effective and selective killing of MALT1-dependent ABC DLBCL
cells in vitro and in xenografts.15,24-27 Clinical studies evaluating
the safety and efficacy of MALT1 inhibition either in mono-
therapy or in combination with BTK inhibition have been started
in patients with relapsed/refractory NHL (NCT03900598,
NCT04876092, and NCT04657224). Beyond ABC DLBCL,
MALT1 protease activation contributes to oncogenic trans-
formation of MALT lymphoma. In MALT lymphoma the chro-
mosomal translocation t(11;18)(q21;q21) leads to the
expression of the API2-MALT1 fusion protein, which activates
canonical and noncanonical NF-κB signaling.28,29 Aberrant
MALT1 protease activation by the API2-MALT1 fusion drives
noncanonical NF-κB signaling and represents a potential
druggable vulnerability in MALT lymphomas.28

Despite the preclinical and clinical progress, it is not clear how
MALT1 protease function contributes to growth and survival of
lymphoma cells. MALT1 protease inhibition causes repression
of NF-κB signature genes in ABC DLBCL cells,16,26 which has
been attributed to cleavage of negative regulators of canonical
NF-κB such as A20, CYLD, and RelB.17,30,31 However, MALT1
also cleaves HOIL-1, an essential component of linear ubiquitin
assembly complex (LUBAC), which acts as a positive survival
factor in ABC DLBCL cells.32,33 In T cells, MALT1-catalyzed
cleavage and inactivation of Regnase-1 and Roquin-1/2
induces gene expression by releasing a brake of these RNA
binding proteins (RBPs) on posttranscriptional induction of
many transcripts.34,35 Here, we identify Regnase-1 and Roquin-
1/2 as MALT1 substrates in lymphoma cells expressing onco-
genic CARD11, CD79A/B, or API2-MALT1 fusion protein.
Cleavage of RBPs lifts the posttranscriptional suppression and
leads to high expression of distinct genes in ABC DLBCL. Thus,
we provide evidence that MALT1 orchestrates oncogene–
induced gene expression in malignant lymphomas through its
noncatalytic and catalytic functions.

Methods
Cell lines, generation of knockouts, and inhibitor
treatment
Cell lines were cultured and knockouts (KOs) were generated as
previously described.4,36-38 For inhibitor treatment, cells were
treated with the respective ibrutinib (20 nM), MLT-748 (2 mM), or
S-mepazine (20 mM) for 18 hours before analysis. Protocols are
available in supplemental Material and Methods (available on
the Blood website).
1986 7 DECEMBER 2023 | VOLUME 142, NUMBER 23
Lentiviral transduction
Stable expression of wild-type (WT) or mutant CARD11,
MALT1B, and API2-MALT1B as well as the NF-κB enhanced
green fluorescent protein (EGFP) reporter was performed as
previously described using lentiviral transduction, and NF-κB
reporter activation was assessed by flow cytometry.36,39 Pro-
tocols are available in supplemental Material and Methods.

Preparation of cell lysates and western blotting
Cell lysates from 2 × 106 to 4 × 106 cells were prepared in
coimmunoprecipitation or high-salt buffer and western blotting
was performed as previously described.39 Protocols and anti-
bodies are available in supplemental Material and Methods.

Transfection and posttranscriptional reporter
assays
DLBCL cells were transfected with luciferase reporter genes
containing NF-κB inhibitor zeta (NFKBIZ) 3′ untranslated region
(UTR), NF-κB inhibitor delta (NFKBID) 3′ UTR, or no UTR (con-
trol) using electroporation. Cells were lysed 48 hours after
transfection. Luciferase activity was assessed using a dual
luciferase assay (Promega) in Centro LB960 (Berthold). Protocols
are available in supplemental Material and Methods.

RNA isolation, complementary DNA synthesis, and
quantitative real-time PCR
RNA was isolated, reverse transcribed, and quantitative real-
time polymerase chain reaction (qRT-PCR) was performed on
an LC480 (Roche) as previously described.40 Protocols and
primers are available in supplemental Material and Methods.

RNA-seq and differential gene expression analyses
RNA sequencing (RNA-seq) was performed in paired-end mode
(2 × 150 bases) in the Novaseq6000 sequencer (Illumina) with a
depth of ≥30 × 106 reads per sample. The raw reads and
MultiQC sequencing quality report were collected from the
Helmholtz Center Munich Genomics Core Facility.41 RNA-seq
analysis was performed as described in supplemental Material
and Methods. Differential gene expression analysis in primary
DLBCL samples was performed as described.42 Protocols are
available in supplemental Material and Methods.

