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(GC) represents a particular vulnerability
and predictor of relapse in ETP and some
non-ETP T-ALL and that removal of IL-7 or
JAK inhibition resensitized GC-resistant,
IL-7–dependent T-ALL to GC.8 Mechanis-
tically, GC exposure directly causes upre-
gulation of IL-7R expression, leading to
downstream BCL2 upregulation, which in
turn promotes leukemia survival. However,
targeted inhibition of the IL-7R/JAK/
STAT5/BCL2 signaling axis could reverse
this phenomenon, recover GC sensitivity,
and synergistically provide therapeutic
benefit in T-ALL.9 These data suggest that
dual inhibition combined with GC-rich
treatment phases could potentially abro-
gate GC resistance in select cohorts.
However, as in any aggressive and het-
erogeneous cancer, single-cell data have
already introduced the concern that select
T-ALL cell populations with variable
responsiveness to inhibition may persist at
relapse.10 Thus, the field will certainly
benefit from efforts to combine synergistic
IL-7R pathway–targeted therapies in a
multifaceted attempt to avoid therapeutic
escape, as here introduced by Courtois
et al.
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All about Down syndrome
ALL
Zhaohui Gu1 and Shai Izraeli1-3 | 1Beckman Research Institute of City of Hope;
2Schneider Children’s Medical Center; and 3Tel Aviv University

Children with Down syndrome (DS) have a 20 times higher risk of developing
acute lymphoblastic leukemia (DS-ALL). In this issue of Blood, Li et al1 report
a comprehensive genomic analysis of 295 DS-ALLs, identifying 15 distinct
molecular subtypes, 3 of which (see figure) have a much higher frequency in
DS-ALL compared with ALL in children without DS (non-DS ALL).
Chromosomal aneuploidy is common in
cancer. Although DS is surprisingly asso-
ciated with an overall decreased lifetime
risk of cancer, the risk for childhood leu-
kemias is markedly increased.2 Myeloid
leukemias of DS have unique somatic
genomic features; however, DS-ALLs are
more heterogeneous, but with significant
differences from non-DS ALL in children.3

We and others have discovered that
approximately half of DS-ALLs have an
abnormal expression of CRLF2, whose
heterodimerization with IL7Rα forms
the receptor to thymic stromal lympho-
poietin. CRLF2 expression is caused by
chromosomal rearrangement juxtaposing
the upstream promoter of a constitutively
expressed gene P2RY8 or by a trans-
location of CRLF2 into the immunoglob-
ulin heavy chain locus (IGH). CRLF2
rearrangements (CRLF2r) are frequently
accompanied by additional activating
mutations in the receptors themselves
or in the downstream signaling molecules
of JAK/STAT or RAS/MAPK pathway
(reviewed in Tal et al4). Interestingly, the
same type of ALL has been detected in
~5% of non-DS ALL.5

In addition to previously described CRLF2r
DS-ALL, Li et al discovered 2 other
subtypes of ALL enriched in DS-ALLs,
altered C/EBP (C/EBPalt) and
IGH::IGF2BP1. More than 10% of DS-ALL
cases harbor alterations targeting C/EBP
genes, with overexpression of CEBPD, or
less commonly, CEBPA, or CEBPE. The C/
EBP family of transcription factors regulate
genes involved in multiple biological pro-
cesses. They also play a crucial role in
myeloid differentiation and pathogenesis
of myeloid and lymphoid malignancies.6

The authors reported a significant
concurrence of FLT3, SETD2, and KDM6A
mutations (42.3%, 42.3%, and 30.8%,
respectively) in C/EBPalt DS-ALL,
compared with only 4.1%, 5.0%, and 5%,
respectively, in the rest of DS-ALL sub-
types. CEBPD, the most commonly
altered gene in C/EBPalt subtype,
enhanced the differentiation of mouse
hematopoietic progenitor cells into pro-B
cells in vitro, particularly in a DS genetic
background.1 This finding is consistent
with a specific role of CEBPD over-
expression in the development of DS-ALL.

