
Regular Article
IMMUNOBIOLOGY AND IMMUNOTHERAPY
Alternative splicing of its 5′-UTR limits CD20 mRNA
translation and enables resistance to CD20-directed
immunotherapies
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• In normal and malignant
human B cells, CD20
mRNA is alternatively
spliced to yield 4 5′
untranslated region
isoforms, some of which
are translation-
deficient.

• The balance between
translation-deficient
and -competent
isoforms modulates
CD20 protein levels and
responses to CD20-
directed immuno-
therapies.
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Aberrant skipping of coding exons in CD19 and CD22 compromises the response to
immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding
human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5′
untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-
seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with
V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus
infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity.
Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20
protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1
isoform contained upstream open reading frames and a stem-loop structure, which
cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-
switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody
rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of
CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-
reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-
directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing
 on 04 June 2024
cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To deter-
mine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 post-
mosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was
accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed
immunotherapies.
Introduction
The plasma membrane protein CD20, encoded in humans by
the MS4A1 gene, is a clinically significant target for multiple
monoclonal antibody (mAb) therapies because of its lineage-
specific expression in mature B cells and the malignancies
derived therefrom.1 For adult patients, CD20-directed therapies
are administered alone or in combination with chemotherapy as
23 | VOLUME 142, NUMBER 20
the standard of care for mature B-cell neoplasms, such as
diffuse large B-cell lymphoma (DLBCL), follicular lymphoma
(FL), Burkitt lymphoma (BL), and high-grade B-cell lymphoma.2,3

To date, the most widely prescribed anti-CD20 mAb is ritux-
imab, which is listed on the World Health Organization’s List of
Essential Medicines.4 For pediatric patients, rituximab and
chemotherapy combinations have been approved for previ-
ously untreated advanced-stage CD20+ DLBCL, BL, and
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high-grade B-cell lymphomas.5 In the European Union and
other countries, rituximab is also used to treat children and
adults with CD20+ B-cell acute lymphoblastic leukemia (B-
ALL).6 Newer CD20-directed immunotherapies include mosu-
netuzumab, a CD20 × CD3 bispecific mAb that redirects T cells
to engage and eliminate malignant B cells.7,8 In 2022, mosu-
netuzumab was granted accelerated approval in the European
Union and by the Food and Drug Administration for the treat-
ment of relapsed or refractory FL as a third-line or later
therapy.9

Although CD20-targeted immunotherapies have increased the
median overall survival of patients with B-cell malignancies, de
novo or acquired immunotherapy resistance due to antigen loss
remains a challenge.2,10 For patients with relapsed or refractory
B-cell non-Hodgkin lymphomas (B-NHLs), low levels of CD20 at
baseline (16 of 293, or 5.5% of cases) were associated with a
lack of response to mosunetuzumab monotherapy. In chronic
lymphocytic leukemia (CLL), CD20 levels are generally lower
than those in other mature B-cell neoplasms.11-14 This is
believed to contribute to the relatively low efficacy of rituximab
monotherapy against CLL.15 Beyond this intrinsic resistance,
CD20 protein was lost in 7 of 26 patients with B-NHL (27%) who
relapsed after initial responses to mosunetuzumab.16 Overall,
up to a third of all adult patients with DLBCL and most patients
with FL and CLL are not cured by rituximab ± chemotherapy
combinations.17,18 This resistance is commonly associated with
the downmodulation of CD20.19-24

Despite the clear role of CD20 antigen loss in immunotherapy
resistance, significant gaps in our understanding of the under-
lying mechanism(s) still exist. A recent report demonstrated that
in a BL cell line, the loss of CD20 reduced CD19 expression
over time,25 although this was not an immediate effect, and
CD19 loss in CD20− relapses has not been reported. We pre-
viously reported that the Myc oncoprotein downregulates
CD20 messenger RNA (mRNA) expression in human B cells and
renders them partly resistant to rituximab in vitro.26 However,
the role this regulation plays, if any, in patients with B-cell
lymphomas remains to be determined. The loss of CD20 pro-
tein in 3 of 4 of the mosunetuzumab-resistant B-NHL tumors
analyzed using next-generation sequencing could not be
explained by the disappearance of CD20 mRNA or the emer-
gence of MS4A1 genetic variants, as recently reported.16 A lack
of concordance between CD20 mRNA and protein was also
observed in CLL samples, which were found to be low in CD20
protein despite a near-normal level of CD20 mRNA relative to
that in healthy B cells.27 Here, we addressed the post-
transcriptional mechanisms of CD20 dysregulation, with a
focus on alternative splicing.

Materials and methods
Data set usage
The endemic BL2 (eBL2[PRJNA292327]), eBL3(PRJNA374
464),28 DLBCL2(PRJNA531552), DLBCL3 (PRJNA752102),
DLBCL4 (PRJNA373954),29 FL1(PRJNA596663),30 FL2(PRJNA
263567),31 CLL2(PRJNA376727),32 CLL3(PRJEB4498), CLL4(PRJ
NA792609),33 CLL5(PRJNA450999),34 bone marrow subsets
(PRJNA475684),35-37 and peripheral blood B-cell (PRJNA418
779)38 data sets were obtained from the BioProject databases
of the National Center for Biotechnology Information (NCBI).
ALTERNATIVE SPLICING OF CD20 5′-UTR IN B-LYMPHOMAS
The eBL1(phs001282.V2.p1) and CLL1(phs000767.V1.p1)39

data sets were from the dbGaP database of the NCBI. For
The Cancer Genome Atlas (TCGA) DLBCL samples, CD20 iso-
form RNA-Seq by expectation maximization (RSEM) and protein
reverse-phase protein array data were obtained from the TCGA
Splicing Variants Database (TSVdb)40 and cBioPortal41 websites,
respectively. Controlled access data sets were downloaded
through the database of Genotypes and Phenotypes (dbGaP)
project no. 11199: “Post-transcriptional regulation in B-
lymphoid malignancies.”
RNA-seq analysis
RNA sequencing (RNA-seq) reads were first trimmed to remove
adapters (BBTools version 38.96) and then aligned using
Spliced Transcripts Alignment to a Reference (STAR) version
2.7.9a to the hg38 reference genome while providing known
gene isoforms through the GENCODE annotation V32. In
addition, we used STAR flags “–quantMode GeneCounts” and
“–alignSJoverhangMin 8” to quantify genes and ensure that
spliced reads had an overhang of at least 8 bases. Junction-
spanning reads were obtained from the STAR “*_SJ.out.tab”
result files, and each entry was normalized by dividing by the
total number of junction-spanning reads and multiplying by a
factor of 1 million to obtain the junctions per million. Visuali-
zation and downstream analyses were conducted via R using
the ggplot2 and tidyverse packages. Transcripts per million
(TPMs) for all samples were calculated using TPMCalculator42