Results
TRAF6 bridges oncogenic CARD11 to canonical
NF-κB activation in B cells
Conjugation of Met1-linked or Lys63-linked ubiquitin chains by
LUBAC or TRAF6, respectively, has been suggested to contribute
to canonical IKK/NF-κB activation downstream of the CBM com-
plex in T and B cells.4,32,33,43,44 We aimed to determine which E3
ligase activity is primarily responsible for controlling NF-κB acti-
vation and signaling downstream of oncogenic CARD11. To this
end, we knocked out either the LUBAC core subunit HOIL-1 or the
E3 ligase TRAF6 in the GCB DLBCL cell line BJAB, which is
characterized by low constitutive NF-κB activation and NF-κB–
independent growth.45 As expected, HOIL-1 ablation caused
destabilization of the entire LUBAC, as evident from a concomitant
decrease in the expression of HOIP and SHARPIN (Figure 1A).
However, HOIL-1 deficiency in 3 independent BJAB clones did not
significantly impair inducible IκBα phosphorylation/degradation,
p65 phosphorylation, and transcriptional activation of a NF-κB
WIMBERGER et al
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Figure 1. Requirements of TRAF6 and HOIL-1 for CBM and oncogenic CARD11 signaling in BJAB cells. (A,C) Western blot analysis of 3 HOIL-1 KO (A) and TRAF6 KO (C)
clones after stimulation with P/I for the indicated time points to determine MALT1 substrate cleavage and NF-κB signaling. (B,D) Representative flow cytometric analyses (top
panel) and quantification of changes in mean fluorescence intensity (ΔMFI, bottom panel) of the 6 × NF-κB–EGFP reporter in 3 HOIL-1 KO (B) and TRAF6 KO (D) BJAB cells
after P/I stimulation (5 hours). n = 3 replicates, all error bars depict the mean ± standard deviation (SD), ordinary 1-way analysis of variance (ANOVA) with Tukey multiple
comparisons, ***P < .001. (E-F) Western blot analysis of overexpression of FS-CARD11 WT, L232LI, and L251P in HOIL-1 KO (E) and TRAF6 KO (F) BJAB cells to determine NF-
κB signaling and MALT1 substrate cleavage. (G) Representative flow cytometric analyses (top panel) and quantification of ΔMFI (bottom panel) of the 6 × NF-κB–EGFP
reporter in parental (left), HOIL-1 KO (middle), and TRAF6 KO (right) BJAB cells expressing CARD11 WT and mutants. N = 3 replicates, all error bars depict the mean ± SD,
ordinary 1-way ANOVA with Tukey multiple comparisons; ns, not significant; **P < .01 and ****P < .0001.
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reporter gene in response to phorbol 12-myristate 13-acetate/
ionomycin (P/I), which mimics BCR stimulation in driving CBM
complex–dependent B-cell activation (Figure 1A-B). In contrast,
TRAF6 ablation in BJAB cells abolished CBM-dependent NF-κB
signaling and transcriptional activation (Figure 1C-D). Neither
TRAF6 nor HOIL-1 deficiency affected inducible MALT1 protease
activation, as revealed by equivalent substrate cleavage after P/I
stimulation in parental and KO BJAB cells (Figure 1A,C).
1299-m
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To determine which ligase is channeling oncogenic CARD11 to
NF-κB signaling, we transduced CARD11 WT, L232LI, or L251P
into parental, TRAF6 or HOIL-1 KO BJAB cells. Expression of
both oncogenic variants induced constitutive NF-κB signaling
and MALT1 protease activation in BJAB cells (Figure 1E-F).
Although, NF-κB signaling and transcriptional activation of the
NF-κB reporter induced by oncogenic CARD11 was intact in
HOIL-1 KO BJAB cells, activation of the NF-κB signaling
pathway was abolished in the absence of TRAF6 (Figure 1E-G).
Neither TRAF6 nor HOIL-1 deficiency perturbed the ability of
oncogenic CARD11 to trigger MALT1 catalyzed substrate
cleavage (Figure 1E-F). Thus, in B cells, TRAF6 but not HOIL-1
and LUBAC is bridging oncogenic CARD11 to the canonical
IKK/NF-κB pathway, whereas both ligases are dispensable for
MALT1 protease activity.
Oncogenic CARD11 signaling controls TRAF6-
dependent and -independent gene induction
Because TRAF6 deficiency impaired NF-κB activation but not
MALT1 protease activity, the analyses of TRAF6 KO BJAB cells
1988 7 DECEMBER 2023 | VOLUME 142, NUMBER 23
allowed us to uncouple the pathological role of MALT1 prote-
ase and scaffolding function downstream of oncogenic
CARD11. We used gene expression profiling by RNA-seq to
compare the gene induction of oncogenic CARD11 in the
presence or absence of TRAF6 in BJAB expressing CARD11 WT
or L232LI. Individual samples from each group cluster in the
principal component analysis (PCA) and gene set enrichment
analysis revealed a significant induction of 3 NF-κB–dependent
ABC DLBCL signature genes upon expression of CARD11
L232LI (supplemental Figure 1A-B). ABC DLBCL–derived gene
signatures were still induced in TRAF6 KO BJAB cells
(supplemental Figure 1C) but the gene set enrichment analysis
score was significantly reduced compared with parental BJAB
cells (Figure 2A). We compared gene induction by CARD11
L232LI in BJAB cells in the absence or presence of TRAF6,
which allowed us to determine effects of TRAF6 in an unbiased
manner (Figure 2B-C; supplemental Figure 1D-E). CARD11
L232LI induced upregulation of a variety of NF-κB target genes
(eg, CD80, TNFAIP3, IL10, NFKBIZ, and NFKBIA) and induction
of most genes was reduced in TRAF6-deficient cells, demon-
strating the role of TRAF6 for gene induction downstream of
oncogenic CARD11 (Figure 2B-C; supplemental Figure 1D-E).
However, CARD11 L232LI significantly induced a subset of
genes even in the absence of TRAF6 but, in general, at a lower
level. To determine a potential contribution of MALT1 protease
activity on CARD11 oncogenic gene expression in the absence
of TRAF6, we treated BJAB cells with the potent and selective
MALT1 inhibitor, MLT-748, which efficiently inhibited CARD11
L232LI–induced MALT1 substrate cleavage (supplemental
Figure 2A).46 Despite overall weak gene induction, all top
genes induced by CARD11 L232LI in TRAF6 KO cells were
WIMBERGER et al
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decreased upon MALT1 inhibition (supplemental Figure 2B).
Although qRT-PCR showed that residual induction of CD80 and
TNFAIP3 in TRAF6 KO cells was not significantly decreased by
MALT1 inhibition, many TRAF6-controlled genes (eg, IL10,
NFKBIZ, and BIRC3) were further downregulated by MALT1
inhibition, indicating a corequirement for optimal induction
(Figure 2D; supplemental Figure 2C). A number of CARD11
L232LI–induced genes like NFKBID, ZC3H12A, and ZC3H12D
MALT1 PROTEASE DRIVES mRNA STABILITY IN LYMPHOMAS
were not relying on TRAF6 but were strongly dependent on
MALT1 protease activity. Expression of NFKBID, ZC3H12A, and
NFKBIZ is directly controlled on the posttranscriptional level by
the MALT1 substrates Roquin-1/2 and Regnase-1.34,35 Regnase-
1 and Roquin-1/2 are also cleaved by MALT1 independent of
TRAF6 in CARD11 L232LI–expressing BJAB cells, which
induced MALT1 protease–dependent expression of IκBNS p70
and p35 fragments, which are encoded by NFKBID (Figure 2E;
7 DECEMBER 2023 | VOLUME 142, NUMBER 23 1989
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supplemental Figure 2A).47 The data suggest that MALT1 pro-
tease controls TRAF6/NF-κB–dependent and –independent
gene expression.