Another novel subtype defined by
IGH::IGF2BP1 rearrangements was ob-
served in 2.7% of DS-ALL cases. This sub-
type is characterized by deregulated
expression of IGF2BP1 gene, which
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Molecular complexity of DS-ALL. Li et al identified 15molecular subtypes, with 3 significantly novel subtypes enriched
inDS-ALLcomparedwith non-DSALL (ratios shown inparentheses under subtype labels). CRLF2r, commonly resulting
from IGH::CRLF2 translocations or P2RY8::CRLF2microdeletions, leads toCRLF2 overexpression and activation of the
JAK/STAT or RAS/MAPK signaling pathway, promoting pro–B-cell proliferation. Although CRLF2r is a signature event
of a Ph-like subtype, this large DS-ALL cohort reveals further heterogeneity based on GEP, with Ph–like CRLF2r cases
havingworse clinical outcomes than non–Ph-like group. Another novel subtype is characterized by C/EBP gene family
activation, primarily involving the CEBPD gene through genomic translocations (often with the IGHJ region) or
enhancer hijackingmutations. This subtype displays a uniqueGEP, highermutation rates in SETD2, KDM6A, and FLT3
genes, and intermediate risk levels. CEBPD overexpression promotes hematopoietic progenitor cell differentiation
into pro-B cells, particularly in a cT21 genetic background. A minor subtype, characterized by IGHJ::IGF2BP1 gene
rearrangement likely through RAG-mediated structural changes near RSS regions, has a relatively favorable clinical
outcome.Although no distinctGEP is observed for this subtype, somecases share a similarGEPwith theETV6::RUNX1
subtype, potentially because of IGF2BP1 overexpression in ETV6::RUNX1 subtype resulting from ETV6 loss, which
normally represses IGF2BP1 expression. The observed function of IGF2BP1 in stabilizing ETV6::RUNX1 messenger
RNA further supports the potential association between these 2 genetic alterations in ALL. However, as ETV6::RUNX1
messengerRNA isnotexpressed inDS-ALL, the roleof IGF2BP1 inDS-ALL remainsunknown.ALL, acute lymphoblastic
leukemia; CRLF2r, CRLF2 rearrangement; GEP, gene expression profile; RAG, recombination-activating gene; RSS,
recombination signal sequences.
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encodes a member of the insulin-like
growth factor 2 messenger RNA (mRNA)–
binding protein family. This protein is
required for the transportation of certain
mRNAs by affecting their stability, trans-
latability, or localization. In ETV6::RUNX1
ALL, it binds and stabilizes ETV6::RUNX1
mRNA.7 IGF2BP1 is also activated in
ETV6::RUNX1/-like ALL, owing to the loss of
ETV6, a transcription repressor of IGF2BP1.
Further research is needed to evaluate
IGF2BP1 binding partners in non-
ETV6::RUNX1 ALL and understand why
this subtype is more frequent in DS-ALL.

The current and earlier studies raise 2
interesting questions. The first relates to
the poor clinical outcome of DS-ALL.
The worse prognosis of DS-ALLs has
been attributed to both the high risk of
chemotherapy associated infections in
these patients and to the genomic sub-
types of DS-ALLs. Here, Li et al demon-
strate that this higher risk is limited to a
subgroup of CRLF2r ALL that has a gene
expression signature of Philadelphia
chromosome (Ph)–like subtype of ALL.
However, what distinguishes the Ph-like
subtype that might explain the worse
prognosis is still unknown.

Somatic alterations in CRLF2r ALL differed
markedly between Ph-like and non–Ph-like
subtypes with IKZF1 (76.9% vs 16.7%),
XBP1 (26.9% vs 0%), USP9X (34.6% vs
2.8%), andEBF1 (53.8%vs2.8%) alterations
overrepresented in the former. However,
by contrast to a previous study,8 IKZF1
deletions were not independently associ-
ated with worse prognosis. Interestingly,
we have shown that CRLF2r JAK2mutated
DS-ALLs are quite sensitive to chemo-
therapy, possibly because of “hyper-
signaling” by mutated JAK2 in the B-cell
blasts.3 The USP9X mutant, which is more
common in Ph-like subtype, reduces this
hypersignaling and enhances the resis-
tance of leukemic blasts to chemotherapy.

Perhaps the greatest mystery is why
constitutive trisomy 21 (cT21) confers
a significantly higher risk of B-cell precursor
ALL. Recent analysis of hematopoietic
development in human fetuses with DS
revealed a marked B-cell developmental
arrest.9 Li et al demonstrate that aberrant
CEBPD expression enhances pro–B-cell
development in the background of cT21.
We have recently reported the same phe-
nomenon with CRLF2 + IL7R expression in
human cells.10 The relative block in B-cell
differentiation may also explain the high
rate of recombination–activating gene
mediated genomic rearrangements iden-
tified by Li et al, leading to each of the
genomic abnormalities (see figure). It is
tempting to speculate that DS-ALL repre-
sents an unintended consequence of
genomic events that drive differentiation
toward the B-cell lineage, thereby rescuing
the inherent developmental defect in DS.
This phenomenon is somewhat similar to
themyelodysplastic syndrome arising from
the bone marrow “attempt” to correct the
germ line SAMD9/SAMD9L mutation by
deleting the chromosome 7 carrying the
mutated gene.11 Could DS-ALL be a dis-
ease caused by an attempt to correct
another disease, such as the B-cell devel-
opmental arrest caused by 3 copies of
chromosome 21?
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Ironing out β-thalassemia
during pregnancy
Jillian Simoneau and Yatrik M. Shah | University of Michigan