version 0.0.3, followed by ComBat-seq43 batch correction as
implemented in the R Bioconductor package sva (version
3.42.0).
MAJIQ analysis
For RNA splicing quantification, Modeling Alternative Junction
Inclusion Quantification (MAJIQ) v2.4.dev+g85d07819 was
used. The bam files from STAR and the GENCODE.v37 anno-
tation file were processed using the MAJIQ-build functionality
to generate splicegraph and MAJIQ files. Next, for each patient
sample, the files from the corresponding prerelapse and post-
relapse samples were compared using the MAJIQ deltapsi tool
to estimate the changes in splicing (deltaPSI). The results were
exported with voila tsv into 2 different files: 1 including all local
splice variations (flag –show-all) and another file with the flag
“–changing-between-group-dpsi 0.2” to select for those local
splice variations with a change in inclusion of at least 20%
between prerelapse and postrelapse samples.
Nanopore long-read direct RNA sequencing
Total RNA was isolated from whole Raji cells using a Maxwell
RSC simplyRNA Cell Kit (Promega). Approximately 500 ng of
mRNA was isolated from total RNA using the Dynabeads mRNA
DIRECT kit (Invitrogen) and used for direct RNA (SQK-RNA002;
Oxford Nanopore Technologies [ONT]) library preparation.
Subsequently, each library was loaded into a Spot-ON Flow
Cell R9 version (FLO-MIN106D; ONT) and sequenced using a
MinION Mk1B device (ONT) for 48 hours. Raw Fast5 files were
converted to fastq with guppy (version 3.4.5), followed by
alignment to the GENCODE version of hg38 (version 30) using
minimap2 (version 2.18); the resulting bam file was visualized
using the Integrative Genomics Viewer (version 2.11.0).
16 NOVEMBER 2023 | VOLUME 142, NUMBER 20 1725
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Transient expression of CD20 mRNA isoforms
The full-length sequence of MS4A1 V1 (NM_152866), V2
(NM_152867), V3 (NM_021950), and V4 were cloned into the
MXS_CMV::PuroR-bGHpA plasmid, replacing the PuroR open
reading frame (ORF) in the process, to generate the V1, V2, V3,
or V4 expression plasmids. MXS_CMV::PuroR-bGHpA was a gift
from Pierre Neveu (Research Resource Identification Portal ID:
Addgene_62439).44 Subsequent deletions and mutations were
generated using Gibson assembly. Plasmids were transfected
into HEK293T cells using the ViaFect Transfection Reagent
(Promega) according to the manufacturer’s instructions.45

Stable expression of CD20 mRNA isoforms
The T2A sequence within the pCDH-EF1α-MCS-T2A-Puro
plasmid (System Biosciences) was replaced with the internal
ribosome entry site (IRES) sequence from pMXs-IRES-Puro (Cell
Biolabs) to generate the pCDH-EF1α-MCS-IRES-Puro lentiviral
transfer plasmid. The 5′-UTR and coding sequence (CDS) of
MS4A1 V1, V2, and V3 were cloned into the pCDH-EF1α-MCS-
IRES-Puro vector to generate the V1-, V2-, and V3-Puro plas-
mids. The CD20-targeting guide RNA (gRNA)–resistant V1-,
V2-, and V3-rCD20 lentiviral transfer plasmids were generated
by mutating the CCTGGGGGGTCTTCTGATGATCC sequence,
found within the CD20 CDS of the V1-, V2-, and V3-Puro plas-
mids, to GTTGGGCGGACTACTTATGATTC and replacing the
puromycin resistance gene with a blasticidin resistance gene.
Subsequent deletions and mutations were generated via
Gibson assembly.

CD20 knockout
A gRNA sequence targeting the GGATCATCAGAA-
GACCCCCC sequence within the CD20 CDS and a nonspecific
sequence targeting GTTCCGCGTTACATAACTTA were cloned
into the lentiCRISPR v2 lentiviral vector for coexpression with
Cas9. The lentiCRISPR v2 plasmid was a gift from Feng Zhang
(Addgene plasmid no. 52961).46 We caused the stable
expression of these plasmids in OCI-Ly8 cells and used
fluorescence-activated cell sorting to enrich for cells that
stained negative with phycoerythrin (PE)-conjugated anti-
human CD20 antibodies (clone 2H7, BioLegend). The sorted
CD20− cell population were the OCI-Ly8 CD20KO cells.

Morpholino treatments
The Ex2-1, Ex2-2, and 5ex3 morpholino sequences were as
follows: AGTAGAGATTTTGTTCTCTCTTGTT, ATTGTCAGTCT
CTTCCCCACAGAAT, and CTGCTGAGTTCTGAGAAAGGA-
GATG, respectively. Standard morpholinos (Gene Tools LLC)
were electroporated into Raji and OCI-Ly8 cells using the Neon
Transfection System 10 μL Kit (Thermo Fisher Scientific). Briefly,
for every 10 μL tip, half a million live cells were electroporated in
buffer R containing 10 mM morpholino at 1350 V and 30 ms
pulse width. The Random Control 25-N morpholino (Gene
Tools) was electroporated as a control (Ctrl) phosphor-
odiamidate morpholino oligomer (PMO). Raji, OCI-Ly8, and
MEC-1 cells were incubated in cell culture media containing 10
mM Vivo-Morpholinos (viMO) for 3 hours before replacing with
fresh media. For Ctrl-viMO, the reverse sequence of 5ex3,
GTAGAGGAAAGAGTCTTGAGTCGTC, was used. The cells
were tested for rituximab sensitivity on day 2 after morpholino
treatment.
1726 16 NOVEMBER 2023 | VOLUME 142, NUMBER 20
Evaluation of rituximab sensitivity
Rituximab (Roche) was added to cell cultures containing 1 × 106