Oncogenic CARD11 drives gene induction via
MALT1 scaffolding and protease functions
To decipher the exact contributions of MALT1 scaffold and
protease functions for gene regulation, we deleted MALT1 in
CARD11 L232LI–expressing parental or TRAF6 KO BJAB cells
(Figure 3A). The MALT1 KO BJAB cells were reconstituted with
MALT1B WT, paracaspase mutant (PM) C453A, TRAF6-binding
mutant (TBM) E795A, or the combined PM/TBM (Figure 3B).
Independent of TRAF6, CARD11 L232LI triggered MALT1-
catalyzed substrate cleavage in BJAB cells expressing MALT1
WT or TBM but not catalytically inactive MALT1 PM or PM/TBM
(Figure 3C). EGFP–NF-κB reporter gene induction was severely
impaired by MALT1B TBM, because of its inability to recruit
TRAF6 to the CBM complex (Figure 3D; supplemental
Figure 3A).48 However, NF-κB activation was also significantly
decreased by MALT1 PM and only the combined mutations in
MALT1 PM/TBM nearly abolished NF-κB activation by onco-
genic CARD11. Accordingly, in TRAF6/MALT1 double-KO
BJAB cells, CARD11 L232LI induced substrate cleavage and
weak NF-κB activation in MALT1 WT but not PM cells, con-
firming that MALT1 protease activity can augment NF-κB gene
induction even in the absence of TRAF6 (Figure 3C-D).

We performed transcriptome analyses in CARD11 L232LI
MALT1 KO BJAB cells either transduced with mock vector
(empty vector) or reconstituted with MALT1 WT and mutants. In
PCA, samples cluster based on the genetic manipulations
(supplemental Figure 3B). Gene set variation analyses revealed
1990 7 DECEMBER 2023 | VOLUME 142, NUMBER 23
a strong enrichment of the ABC DLBCL–derived NF-κB gene
signatures in MALT1 WT reconstituted cells (Figure 3E;
supplemental Figure 3C). Oncogenic NF-κB gene signatures
induction was partially diminished by the individual mutations in
MALT1 PM and TBM and nearly abrogated by the combined
destruction of TRAF6-binding and protease activity in MALT1
PM/TBM. Optimal expression of most CARD11 L232LI–induced
genes relied on MALT1 protease activity and TRAF6 binding
(Figure 3F-G; supplemental Figure 3D). However, clustering
and crosscomparisons revealed that induction of specific sub-
sets of genes were more strongly affected by either the indi-
vidual PM or TBM variants of MALT1. Again, genes that strongly
relied on MALT1 protease encompassed NFKBID, ZC3H12A,
NFKBIZ, IL10, ZC3H12D, and BCL2A1, which have been iden-
tified either as genes that are largely independent of TRAF6
and/or downregulated by MALT1 inhibition in the absence of
TRAF6 (compare Figure 2C; supplemental Figure 2B). qRT-PCR
validated the strong dependency of NFKBIZ, NFKBID, and
ZC3H12A induction on MALT1 catalytic activity downstream of
oncogenic CARD11 L232LI (Figure 3H). In line, only MALT1 WT
but not PM was able to completely (NFKBID and ZC3H12A) or
partially (NFKBIZ) rescue induction of these genes in MALT1/
TRAF6 double-KO BJAB cells. NFKBID/IκBNS protein was
induced in a MALT1 protease–dependent and TRAF6-
independent manner (Figure 2C).

