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Ironing out β-thalassemia
during pregnancy
Jillian Simoneau and Yatrik M. Shah | University of Michigan

In this issue of Blood, Yu et al1 elucidate the mechanisms of iron homeostasis
in β-thalassemia during pregnancy. The inherited disorder β-thalassemia is
caused by disruptions to hemoglobin β-globin chain production, resulting in
microcytic, hypochromic anemia. Individuals with β-thalassemia major have
little to no production of β-globin chains, which leads to a more severe
transfusion-dependent anemia than individuals with β-thalassemia inter-
media. The severity of β-thalassemia intermedia is highly variable, with the
severity of the specific globin mutation and the proportion of β-globin chain
produced determining the severity of the condition.2 Iron overload is a
common feature in both β-thalassemia major and intermedia due to increased
erythropoietic demand and suppression of hepcidin expression.
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Although transfusion contributes signifi-
cantly to iron load in β-thalassemia major,
enhanced gastrointestinal absorption is
central to tissue iron accumulation β-thal-
assemia intermedia.3 Given this back-
ground, it is important to consider the
potential impact of gestation on β-thalas-
semia. Patients with both transfusion- and
non–transfusion-dependent thalassemia
may experience complications during
pregnancy, including cardiac and liver
issues, increased risk of thrombosis and
infection, endocrinopathies, and medica-
tion adverse effects.4,5

Using murine models of β-thalassemia
intermedia (Th3/+), the article investigates
changes in iron metabolism in both dams
and fetal offspring during gestation. This
study is unique as it provides an investi-
gation into the pathophysiology of iron
balance, which has not yet been reported
in the literature. The authors discovered
that hyperferremia in pregnant β-thalas-
semia mouse models resulted in differen-
tial iron loading of fetuses compared
with pregnant wild-type counterparts. To
understand the iron loading differential,
expression of iron transporters and pro-
posed possible mechanisms that could
account for this disparity were investi-
gated. Yu et al also examined the impact
of fetuses’ genotype, thalassemia or wild
type, on thalassemic dams, and their
findings suggest a fetal influence on
maternal iron homeostasis. Their experi-
mental design included both wild-type
and β-thalassemia (Th3/+) dams carrying
R 2
fetuses of both genotypes, providing a
unique perspective because the current
literature primarily focuses on β-thalas-
semic mothers.

Yu et al discovered that both nonpregnant
and pregnant Th3/+ mice have increased
splenic iron load compared with wild-type
controls, which aligns with the known
functions of the spleen as a site of extra-
medullary erythropoiesis and red blood
cell recycling. They also showed that
pregnant wild-type and Th3/+ mice have
enhanced iron absorption compared with
nonpregnant mice of the same genotype.
However, they found similar iron absorp-
tion in nonpregnant wild-type and β-thal-

discuss that iron absorption normalizes in
weanlings and adolescent Th3/+ mice,
which may present a discrepancy between
humans as iron loading increases with
age.6

Yu et al found that Th3/+ fetuses from
both wild-type and Th3/+ dams had
iron overload, suggesting that iron
loading occurs early in pregnancy. Late
gestational iron absorption studies
demonstrated lower absorption in both
wild-type and Th3/+ fetuses of Th3/+
dams compared with those of wild type,
suggesting that gestational iron loading
mainly occurs early in pregnancy. The
results presented in the article delineate
a crucial gestational window for iron
loading. However, the use of chelation
medications during pregnancy is gener-
ally considered unsafe due to teratoge-
nicity. Case studies and retrospective
analysis have shown successful preg-
nancies in patients with unintentional
use; however, due to lack of controlled
studies in humans, discontinuation of
these medications at the onset of preg-
nancy is recommended.4,7

The authors also found significant changes
in theexpression of nonheme iron transport
proteins (divalent metal transporter 1
[DMT1], transferrin receptor 1 [TFR1], and
ferroportin 1 [FPN1]) in various organs of
both pregnant and nonpregnant Th3/+
dams, compared with wild-type control
mice. Their study revealed that the iron
importer DMT1 and exporter FPN1
expression in the duodenum was lower in
pregnant Th3+ dams than in nonpregnant
Th3/+ dams. Furthermore, their data sug-
gest that iron-loaded fetuses were able to
mitigate iron loading through hepcidin
transactivation and downregulation of
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Cellular and phenotypic outcomes in thalassemia during pregnancy. Placentomegaly, fetal growth restriction, and
systemic iron homeostasis are altered in thalassemic dams and/or fetuses.
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placental FPN. These findings provide
insight into potential innate protective
mechanisms as there is still a gap in the
understanding of iron metabolism in
pregnancyandworsening ironoverload is a
concern. Furthermore, wild-type dams
carrying Th3/+ fetuses did not have pla-
centomegaly or hyperferritinemia, and
Th3/+ fetuses from wild-type dams had
increased placental nonheme iron as well
as increased fetal liver nonheme iron
compared with wild-type fetuses from the
same litter. This suggests that fetal iron load
is not solely based on maternal iron status.

Intrauterine growth restriction is a known
complication of pregnancies affected by
β-thalassemia. Yu et al found that
placental weight and nonheme iron were
increased in Th3/+ fetuses, whereas there
was a decrease in fetal weight that was
inversely proportional (see figure). Previ-
ous studies on β-thalassemia intermedia
had suggested that intrauterine growth
restriction may be due to ureteroplacental
hypoxia, which may lead to the need for
more transfusion support during preg-
nancy.8 However, the findings contradict
this hypothesis by suggesting that iron
overload contributes to intrauterine
growth restriction.

Together, these findings highlight the
importance of further studies to better
understand the influence Th3/+ fetuses
have on wild-type mothers. In addition,
due to the phenotypic variability of
β-thalassemia intermedia in humans, it
will be important for further studies to
confirm whether the findings from Yu
et al remain consistent across patients
with different disease presentations.
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