live cells per mL. After 15 minutes, healthy human serum
(Complement Technology) was added at 20% concentration
(volume-to-volume ratio) as a source of complement, for
complement-dependent cytotoxicity. After another 2-hour
incubation, cell viability was evaluated by propidium iodide
staining before acquisition on a BD Accuri C6 Cytometer (BD
Biosciences) or by the WST-1 cell proliferation reagent,
according to the manufacturer’s protocol (Sigma-Aldrich). The
WST-1 absorbance signal (A450nm-A690nm) was measured
using a BioTek Synergy 2 instrument. The blank control well
contained the same volume of culture medium and WST-1, but
no cells. The percentage of cell viability was calculated as
(absorbance at X concentration of rituximab − absorbance of
blank control well)/(absorbance with no rituximab – absorbance
of blank control well). Dose-response curves and 50% inhibitory
concentration (IC50) values were calculated using the nonlinear
regression curve fit function in GraphPad Prism 5 (version 5.01),
with the top and bottom of the curve constrained to 100% and
0%, respectively.

Manufacturing of CART-20
The CD20-directed chimeric antigen receptor (CAR20) plasmid
was custom-generated by TWIST Bioscience and encompassed
the 1F5 single-chain variable fragment (scFv),47-49 CD8A hinge,
4-1bb costimulatory domain, and CD3ζ stimulatory domains.
Healthy primary human T cells were obtained from the Human
Immunology Core at the University of Pennsylvania. To produce
CAR20 T cells (CART-20), CD4+ and CD8+ cells were combined
at a 1:1 ratio and activated using anti-human CD3/CD28
Dynabeads (Invitrogen, no. 40203D) at a 3:1 ratio. Twenty-four
hours (day 2) after activation, T cells were infected with a len-
tiviral vector containing the CAR20 transgene (multiplicity of
infection ~1.5, viral particles/T cells). Magnetic beads were
removed from T cells on day 6, and the transduction efficiency
of CAR (percentage of CAR+) was measured by flow cytometry
using a PE anti-G4S antibody (Cell Signaling Technology no.
38907S). T cells were expanded, counted every other day, and
cryopreserved at a cell volume ≤350 fL. Before functional
assays, T cells were thawed and rested overnight at 37◦C.

Mosunetuzumab cytotoxicity assays
OCI-Ly8 was transduced to express green click beetle luciferase
and ZsGreen using pHIV-Luc-ZsGreen (a gift from Bryan Welm
[Addgene plasmid no. 39196]). These cells were cultured with
healthy donor T cells (E:T ratio of 5:1) and different concen-
trations of mosunetuzumab (Genentech and Roche): 0, 1, 10,
and 100 ng/ml. After 24 hours, cancer cell survival was moni-
tored by luciferase bioluminescence using a BioTek Synergy H4
Imager (560 nm). Cell viability (%) was calculated relative to that
of the Ctrl cancer cells and T cells without mosunetuzumab.

CART-20 cytotoxicity assays
OCI-Ly8 were cocultured with CART-20 or untransduced T cells
at a 1:4 effectors-to-target ratio for 24 hours. Cell survival was
analyzed using bioluminescent quantification, as described
earlier. Cell viability (%) was calculated relative to that of the Ctrl
cancer cells alone.
ANG et al
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Results
Up to 4 distinct 5′-UTRs of CD20 (V1, V2, V3, and
V4) can be detected and quantified using long-
read direct RNA sequencing, illumina RNA
sequencing, and RT-qPCR
We and others have implicated aberrant splicing as a recurrent
mechanism of resistance to CD19- and CD22-directed immu-
notherapies (reviewed previously50,51). Here, we hypothesized
that the CD20-encoding gene MS4A1 may also undergo
alternative splicing, during which exons from the same gene are
joined in different combinations, leading to the generation of
different mRNA isoforms. To identify full-length cap-to-poly(A)
mRNA isoforms of CD20 and rule out reverse transcription
artifacts that are common in complementary DNA-seq
approaches,52 we performed long-read Oxford Nanopore
direct RNA sequencing on Raji cell line. Using this approach, we
found 3 mRNA isoforms of CD20 corresponding to annotated
transcripts, dubbed variants 1 to 3, or V1, V2, and V3 (NCBI
annotation release 109.20211119 for the MS4A1 gene;
Figure 1A). These mRNA isoforms have distinct 5′-UTRs but
identical CDSs. We also detected a fourth, albeit rare, variant
with an unannotated permutation of the 5′-UTR exons that we
dubbed V4 (Figure 1A, bottom). For each 5′-UTR variant, at
least 2 mRNA isoforms existed because of 2 potential alterna-
tive polyadenylation sites within the 3′-UTR of CD20
(Figure 1A).

Although 4 different 5′-UTR variants of CD20 (summarized in
Figure 1B) were detected via long-read direct RNA sequencing,
we were unable to confidently quantify the relative abundance
of these variants because of the low throughput and, hence, low
read depth of direct RNA sequencing. To determine the relative
abundance of each 5′-UTR variant, we analyzed the available
high-depth short-read RNA-seq data (>50 million reads of 2 ×
150 bp) corresponding to Raji BL, OCI-Ly8 DLBCL, and MEC-1
CLL cell lines. Our custom pipeline quantified RNA-seq reads
that mapped to the unique exon-exon junctions found in each
of the 4 5′-UTR variants (V1 to V4). In all 3 cell lines, V3 was the
predominant isoform, making up at least 50% of all reads, fol-
lowed by V1, V2, and V4 (Figure 1C). To validate the RNA-seq
results, the different 5′-UTRs of CD20 were also quantified using
an isoform-specific quantitative real-time polymerase chain
reaction (RT-qPCR) assay, as described in supplemental
Methods and supplemental Figure 1, available on the Blood
website. In Raji, OCI-Ly8, and MEC-1 cells, RT-qPCR assay
identified V1 and V3 as the 2 most abundant 5′-UTR variants
(Figure 1D), which was consistent with our RNA-seq findings
(Figure 1C).