To confirm MALT1 protease–driven regulation of selected
target genes in an independent setting, we used MALT1 KO
Jurkat T cells reconstituted with MALT1B WT and mutants.4

Acute NF-κB reporter gene activation by P/I stimulation was
strongly impaired by the MALT1B TBM, which retained the
ability to catalyze cleavage of RBPs Regnase-1 and Roquin-1/2
WIMBERGER et al
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cells expressing CARD11 L232LI. Effects of loss of MALT1 and/or TRAF6 on CYLD and Regnase-1 cleavage are shown. (B) Schematic depiction of MALT1B protein and
domains. The MALT1 C453A PM and E795A TBM are shown. (C) Western blot analysis of MALT1 KO (left) and MALT1/TRAF6 dKO (right) BJAB expressing CARD11 L232LI
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analysis (GSVA) quantifying the effects of MALT1 WT and mutants on a published ABC DLBCL–derived NF-κB gene signature induced by CARD11 L232LI. (F) Heat map of
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(supplemental Figure 4A-B). In contrast, protease-defective
MALT1 PM, which was unable to promote substrate cleavage,
still retained NF-κB responsiveness but slightly below that of
MALT1 WT. Although P/I induction of NFKBIZ and ZC3H12A
mRNAs as well as NFKBIZ/IκBζ protein was codependent on
MALT1 scaffolding and protease function, expression of
NFKBID transcripts and NFKBID/IκBNS protein was strongly
relied on MALT1 protease function (supplemental Figure 4B-C).
Furthermore, MALT1 protease activation but not TRAF6 bind-
ing was required to induce NFKBID/IκBNS downstream of
CARD11 L232LI in Jurkat cells (supplemental Figure 4D-E).

Upregulation of MALT1 protease target genes in
ABC DLBCL
We assessed mRNA expression levels of TRAF6- and/or MALT1
protease–controlled genes in a gene expression data set
comprising tumors from 414 well-characterized samples from
patients with primary DLBCL and a panel of 5 ABC- and 3
GCB–derived DLBCL cells lines (Figure 4A-B; supplemental
Figure 5A-B). As previously observed, NFKBIZ expression,
which is controlled by both MALT1-TRAF6 interaction and
MALT1 protease activation, is higher in primary ABC
compared with GCB or unclassified DLBCL.42 Furthermore,
induction of other genes that we had identified as highly
MALT1-protease dependent (refer to Figure 3F-G), such as
NFKBID, ZC3H12A, BCL2A1, IL10, CCL22, FCRL5, TM2D3,
1992 7 DECEMBER 2023 | VOLUME 142, NUMBER 23
FCRL2, and TNFRSF13B, are enriched in ABC DLBCL samples,
suggesting that the MALT1 protease directly engages in the
regulation of these transcripts independent of TRAF6 and NF-
κB (Figure 4A-B; supplemental Figure 5A-B). Accordingly, ABC
DLBCL cell lines show higher constitutive mRNA expression of
the MALT1 protease–dependent genes when compared with
GCB DLBCL cell lines. Among the GCB DLBCL cell lines, only
SUD-HL6, which has retained a functional BCR, displayed high
expression of some of these genes.49 Notably, despite evi-
dence that MALT1 protease enhances expression of ZC3H12D
and TLR3, we could not detect enriched expression of these
gene in ABC DLBCL.

In agreement with transcript expression, IκBζ and IκBNS (p70
and p35), the protein products of NFKBIZ and NFKBID genes,
respectively, are more highly expressed in ABC DLBCL
compared with GCB DLBCL cell lines (Figure 4C; supplemental
Figure 5C). In contrast, Regnase-1, the product of the ZC3H12A
gene, was barely detectable in ABC DLBCL cells but visible in
GCB DLBCL cells. However, despite the low expression of
Regnase-1 full length, a C-terminal cleavage fragment of
Regnase-1 appeared in ABC DLBCL cells, indicating that
MALT1-catalyzed cleavage inactivates this RBP on a post-
translational level, selectively in ABC DLBCL. Similarly, MALT1
substrates Roquin-1 and Roquin-2 are constitutively cleaved in
ABC DLBCL cells (Figure 4C; supplemental Figure 5C).
WIMBERGER et al
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Regnase-1 and Roquin-1/2 directly bind to, and antagonize
NFKBIZ, NFKBID, and ZC3H12A transcripts,34,50 suggesting
that expression of these genes is directly linked to MALT1-
dependent cleavage of these RBPs.