In this issue of Blood, Yu et al1 elucidate the mechanisms of iron homeostasis
in β-thalassemia during pregnancy. The inherited disorder β-thalassemia is
caused by disruptions to hemoglobin β-globin chain production, resulting in
microcytic, hypochromic anemia. Individuals with β-thalassemia major have
little to no production of β-globin chains, which leads to a more severe
transfusion-dependent anemia than individuals with β-thalassemia inter-
media. The severity of β-thalassemia intermedia is highly variable, with the
severity of the specific globin mutation and the proportion of β-globin chain
produced determining the severity of the condition.2 Iron overload is a
common feature in both β-thalassemia major and intermedia due to increased
erythropoietic demand and suppression of hepcidin expression.
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Although transfusion contributes signifi-
cantly to iron load in β-thalassemia major,
enhanced gastrointestinal absorption is
central to tissue iron accumulation β-thal-
assemia intermedia.3 Given this back-
ground, it is important to consider the
potential impact of gestation on β-thalas-
semia. Patients with both transfusion- and
non–transfusion-dependent thalassemia
may experience complications during
pregnancy, including cardiac and liver
issues, increased risk of thrombosis and
infection, endocrinopathies, and medica-
tion adverse effects.4,5

Using murine models of β-thalassemia
intermedia (Th3/+), the article investigates
changes in iron metabolism in both dams
and fetal offspring during gestation. This
study is unique as it provides an investi-
gation into the pathophysiology of iron
balance, which has not yet been reported
in the literature. The authors discovered
that hyperferremia in pregnant β-thalas-
semia mouse models resulted in differen-
tial iron loading of fetuses compared
with pregnant wild-type counterparts. To
understand the iron loading differential,
expression of iron transporters and pro-
posed possible mechanisms that could
account for this disparity were investi-
gated. Yu et al also examined the impact
of fetuses’ genotype, thalassemia or wild
type, on thalassemic dams, and their
findings suggest a fetal influence on
maternal iron homeostasis. Their experi-
mental design included both wild-type
and β-thalassemia (Th3/+) dams carrying
R 2
fetuses of both genotypes, providing a
unique perspective because the current
literature primarily focuses on β-thalas-
semic mothers.

Yu et al discovered that both nonpregnant
and pregnant Th3/+ mice have increased
splenic iron load compared with wild-type
controls, which aligns with the known
functions of the spleen as a site of extra-
medullary erythropoiesis and red blood
cell recycling. They also showed that
pregnant wild-type and Th3/+ mice have
enhanced iron absorption compared with
nonpregnant mice of the same genotype.
However, they found similar iron absorp-
tion in nonpregnant wild-type and β-thal-

discuss that iron absorption normalizes in
weanlings and adolescent Th3/+ mice,
which may present a discrepancy between
humans as iron loading increases with
age.6

Yu et al found that Th3/+ fetuses from
both wild-type and Th3/+ dams had
iron overload, suggesting that iron
loading occurs early in pregnancy. Late
gestational iron absorption studies
demonstrated lower absorption in both
wild-type and Th3/+ fetuses of Th3/+
dams compared with those of wild type,
suggesting that gestational iron loading
mainly occurs early in pregnancy. The
results presented in the article delineate
a crucial gestational window for iron
loading. However, the use of chelation
medications during pregnancy is gener-
ally considered unsafe due to teratoge-
nicity. Case studies and retrospective
analysis have shown successful preg-
nancies in patients with unintentional
use; however, due to lack of controlled
studies in humans, discontinuation of
these medications at the onset of preg-
nancy is recommended.4,7

The authors also found significant changes
in theexpression of nonheme iron transport
proteins (divalent metal transporter 1
[DMT1], transferrin receptor 1 [TFR1], and
ferroportin 1 [FPN1]) in various organs of
both pregnant and nonpregnant Th3/+
dams, compared with wild-type control
mice. Their study revealed that the iron
importer DMT1 and exporter FPN1
expression in the duodenum was lower in
pregnant Th3+ dams than in nonpregnant
Th3/+ dams. Furthermore, their data sug-
gest that iron-loaded fetuses were able to
mitigate iron loading through hepcidin
transactivation and downregulation of
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