The 5′-UTRs of CD20 are alternatively spliced in
healthy and malignant human B cells
Having determined that our RNA-seq pipeline broadly reflects
the diversity of CD20 5′-UTR isoforms, we used it to analyze
several in-house35-37 and publicly available38 data sets. Similar
to B-lymphoid cell lines (Figure 1C-D), the V1 and V3 isoforms
accounted for the bulk of CD20 transcripts in both healthy B
cells and malignancies derived therefrom (ie, precursor B-ALL,
eBL, CLL, DLBCL, and FL; Figure 1E-I). In most healthy B-cell
subsets from the bone marrow, tonsils (Figure 1E), and
ALTERNATIVE SPLICING OF CD20 5′-UTR IN B-LYMPHOMAS
peripheral blood (Figure 1F), V1 transcripts outnumbered V3
transcripts. The few exceptions included class-switched B cells
from the tonsils (Figure 1E, middle) and germinal center (GC) B
cells (Figure 1G), in which V3 predominated. Because B-cell
receptor activation occurs in GCs before class switching, we
analyzed RNA-seq data from naïve tonsillar B cells that were
activated with antibodies directed against immunoglobulin M
(IgM), as described previously.53,54 As expected, B-cell receptor
ligation led to SYK phosphorylation and an increase in the
relative abundance of V3 (Figure 1E, right). These findings
suggest that alternative splicing in the 5′-UTR of CD20 is tightly
modulated during normal B-cell development. Compared with
this relatively homogenous distribution in healthy B-cell sam-
ples from different donors (Figure 1E-G), a high degree of
intertumoral variability in the relative abundance of the V1 and
V3 isoforms was observed for CLL, DLBCL, FL (Figure 1H), and
precursor B-ALL (Figure 1I).

EBV infection increases the abundance of V3 and
V4
Among the B-cell neoplasms, eBLs were found to have rela-
tively high levels of V3, per RNA-seq (Figure 1H; supplemental
Figure 2A). High V3 may be a consequence of Epstein-Barr virus
(EBV) infection, because up to 95% of eBL cases are associated
with this human pathogen.55 To test this hypothesis, we
analyzed lymphoblastoid cell cultures (LCLs) derived from EBV-
infected mononuclear cells. We observed a clear increase in V3,
even as the total CD20 mRNA levels were lower than those in
DLBCL and FL (Figure 2A). RT-qPCR assays also detected a
similar increase in V3 and V4 in B cells 3 days after exposure to
EBV, relative to the untreated controls (Figure 2B, top). Similar
results were obtained using the published RNA-seq data set,56

in which B cells rapidly upregulated V3 and V4 as early as 1 day
after exposure to EBV (supplemental Figure 2B). Thus, alter-
native splicing in the 5′-UTR of CD20 was affected by EBV
infection.

An increase in V3 and V4 coincides with elevated
CD20 protein level
The increase in V3 and V4 after EBV infection of B cells
(supplemental Figure 2B; Figure 2B, top) was notable because it
occurred in tandem with elevated levels of cell surface CD20, as
measured by flow cytometry. EBV infection increased CD20
protein levels despite also downregulating total CD20 mRNA,
as observed in our experiments (Figure 2B) and as described in
the literature.56 This trend was preserved in LCLs, in which
elevated levels of V3 coincided with elevated levels of the
surface CD20 protein relative to those in CLL, DLBCL, and FL. In
contrast, pan-isoform CD20 mRNA levels did not correlate with
CD20 protein levels, as the levels in LCLs were among the
lowest (Figure 2A). When we compared individual LCL samples,
we again found that CD20 protein levels did not positively
correlate with the levels of V1, V2, or total CD20 mRNA but
instead correlated with the levels of V3 or V4 mRNA isoforms
(Figure 2C). The same correlations were found in the DLBCL
samples from TCGA consortium, which had reverse-phase
protein array–based measures of CD20 protein (Figure 2D).
Taken together, these findings suggest that CD20 protein levels
are controlled exclusively by the abundant V3 isoform.
16 NOVEMBER 2023 | VOLUME 142, NUMBER 20 1727
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The extended 5′-UTRs variants (V1 and V2) have
increased transcript half-life but reduced ribosome
recruitment
Our CD20 data mirrored a similar expression pattern estab-
lished by us for CD22, in which its protein levels positively
Figure 1 (continued) V4. (C-D) Relative abundance of the V1 (red), V2 (green), V3 (blue), a
seq data, with the stack plot showing the ratio of sequencing reads mapped to the unique
are color-coded as shown in the Reads spanning panel. Here and below, pan-isoform re
Panel D shows RT-qPCR-mediated quantification of pan- and 5′-UTR variant–specific CD2
gene RPL27. Each bar represents the average from each repeated experiment (N = 4). (E-I
primary samples corresponding to healthy and malignant B cells. Each bar represents data
TPM values corrected for potential batch effects between the different data sets. Health
bone marrow and tonsils (E) and peripheral blood (F). In panel E, CD19+IgM+IgD+ naïve
phosphorylated SYK are displayed at the bottom right corner as a marker of B-cell activ

ALTERNATIVE SPLICING OF CD20 5′-UTR IN B-LYMPHOMAS
correlated with the abundance of productive CD22 mRNA
isoforms but not with total CD22 mRNA (which included a large
fraction of AUG-lacking noncoding transcripts).37 This led us to
hypothesize that a similar mechanism was at play for CD20.
Although V1 and V3 CD20 mRNA isoforms have identical CDSs,
nd V4 (yellow) isoforms in OCI-Ly8, Raji, and MEC-1 cells. Panel C is based on RNA-
exon junctions found in each 5′-UTR variant of CD20. Here and below, these variants
ads mapping to any exon of CD20 are shown on the right for comparison as TPM.
0 levels in OCI-Ly8, Raji, and MEC-1 cells. RNA levels are normalized to the reference
) Relative abundance of the V1 (red), V2 (green), V3 (blue), and V4 (yellow) isoforms in
from a single donor. The corrected TPM (cTPM) values at the top of panel H are the
y B-cell subsets were fluorescence-activated cell sorting–enriched from the human
tonsillar B cells were treated with anti-IgM or an isotype control. Western blots of
ation, with actin serving as a loading control.
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they possess distinct 5′-UTRs that can affect CD20 protein
production by altering mRNA turnover and/or translation rates.
To investigate whether there was a difference in mRNA turn-
over, we used our isoform-specific RT-qPCR assay to measure
the rate of turnover or decay for each CD20 mRNA isoform in
OCI-Ly8 and Raji cells after inhibiting transcription in these cells
with actinomycin D. Relative to V1 and V2, the mRNA decay
rates for V3 and V4 were only slightly higher (supplemental
Figure 3). The RT-qPCR assay also allowed us to measure the
rate of translation of each 5′-UTR isoform in Raji and OCI-Ly8
cells using polysome profiling, as described previously.57,58

Relative to V3 and V4, a smaller fraction of V1 and V2 mole-
cules was detected in the high-density sucrose gradient frac-
tions (Figure 3A). This pattern is indicative of a lower rate of
translation for V1 and V2 than for V3 and V4.