To determine whether cleavage of RBPs and expression of their
putative targets relies on chronic BCR signaling and MALT1
protease activity, we treated ABC DLBCL cells with the BTK
inhibitor ibrutinib acting upstream of the CBM complex or the
MALT1 inhibitors MLT-748 and S-mepazine (Figure 4D-E;
supplemental Figure 5D). In cell lines carrying mutations in the
BCR adaptors CD79A/B (HBL1, TMD8, and OCI-Ly10) or TAK1
(U2932) BTK, or MALT1 inhibition led to a substantial reduction
of Regnase-1 and Roquin-1/2 cleavage bands and, concomi-
tantly, IκBζ and IκBNS expression was decreased. OCI-Ly-3
cells, which carry the oncogenic CARD11 mutation, were
resistant to BTK inhibition but RBP cleavage and IκBζ and IκBNS
expression were still sensitive to MALT1 inhibitor treatment.
Interestingly, despite a severe reduction in the RBP cleavage
products upon inhibitor treatment, there was hardly an enrich-
ment in full length proteins, suggesting a counter selection
against high expression of these active RBPs in ABC DLBCL
cells. We performed qRT-PCR to confirm that chronic BCR
signaling via BTK and MALT1 protease activity regulates the
expression of NFKBIZ, NFKBID, and ZC3H12A on transcript
levels (Figure 4F). BTK inhibitor ibrutinib significantly decreased
NFKBIZ, ZC3H12A, and NFKBID in all ABC DLBCL cells lines
except OCI-Ly3. In all ABC DLBCL cell lines and independent of
the CARD11 mutational status, MALT1 inhibitor MLT-748
caused a decrease in the level of all 3 genes. Especially high
expression of ZC3H12A and NFKBID, which are not controlled
by TRAF6-dependent NF-κB activation, strictly relies on MALT1
protease activity. Thus, our data suggest that by cleaving
Regnase-1 and Roquin-1/2, MALT1 protease restricts the
expression of the RBPs at the posttranslational level in ABC
DLBCL cells. In turn, inactivation of the RBPs in ABC DLBCL
causes an increase in NFKBIZ, NFKBID, and ZC3H12A mRNA
and protein expression, which is impeded by inhibition of
chronic BCR signaling by BTK or MALT1 inhibition.

Control of posttranscriptional NFKBIZ and
NFKBID expression by MALT1 in DLBCL
RBPs Regnase-1 and Roquin-1/2 decrease NFKBIZ and NFKBID
mRNA stability by binding to secondary stem-loop (SL) struc-
tures in the 3′ UTR of both genes.51,52 To determine the effects
of the RBP-controlled binding to UTR sequences on oncogene–
induced gene regulation, we used CARD11 KO BJAB cells,
which were transduced with CARD11 WT or mutants L251P or
L232LI. As shown previously in parental BJAB cells, and also in
CARD11 KO cells, expression of oncogenic CARD11 triggered
robust cleavage of MALT1 substrate and induction of
ZC3H12A, NFKBIZ, and NFKBID relied on MALT1 protease but
not BTK kinase activity (supplemental Figure 6A-D). To uncou-
ple posttranscriptional and transcriptional gene induction by
oncogenic CARD11, we generated luciferase reporter
Figure 4 (continued) blot analysis of MALT1 substrates Regnase-1 and Roquin-1/2 and th
are marked with an asterisk. (D-E) Western blot analysis of (D) ibrutinib- or (E) MLT-748–t
Regnase-1 and Roquin-1/2 and their targets IκBζ and IκBNS. “L” and “S” depict long an
Transcript analysis of ZC3H12A, NFKBIZ, and NFKBID after inhibition with ibrutinib or M
ANOVA with Dunnett multiple comparisons; *P < .05; **P < .01; ***P < .001; and ****P
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constructs containing the 3′ UTRs of NFKBIZ (1-150) or NFKBID
(1-263), which confer control by Regnase-1 and Roquin-1/2
(Figure 5A-B). Although the reporter lacking the UTRs was not
differentially expressed, both oncogenic CARD11 mutants
induced expression of the NFKBIZ- and NFKBID-containing 3′
UTR reporter constructs (Figure 5A-B; supplemental Figure 6E).
Induction of the reporter via the 3′ UTRs of both genes was
impaired by MALT1 but not BTK inhibitor treatment, demon-
strating the strict dependency on MALT1 protease activation for
posttranscriptional gene regulation downstream of oncogenic
CARD11 (Figure 5C-D).

Next, we tested whether the NFKBIZ and NFKBID 3′ UTRs
contribute to the higher expression of these genes in MALT1
protease–active ABC vs –inactive GCB DLBCL cells (refer to
Figure 4B). Whereas the reporter construct without an UTR
shows equivalent expression in ABC and GCB DLBCL cells,
there was a strong increase in the expression of both NFKBIZ
and NFKBID 3′ UTR reporters in ABC DLBCL (Figure 5E-F;
supplemental Figure 6F). BTK and MALT1 inhibition did not
affect reporter gene expression in GCB DLBCL cells
(supplemental Figure 6G-H). However, in CD79B mutant HBL1
cells, both BTK and MALT1 activities and in CARD11-mutant
OCI-Ly3 cells, only MALT1 activity maintain the high expres-
sion levels of the NFKBIZ and NFKBID 3′ UTR reporters
(Figure 5G-H).

In ABC DLBCL, recurrent mutations in the Regnase-1 binding
region in the 3′ UTR of NFKBIZ have been shown to stabilize the
mRNA and enhance IκBζ protein expression.53 We introduced
various patient-derived mutations in SL1 (SNV1, Del1, or Del2)
or SL4 (Del3), which all augmented expression of the NFKBIZ 3′
UTR reporter construct in BJAB cells, even in the absence of
oncogenic CARD11 (Figure 5I-J). Moreover, although the WT 3′
UTR of NFKBIZ was induced by oncogenic CARD11, the acti-
vating mutations (Del1 or Del3) conferred high expression of
the NFKBIZ reporter, which was barely further increased by
oncogenic CARD11 (Figure 5K). We determined the effect of
the patient–derived Del1 and Del3 mutations in the NFKBIZ 3′
UTR on the reporter in different ABC DLBCL and GCB DLBCL
cells. The deletion mutants augmented expression of the
NFKBIZ 3′ UTR reporter in MALT1 protease–active ABC DLBCL
cells as well as in GCB DLBCL cells devoid of constitutive
MALT1 activity (Figure 5L). Thus, NFKBIZ 3′ UTR mutations or
MALT1 activation represent 2 independent mechanisms to
release NFKBIZ mRNA from posttranscriptional repression by
the RBPs Regnase-1 and Roquin-1/2. Taken together, chronic
BCR signaling and oncogenic CARD11 are controlling NFKBIZ
and NFKBID mRNA stability on the posttranscriptional level.

Oncogenic API2-MALT1 paracaspase activity
controls posttranscriptional gene regulation
The API2-MALT1 fusion oncoprotein created by the recurrent
t(11;18)(q21;q21) translocation triggers chronic NF-κB activa-
tion in MALT lymphoma.54 TRAF6 recruitment to MALT1 and
eir targets IκВζ and IκBNS in a panel of ABC and GCB DLBCL cells. Unspecific bands
reated ABC DLBCL. Activity of the MALT1 protease was determined by cleavage of
d short IκBζ isoforms, respectively. Unspecific bands are marked with an asterisk. (F)
LT-748 in ABC DLBCL. n = 4, all error bars depict the mean ± SD; ordinary 1-way
< .0001.
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comparisons; *P < .05; ***P < .001; and ****P < .0001. (C-D) Luciferase reporter assay of the 3′ UTR of (C) NFKBIZ and (D) NFKBID in BJAB CARD11 KOs reconstituted with
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with Dunnett multiple comparisons; *P < .05; **P < .01; ***P < .001; and ****P < .0001. (E-F) Luciferase reporter assay of the 3′ UTR reporter of (E) NFKBIZ and (F) NFKBID in
ABC and GCB DLBCL cell lines. n = 3, all error bars depict the mean ± SD. (G-H) Luciferase reporter assay of the 3′ UTR of (G) NFKBIZ and (H) NFKBID in HBL1 and OCI-Ly3
after treatment with ibrutinib, S-mepazine, or MLT-748. n ≥ 4, all error bars depict the mean ± SD, ordinary 1-way ANOVA with Dunnett multiple comparisons; *P < .05;
**P < .01; and ***P < .001. (I) Schematic representation of the SL structure of the UTR of NFKBIZ, and location of patient-derived mutations in the UTR. (J) Luciferase
reporter assay of WT and mutation variants SNV1, Del1, Del2, and Del3 UTR of NFKBIZ in BJAB CARD11 KO cells expressing CARD11 WT. The relative luminescence was
normalized to the stability of the WT UTR of NFKBIZ. N = 3, all error bars depict the mean ± SD, ordinary 1-way ANOVA with Dunnett multiple comparisons; **P < .01 and
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ABC and GCB DLBCLs. n = 4, all error bars depict the mean ± SD, ordinary 1-way ANOVA with Dunnett multiple comparisons test; *P < .05; **P < .01; ***P < .001; and
****P < .0001.
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MALT1 protease activity contribute to NF-κB activation by the
API2-MALT1 fusion.28,29,55 To investigate whether oncogenic
API2-MALT1 controls gene expression also on the post-
transcriptional level via MALT1 protease activity, we transduced
constructs expressing API2-MALT1B WT, PM (C689A), or TBM
(E1031A) in BJAB cells (Figure 6A). Equivalent expression of
API2-MALT1B fusion was achieved at levels below that of
endogenous MALT1 (Figure 6B). Although expression of API2-
MALT1B WT activated the NF-κB reporter gene, mutations
rendering the MALT1 moiety either catalytically inactive (PM) or
TRAF6-binding defective (TBM) were impaired in promoting
NF-κB activation (Figure 6C; supplemental Figure 7A). API2-
MALT1 PM failed to induce processing of p100 to p52
(Figure 6B), revealing that both canonical (via TRAF6 recruit-
ment) and noncanonical (via NIK [NF-κB inducing kinase]
cleavage) NF-κB pathways are required for optimal NF-κB
activation by the API2-MALT1 fusion.28,29 The API2-MALT1
fusion catalyzed cleavage of CYLD and the RBPs Regnase-1 and
Roquin-1/2, which was abolished in the API2-MALT1 PM but
not the TBM mutant.
1996 7 DECEMBER 2023 | VOLUME 142, NUMBER 23
We performed transcriptomic analyses to determine which
genes induced by oncogenic API2-MALT1 rely on MALT1
scaffolding and protease. Compared with PCA in oncogenic
CARD11, individual samples cluster closely together, which
may, at least partially, be explained by the low API2-MALT1
protein abundance (supplementary Figure 7B). API2-MALT1
was able to induced ABC DLBCL–derived target gene signa-
tures, however, to a much lower degree compared with
CARD11 L232LI, and TRAF6 binding and MALT1 protease
activity cooperate in the induction of NF-κB signature genes
(Figure 6D-F; supplemental Figure 7C). Strikingly, API2-MALT1
also induced previously identified genes NFKBID, ZC3H12D,
and ZC3H12A in a highly MALT1 protease–dependent manner
(Figure 6F; supplemental Figure 7D). Similarly, NFKBIZ induc-
tion by API2-MALT1 was MALT1-protease dependent but
expression was below the threshold to be included in the heat