Heterologous expression of V3, but not V1,
enhances CD20 protein expression
Inefficient translation of V1 and V2 transcripts could be rate-
limiting for CD20 protein levels. To investigate this scenario,
we engineered HEK293T and OCI-Ly8 cells to express each 5′-
UTR variant (from V1 to V4) of CD20 and then investigated
whether these cells had increased levels of CD20 mRNA
(measured via RT-qPCR) and protein (measured via flow
cytometry and/or western blotting) relative to those in Ctrl cells
transfected with an empty vector (Ctrl or Ctrl-Puro). In HEK293T
cells, which do not express CD20 endogenously, transient
transfection with full-length V1, V2, V3, and V4 cassettes led to
uniformly elevated levels of CD20 mRNA (Figure 3B, top).
However, these increases in mRNA levels were accompanied by
increased CD20 protein production only in V3- and V4-
transfected cells, whereas V1- and V2-transfected cells
remained CD20 protein–negative and were indistinguishable
from Ctrl cells (Figure 3B-C). This 5′-UTR–specific difference in
CD20 protein levels was independent of the 3′-UTR because
cells transfected with V3:del-3′ (the 3′-UTR deletion–mutant
version of V3) still showed markedly more CD20 protein stain-
ing than those transfected with V1:del-3′ or V2:del-3′
(supplemental Figure 4A). In these and subsequent experi-
ments, the GCCACC Kozak consensus alone was used as a
positive Ctrl 5′-UTR element (supplemental Figure 4B).

Similar results were obtained when HEK293T or OCI-Ly8 cells
were stably transduced with lentiviral vectors to express these
variants lacking the 3′-UTRs (V1-Puro, V3-Puro, etc; Figure 3D-E).
Unlike HEK293T cells, OCI-Ly8 cells expressed endogenous
CD20 protein, which was detected in the empty vector-
transduced cells (Ctrl-Puro), and transduction with only V3-
Puro, but not V1-Puro, increased the total CD20 protein levels
(Figure 3E, right). To determine whether the 5′-UTRs alone were
responsible for the difference in expression, we generated
green fluorescent protein reporters lacking CD20 CDSs. Again,
only V3 and not V1 constructs yielded robust expression of the
reporter gene, as evidenced by flow cytometry (Figure 3F).

The extended5′-UTRs (V1 andV2) contain uORFs and
an RNA stem-loop structure that repress translation
The inefficient translation of V1 and V2 implied the presence of
repressive 5′-UTR elements. We reasoned that such elements
would be localized in exon 3a based on 2 observations. First,
exon 3a was included in V1 and V2 but not in V3 and V4.
1730 16 NOVEMBER 2023 | VOLUME 142, NUMBER 20
Second, a truncated mutant construct that retained exon 3a but
lacked exons 1 and 2 (ie, Δex1-2) retained the ability to repress
CD20 protein levels (supplemental Figure 4C). Within the exon
3a sequence, we found multiple upstream ORFs (uORFs). At the
exon 3a-b boundary immediately upstream of the CD20 start
codon, a stem-loop secondary structure is predicted using the
RNAfold algorithm59 (Figure 4A). Because translational repres-
sion by uORFs and stem loops has been observed in other
genes,60,61 we hypothesized that CD20 could be regulated in
the same manner. To investigate this possibility, we mutated all
start codons of the uORFs in V1 from AUGs to AUCs to
generate V1AUC-Puro. We also generated a V1DelStem-Puro
variant with disrupted base pairing in the stem-loop, alone or
in combination with the AUC variant, and V1Stem-Puro, in
which the hairpin was stabilized via additional base pairing
(Figure 4B). We then measured CD20 RNA and protein levels by
RT-qPCR and flow cytometry, respectively, and compared them
with those of the Ctrl-Puro empty vector.

We found that V1AUC-Puro cells remained CD20 protein–
negative (Figure 4C), as did V1Stem-Puro cells (Figure 4D).
There was a minor recovery in CD20 protein levels with the
V1DelStem-Puro variant (Figure 4E). Notably, disrupting both
uORFs and the stem-loop (V1ATCDelStem-Puro) led to a near-
complete recovery of CD20 protein levels (Figure 4F). These
results suggest that these 2 elements are responsible for the
negligible CD20 protein being produced from V1 and V2.

Sam68 contributes to suppressed CD20 protein
levels
We searched for RNA-binding proteins that could be respon-
sible for the high V1-to-V3 ratios and translational repression of
CD20. Using the SpliceAid algorithm,62 we identified within
exon 2 (Figure 4G) and notably within the loop structure of exon
3a (Figure 4A) several putative binding sites for Sam68 (also
known as KHDRBS1), a splicing factor known to bind to AU-rich
sequences.63 To determine whether Sam68 regulates CD20
splicing, we electroporated Raji cells with a mixture of 2 Cas9-
gRNA ribonucleoproteins targeting the CDS of Sam68. Rela-
tive to Ctrl gRNAs targeting the irrelevant EMX1 locus and
untransfected Ctrl cells, Sam68 gRNAs successfully reduced
Sam68 protein levels (western blots in Figure 4H). This was
predictably accompanied by a reduction in Sam68 mRNA
levels, as measured by RT-qPCR (heat map in Figure 4I, 2 left-
most columns). We also observed a redistribution of all 4 5′-UTR
variants: a reduction in V2 mRNA levels and increases in V1, V3,
and V4, and total CD20 mRNA (Figure 4I, 5 rightmost columns).
We also observed a modest increase in CD20 protein levels
(flow cytometry in Figure 4I, right). The same shifts in CD20
mRNA splicing and protein levels were evident when we stably
knocked down Sam68 in Raji and OCI-Ly8 cells with 2 different
short hairpin RNAs (supplemental Figure 5A-B). Taken together,
our findings suggest that Sam68 is at least partly responsible for
the selection of CD20 5′-UTR isoforms and for suppressed
CD20 protein levels. However, we could not distinguish
between its effects on splicing and overall mRNA levels.