map. We confirmed by qRT-PCR that expression of NFKBIZ,
NFKBID, and ZC3H12A was significantly decreased in protease-
inactive API2-MALT1 PM fusion, when compared with the WT
or TRAF6 binding–defective API2-MALT1 fusions (Figure 6G).
WIMBERGER et al
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Figure 6 (continued) API2-MALT1 protease activity controls posttranscriptional gene regulation. (A) Schematic depiction of API2-MALT1 protein and domains. The
C689A mutation is the MALT1 PM and the E1031A is the TBM of MALT1. (B) Western blot analysis of BJAB cells overexpressing API2-MALT1B WT, PM, or TBM. Activation of
the noncanonical NF-κB pathways was determined by p100 and p52 expression, and the activation of the MALT1 protease was shown by substrate cleavage and IκBNS
expression. Nonspecific bands are marked with an asterisk. (C) Quantification of ΔMFI of the 6 × NF-κB–EGFP reporter in BJAB cells expressing API2-MALT1B WT, PM, or
TBM. Data represent MFI of n = 3 replicates, all error bars depict the mean ± SD, ordinary 1-way ANOVA with Tukey multiple comparisons; **P < .01; ***P < .001; and ****P <
.0001. (D) GSVA quantifying the effects of API2-MALT1 WT and mutant expression on a published ABC DLBCL–derived NF-κB gene signature. (E) Heat map of differentially
expressed genes in API2-MALT1 WT-, PM-, or TBM–expressing BJAB cells compared with parental cells. On the color scale, red denotes higher and blue denotes lower
expression; n = 5 for each sample. Genes highlighted in green are MALT1-protease dependent and genes highlighted in blue are TRAF6-binding dependent. (F) Signed Padj
plot comparing gene induction by API2-MALT1 PM– or TBM– vs API2-MALT1 WT–expressing BJAB cells. Genes in the top-left and bottom-right corner are strongly TRAF6-
binding and MALT1-protease dependent, respectively. Annotated are the genes from the heatmap in panel E. (G) Transcriptional activation of NFKBIZ, NFKBID, and ZC3H12A
was shown by qRT-PCR in BJAB cells expressing API2-MALT1B WT, PM, or TBM. Values were normalized to the control (mock) infected cells, n = 8, all error bars depict the
mean ± SD, ordinary 1-way ANOVA with Tukey multiple comparisons; *P < .05 and **P < .01. (H) Analysis of the inhibition effects of the MALT1 protease after MLT-748 (2 μM,
18 hours) on NFKBIZ, ZC3H12A, and NFKBID in BJAB cells expressing API2-MALT1B WT by qRT-PCR. n = 4, all error bars depict the mean ± SD, unpaired Student t test; **P <
.01. (I-J) Luciferase reporter assay of the 3′ UTR of (I) NFKBIZ and (J) NFKBID in BJAB cells overexpressing API2-MALT1B WT, PM, and TBM (left). Stability of the reporter was
determined after inhibition of the MALT1 protease with MLT-748 (right) in BJAB cells expressing API2-MALT1B WT. n = 4, all error bars depict the mean ± SD; *P < .05; **P <
.01; and ****P < .0001. (K) Scheme of posttranscriptional gene regulation by the MALT1 protease in BCR-addicted ABC DLBCL (upper panel) and API2-MALT1-driven MALT
lymphomas (lower panel).
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Accordingly, IκBNS p70 expression by API2-MALT1 relies on
protease activity (Figure 6B). MALT1 inhibitor MLT-748
impaired cleavage of API2-MALT1 substrates CYLD, Regnase-
1, and Roquin-1/2, and caused a significant suppression of
MALT1 protease targets NFKBID and ZC3H12A (Figure 6H;
supplemental Figure 7E). The decrease in NFKBIZ mRNA
expression was not significant, which may be because of the
weak induction by API2-MALT1. To confirm that API2-MALT1
fusion can control posttranscriptional gene expression of both
NFKBID and NFKBIZ, we transfected 3′ UTR constructs into
BJAB cells expressing the oncogenic fusions (Figure 6I-J). The
3′ UTR of NFKBIZ and even more of NFKBID were induced by
the API2-MALT1 WT or TBM fusion constructs, whereas MALT1
protease–defective PM fusion failed to enhance expression of
NFKBIZ and NFKBID 3′ UTRs. Induction of both UTR reporters
by API2-MALT1 was decreased by MALT1 inhibition. Thus,
expression of the API2-MALT1 oncogenic fusion protein cata-
lyzes cleavage of Regnase-1 and Roquin-1/2 and thereby
induces gene expression on the posttranscriptional level.
tp://ashpublications.net/blood/article-pdf/142/23/1985/2159721/blood_bld-2023-021299-m
ain.pdf by guest on 03 M