Morpholinos redirect splicing toward V3 and V4 to
augment rituximab-mediated cytotoxicity
To modulate CD20 splicing more directly, we tested 3 different
PMO64 sequences that target exons 2 to 3 in CD20 pre-mRNA
ANG et al
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(supplemental Figure 5C, top right). These PMOs were elec-
troporated into Raji and OCI-Ly8 cells. Among the PMOs tested
against a nonspecific Ctrl sequence pool (Ctrl-PMO), the 5ex3-
PMO sequence (targeting the junction between CD20 intron 2
and exon 3a) was the most effective at reducing V1 and V2
ALTERNATIVE SPLICING OF CD20 5′-UTR IN B-LYMPHOMAS
mRNA while increasing V3 and, particularly, V4 mRNA
(approximately threefold change, as measured by RT-qPCR). It
was also superior to Ex2-1 and Ex2-2 in terms of increasing
CD20 protein levels, as measured using flow cytometry;
supplemental Figure 5C).
16 NOVEMBER 2023 | VOLUME 142, NUMBER 20 1731
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Next, we obtained 5ex3 in the viMO format (Figure 5A, top left),
which could be added directly to the culture media for efficient
delivery into cells.65 We tested 5ex3-viMO in OCI-Ly8, Raji, and
1732 16 NOVEMBER 2023 | VOLUME 142, NUMBER 20
MEC-1 cell cultures and measured the levels of CD20 mRNA (by
RT-qPCR and RNA-seq) and total cellular CD20 protein (by flow
cytometry). As a control, we used the oligomer with the reverse
ANG et al
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order of 5ex3 nucleotides (Ctrl-viMO), which did little to affect
V1, V2, and V3 variants but induced nonspecific increases in V4
and CD20 protein levels relative to the no-Morpholino treat-
ment cells (Figure 5A, top rows). To account for these
sequence-independent effects, we normalized the 5ex3-viMO–

treated samples to Ctrl-viMO treatment. Even after normaliza-
tion, 5ex3-viMO treatment induced clear shifts in CD20
splicing, namely, reducing V1 and V2 mRNA levels while
increasing V3 and V4 variants (Figure 5A, bottom rows). Visual
analysis of the sashimi plots corresponding to the RNA-seq data
confirmed that 5ex3-viMO had a noticeably greater effect on
reducing exon 2 and 3a usage (Figure 5B, exons within the red
boxes) without affecting the usage of the other exons
(Figure 5B, exons outside of the red boxes). Most importantly,
relative to the Ctrl-viMO treatment, 5ex3-viMO-treated cells
showed increased CD20 protein staining (Figure 5A, bottom
right corner) across multiple experiments (supplemental
Figure 5D).

To determine whether this increase was therapeutically rele-
vant, we used an anti-CD20 antibody–mediated cytotoxicity
assay. In a pilot experiment, we treated OCI-Ly8 cells over-
expressing Ctrl-, V1-, and V3-Puro with a wide range of ritux-
imab concentrations and measured the cell viability. We
achieved 50% killing of cells expressing the V3 isoform with 4.3
μg/mL rituximab but failed to reach IC50 for their Ctrl and V1
counterparts (supplemental Figure 6A). We then repeated the
assay using OCI-Ly8, Raji, and MEC-1 cells treated with Ctrl or
5ex3-viMO. In 2 out of the 3 lines (OCI-Ly8 and Raji), we
observed a >10-fold difference in IC50 between Ctrl- and 5ex3-
viMO, as measured using the WST-1 cell viability reagent
(Figure 5C). This difference in sensitivity was further verified by
propidium iodide assays, in which cell death, rather than cell
survival, was measured (supplemental Figure 6B).

To confirm that the 5ex3-viMO effect is dependent on CD20
splicing, we generated MS4A1-knockout OCI-Ly8 cells
(CD20KO) that, unlike parental cells (Figure 5D, top row), lacked
CD20 expression and were insensitive to rituximab (Figure 5D,
middle row). We then reconstituted them with an intron-less V3-
rCD20 cassette. This resensitized the cells to rituximab but also
made them refractory to 5ex3-viMO (Figure 5D, bottom row),
attesting to the specificity of this reagent and its potential
clinical utility.

V1 generates sufficient CD20 protein levels to
trigger killing by CARTs but not mosunetuzumab
Our RNA-seq analysis of FL, DLBCL, CLL, and pre–B-ALL
helped identify a subset of samples in which the entire CD20
mRNA pool consisted almost entirely of V1, with little to no V3
(Figure 1H-I). To model B-cell neoplasms with such a lopsided
CD20 splicing pattern and to test their responses to CD20-
directed immunotherapeutics, we generated an OCI-Ly8
derivative that simultaneously expressed the ZsGreen and
luciferase reporters. These cells were then transduced with
MS4A1-specific CRISPR-Cas9 lentiviral vectors (lentiCRISPR v2)
Figure 5 (continued) middle panels in panel D). Representative histograms are shown on
the right panel of panel D are shown cells that were additionally treated with increasing c
WST-1 assay. All values are normalized to the “no rituximab Ctrl.” In panels A,C-D, each
with mean values indicated by red lines in the graphs.
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to knock out endogenous CD20 expression before being
reconstituted with V1-, V2-, or V3-rCD20 constructs or an empty
vector Ctrl (CD20KO). A separate batch of parental cells was
transduced with the lentiCRISPR v2 vector containing a
nonspecific gRNA; these wild-type (WT) cells retained the
expression of endogenous CD20 (Figure 6A). We evaluated the
efficiency of CD20 knockouts and reconstitutions using isoform-
specific CD20 RT-qPCR (Figure 6B) and flow cytometry for cell
surface and total CD20 protein (Figure 6C). Interestingly, in the
RT-qPCR assay, CD20KO cells showed roughly the same CD20
transcript levels as WT Ctrl cells (Figure 6B), but these tran-
scripts were apparently noncoding, because the CD20KO cells
were completely CD20 protein–negative (Figure 6C). Further-
more, relative to WT cells, V1-, V2-, and V3-rCD20 cells had
elevated levels of the cognate 5′ UTR isoforms (Figure 6B).
Thus, these cells could act as models for the complete shift in
CD20 splicing toward a specific 5′-UTR variant. As expected,
reconstitution with only V3-rCD20 led to a recovery in CD20
protein expression, which remained undetectable by flow
cytometry in V1- and V2-rCD20 cells (Figure 6C).

We then performed in vitro assays using 1F5 single-chain vari-
able fragment–based CARTs (CART-20), as described in our
earlier studies on B-ALL.37,66 As expected, CART-20 spared
CD20KO- and V2-rCD20–expressing cells. Surprisingly, CART-
20 was able to kill V3-rCD20– and V1-rCD20–expressing cells
equally well despite the apparent lack of detectable CD20
expression in the latter (Figure 6D). We also tested the sensi-
tivity of these cells to the bispecific CD3/CD20 antibody
mosunetuzumab in the presence of donor T cells. We found
that unlike CART-20, mosunetuzumab was only effective
against V3-rCD20– and spared V1-rCD20–expressing cells, just
as it did CD20KO cells (Figure 6E, left). This difference was
statistically significant across 2 independent experiments, with
multiple technical replicates (Figure 6E, right). Taken together,
our in vitro results suggested that B-cell neoplasms in which the
V1 variant predominates could still generate sufficient levels of
the CD20 protein to trigger CART-mediated cytotoxicity, but
these levels would be insufficient for mosunetuzumab to be
effective. This implied that the V3-to-V1 shift could underlie
resistance to mosunetuzumab in patients.

CD20 antigen loss in FL after mosunetuzumab
treatment coincides with a V3-to-V1 shift
It was previously found that in 3 of 4 of mosunetuzumab-
resistant B-NHL tumors that were CD20 protein–negative by
immunohistochemistry, the whole exome sequencing and RNA-
seq failed to detect anyMS4A1 genetic variants or loss of CD20
mRNA, which could have explained the apparent loss of CD20
protein.16 For this study, we obtained formalin-fixed paraffin-
embedded tumor samples from a similar cohort of 4 additional
patients relapsing after mosunetuzumab and performed RNA-
seq to look for changes in the splicing pattern of CD20. All 4
patients had paired pretreatment tumor samples that were
CD20+ by immunohistochemistry and mosunetuzumab relapse
(“post”) samples that had lost CD20 protein expression. In 3 of
the far right of panel A and far left of panel D. At the bottom panel of panel C and
oncentrations of rituximab (RTX), and cell viability (plotted) was measured using the
dot in a graph or value in a heat map represents independent experiments (N ≥ 2),
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4 mosunetuzumab relapse samples, the loss in CD20 protein
expression coincided with either the complete loss of CD20
mRNA (for P195 and P100; Figure 6F) or an out-of-frame
mutation (for P73; supplemental Figure 7). The P29-post sam-
ple, in contrast, retained 300 TPM of the CD20 mRNA
(Figure 6F) that contained no deleterious mutations that could
explain the complete lack of CD20 protein immunoreactivity
(Figure 6G). Using the previously developed MAJIQ package,67

the RNA-seq data of P29 were analyzed for any splicing
changes that could explain the loss of the CD20 protein.
Changes in splicing of the P29-post sample relative to the P29-
pre sample were quantified as delta percentage spliced-in
(ΔPSI) values. Predictably, no significant changes were found
to affect the Ctrl CD19 mRNA because no loss of CD19
expression was observed, which is consistent with the data in
the literature.68 Within the CD20 transcript, only 2 alternative
splicing events exceeded the ΔPSI value of ±0.05. The first
event corresponded to a reduction (ΔPSI = −0.2251) in the use
of an alternative donor site that extended to exon 5 (Figure 6H,
top). Because the alternative donor site leads to a frameshift
and premature stop codon, a reduction in its usage is expected
to increase the expression of the full-length CD20 protein and
would not explain the loss of CD20 expression. The second
event corresponded to a decrease in splicing from exon 1 to 3b
(ΔPSI = −0.2622) that occurred during the V3-to-V1 shift (dia-
gram in Figure 6H, bottom, and sashimi plots in Figure 6I). A
similar shift was observed in P73 relapse (Figure 6F), which
could have predated the inactivating mutation. Thus, the loss of
the CD20 protein in the post-mosunetuzumab P29 sample
coincided with a shift in CD20 splicing from productive V3 to
translation-deficient V1.

Discussion
Here, we demonstrate that in healthy and malignant B cells,
human CD20 mRNA undergoes alternative splicing to generate
up to 4 distinct 5′-UTRs variants, from V1 to V4 (Figure 1B).
Among them, V1 and V3 were the most abundant and together
comprised >90% of the total CD20 transcript pool in most cell
lines and primary samples (Figure 1). Although V1 and V3
contained the same ORF, only V3 was efficiently translated,
accounting for the bulk of the CD20 protein. In contrast, V1
generates negligible amounts of CD20 protein because of
translational inhibition by a prominent stem-loop and multiple
uORFs (Figures 2 and 3).