ay 2024
Discussion
We demonstrate that MALT1 constitutes a bifurcation point that
orchestrates transcriptional and posttranscriptional gene regu-
lation in ABC DLBCL addicted to chronic BCR signaling or
oncogenic CARD11 mutations (Figure 6K; upper panel).
Although TRAF6 recruitment links MALT1 scaffolding to
canonical NF-κB signaling, MALT1 protease activation catalyzes
the cleavage and inactivation of the mRNA restriction factors
Regnase-1 and Roquin-1/2, which enhance posttranscriptional
gene expression. In parallel, cleavage of A20, CYLD, and RelB
augments NF-κB signaling and transcriptional responses.17,27,31

We show that the MALT1 protease is involved in driving post-
transcriptional expression of genes that are dependent (eg,
NFKBIZ) or independent (eg, NFKBID and ZC3H12A) of NF-κB
transcriptional activation, revealing that MALT1 mediates
oncogenic functions beyond NF-κB. Similarly, a post-
transcriptional release of these MALT1 protease–dependent
genes is seen in the context of the oncogenic API2-MALT1
fusion protein, which also catalyzes the cleavage of the RBPs
Regnase-1 and Roquin-1/2 (Figure 6K; lower panel). Of note,
NFKBIZ is more strongly induced by oncogenic CARD11
compared with API2-MALT1. Differences in expression of the
oncogenic drivers but also alterations in MALT1 substrates
selectivity between oncogenic CARD11 and API2-MALT1 may
be involved in such variations.28 Thus, the exact interplay
between the noncatalytic and catalytic functions of MALT1 is
responsible for driving addiction to chronic BCR or API2-MALT1
signaling in ABC DLBCL or MALT lymphomas, respectively.

Although NF-κB activation induced by antigenic stimulation or
oncogenic CARD11 was severely impaired in the absence of
TRAF6, HOIL-1 KO and the concomitant destruction of LUBAC
was largely dispensable for NF-κB signaling. Accordingly, BCR-
induced NF-κB activation relies on TRAF6 in chicken DT40 B
cells.56 Previous results found reduced NF-κB activation upon
depletion of LUBAC components in ABC DLBCL cells or in cells
expressing oncogenic CARD11.32,33,57 However, in most cases
the decrease in NF-κB activation was rather mild, suggesting
that TRAF6 possesses an essential function, and LUBAC an
auxiliary function, downstream of oncogenic CARD11. This
MALT1 PROTEASE DRIVES mRNA STABILITY IN LYMPHOMAS
could also explain why HOIL-1 cleavage by MALT1 is not
detrimental to NF-κB survival signaling in lymphoma cells.
Importantly, LUBAC associates with the CBM complex and is
critical for survival of ABC DLBCL cells.32,33 In the tumor
necrosis factor receptor pathway, LUBAC and inhibitor of
apoptosis proteins counteract cell death signaling.58 Because
LUBAC cooperates with inihibitor of apoptosis proteins in ABC
DLBCL survival,44 similar mechanisms to prevent cell death may
be involved in the context of the oncogenic CBM complex.

The pathological relevance of deregulated posttranscriptional
gene expression is exemplified in the case of NFKBIZ/IκBζ,
which is highly expressed and maintains expression of NF-κB
survival genes in ABC DLBCL.42 Induction of NFKBIZ is under
transcriptional control of NF-κB,42 but destruction of Regnase-1
binding sites by recurrent mutations in the noncoding region of
the NFKBIZ gene lead to upregulation in DLBCL, revealing the
need to inactivate the posttranscriptional control that limits IκBζ
expression.53 As an alternative mechanism, we demonstrate
that MALT1-catalyzed Regnase-1 cleavage contributes to
NFKBIZ induction in BCR- or CARD11-addicted DLBCL that do
not carry oncogenic NFKBIZ 3′ UTR mutations. Of note,
ZC3H12A itself is recurrently mutated in DLBCL,53 and
Regnase-1 decreases the stability of its own mRNA,
ZC3H12A,50 indicating that a vicious cycle of posttranscriptional
self-suppression and posttranslational MALT1 processing tightly
balances Regnase-1 expression in ABC DLBCL cells. We show
that RBPs Roquin-1/2 are also cleaved by MALT1 in ABC
DLBCL, and other RNA regulators such as N4BP1 and Regnase-
4/ZC3H12D have been identified as MALT1 substrates.59,60

Putative functions for DLBCL pathogenesis need to be deter-
mined, but the data indicate that MALT1 protease modulates
the activity of multiple factors involved in posttranscriptional
gene regulation. Posttranscriptional events are also governing
gene induction by oncogenic API2-MALT1. Beyond this, the
transcriptomic analyses revealed a striking interplay between
MALT1-TRAF6 interaction and MALT1 protease activity in
orchestrating API2-MALT1–triggered canonical and noncanon-
ical NF-κB activation, which both contribute to optimal target
gene expression.

MALT1 inhibition is a promising approach for the treatment of
BTK-resistant DLBCL.15,20 However, our data reveal distinct
modes of actions for MALT1 protease and BTK inhibitors in
ABC DLBCL addicted to chronic BCR upstream signaling.
Although BTK inhibitors impair the catalytic and noncatalytic
functions of MALT1, MALT1 inhibitors selectively target the
protease function and thus only indirectly affect NF-κB activa-
tion through the cleavage of signaling and transcriptional reg-
ulators (eg, A20, CYLD, and RelB).17,30,31 We demonstrate that
maintenance of high NFKBID and ZC3H12A mRNA expression
is exclusively connected to constitutive MALT1 protease func-
tion in ABC DLBCL, suggesting that these genes can serve as
specific biomarkers in clinical trials evaluating the efficacy of
MALT1 inhibitors either in monotherapy or in combination with
BTK inhibitors.
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