We also found that by shifting splicing away from V1 and
toward V3, B cells undergoing GC reactions and class switching
Figure 6 (continued) MFI of total APC-CD20 relative to the unstained Ctrls. On the right
independent experiment. Representative histograms are included in each subpanel. (D) V
donor T cells at 1:4 effector-to-target ratio. Cell viability (in percentage) is shown relative
cells. (E) OCI-Ly8 cell viability after 24 hours of coculturing with donor T cells and the i
relative to that of the NT Ctrl. For panel D, data from 2 independent experiments usi
experiments with 2 unrelated donors are shown. In panel D and on the right of panel E, ea
independent experiments. Horizontal bars represent the mean of all replicates. **P < .01;
per immunohistochemistry (IHC) (top) and transcript read abundance per RNA-seq (bar
reads mapping to any exon in CD20 and PAX5. The relative abundance of V1 (red), V2
unique exon-exon junctions found in each 5′-UTR variant of CD20, as color-coded in
mosunetuzumab FL samples. Formalin-fixed paraffin-embedded sections were IHC stain
hematoxylin nuclear counterstain (blue). (H) Changes in ΔPSI values or in the ratio betwe
P29-pre sample. RNA-seq data were analyzed using the MAJIQ algorithm for all possible
Sashimi plots depicting the density of exon-including and exon-skipping reads in the
activated cell sorting; H&E, hematoxylin and eosin.
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could sustain or even enhance CD20 protein levels despite the
reduction in total CD20 mRNA (Figure 1F-G). This model is in
agreement with multiple reports of elevated CD20 protein in
GC cells, relative to those in memory and naïve B cells.69,70 We
further showed that this V1-to-V3 shift is mediated at least partly
by B-cell receptor signaling because activating this pathway in
tonsillar B cells by ligating surface IgM is sufficient to shift
splicing toward V3 (Figure 1E). Increases in the V3 isoform and
CD20 protein can also be observed during EBV infection
(Figure 2B), perhaps as part of the GC-like differentiation pro-
gram that occurs in EBV-infected naïve B cells.56

Regarding cancer, V3 upregulation persisted after peripheral
blood B cells were fully transformed into LCLs (Figure 2A). The
same appears to be the case for eBL (Figure 1H), for which 95%
of the cases are associated with EBV infection.55 Apart from
eBL, both V1 and V3 can be detected in most precursor B-ALL
and mature B-cell neoplasms (eg, DLBCL; Figure 1H), but CD20
protein levels correlate solely with the V3 isoform (Figure 2).
Conversely, a subset of neoplasms predominantly express V1 at
diagnosis, which could account for the inferior responses of
CLL11-14,27 and precursor B-ALL71 to existing anti-CD20
antibody–based therapies. This suggests that the bulk of the
CD20 protein is produced by V3 and that in cells with active
CD20 transcription, the V3-to-V1 ratio is a key determinant of
CD20 positivity. It remains to be determined whether the
redirection of splicing toward V3 mediates the enhanced CD20
expression and rituximab sensitivity observed in vitro following
treatment with interleukin-4, protein kinase C agonists, histone
deacetylase inhibitors, or knockdown of the FOXO1 transcrip-
tion factor.72-75

To determine whether the V3-to-V1 shift is a relevant mecha-
nism of resistance to CD20-directed immunotherapies, we
generated OCI-Ly8 variants that express either V1 or V3 indi-
vidually and tested their responses to CART-20 and mosune-
tuzumab. We found that V1-expressing cells had no CD20
protein detectable by flow cytometry (Figure 6C), and it took a
much more sensitive 5′-UTR–green fluorescent protein reporter
assay to observe baseline translation from the V1 mRNA
(Figure 3F). Nevertheless, the V1-expressing cells remained
sensitive to CART-20 (Figure 6D). Although unexpected, this
finding is in agreement with the large body of literature
attesting to the unique efficacy of CAR T cells against lymphoid
malignancies with very low expression of the target antigens.76

This situation might contrast with the use of rituximab and
bispecific CD3/CD20 T-cell engagers, such as mosunetuzumab,
which, in our experimental system, required high levels of CD20
, it is quantitated as the cell surface CD20 levels expressed as MESF. Each spot is an
iability of OCI-Ly8 cells after 24 hours of coculturing with CART-20 or untransduced
to that of Ctrl OCI-Ly8 cells that were not cocultured with either CART-20 or donor T
ndicated concentrations of mosunetuzumab. Cell viability (in percentage) is shown
ng T cells from a single donor are shown. For panel E, data from 4 independent
ch spot represents the results from the replicate wells, with different colors denoting
***P < .001 per the Kruskal-Wallis test (pwc: the Dunn test). (F) CD20 and PAX5 status
graphs) in paired pre- and postmosunetuzumab FL. TPM values quantify RNA-seq
(green), V3 (blue), and V4 (yellow) is the ratio of sequencing reads mapping to the
the Reads spanning panel. (G) Micrographs corresponding to P29 pre and post-
ed for CD20 (brown colorimetric detection with 3, 3’-diaminobenzidine [DAB]) using
en reads including or excluding CD20 exons in the P29-post sample relative to the
splicing changes in CD20, but only ΔPSI values above or below 0.05 are shown. (I)
RNA-seq data corresponding to P29-pre and -post samples. FACS, fluorescence-
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expression only afforded by the V3 cassette (Figure 6E). It was
no surprise that the V3-to-V1 shift was apparent in 2 post-
mosunetuzumab FL relapses, P73 and P29 (Figure 6F). More-
over, in the latter case, the shift was the only molecular event
known to reduce CD20 expression because no concomitant
MS4A1 mutations could be identified in that sample.16

The propensity of B-cell malignancies to exploit alternative
splicing mechanisms for antigen escape is now well docu-
mented, with CD19 and CD22 serving as prime examples.50,51

With respect to rituximab treatment, both mutational77 and
nonmutational20 mechanism of CD20 loss have been reported,
but the former is generally not considered a significant source of
rituximab resistance in DLBCL.78 Data on postmosunetuzumab
relapse are just beginning to emerge.16 As more paired pre- and
postrelapse samples from patients on CD20-directed therapies
become available, the extent to which acquired mutations and
aberrant splicing (of both coding and noncoding exons79,80)
supplement each other will become clearer.

At least in theory, targeting aberrant splicing in cancer with small-
molecule inhibitors and antisense oligonucleotides (ASOs)81-84 is
more feasible than reversing hardwired mutations in DNA.
Although previous studies have used ASOs to increase translation
by blocking inhibitory elements within the 5′-UTR,85,86 our results
demonstrated that ASOs could also enhance translation by
modulating the alternative splicing of noncoding exons. Besides
CD20, at least a few dozen other genes regulate mRNA trans-
lation via alternative splicing of their 5′-UTRs,87 and >50% of
human genes use uORFs to regulate protein output in both
diseased and healthy tissues.88 Harnessing this mechanism to
achieve better treatment outcomes will be the next challenge for
the cancer immunotherapy research community.
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