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MYELOID NEOPLASIA
Paralog-specific signaling by IRAK1/4 maintains
MyD88-independent functions in MDS/AML
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KEY PO INT S

• Cotargeting of IRAK1
and IRAK4 is required
to maximally suppress
LSPC function in vitro
and in vivo by inducing
cellular differentiation.

• The dependency of
IRAK1 and IRAK4 in
MDS/AML is
independent of its
canonical role using
MyD88.
/bl
Dysregulation of innate immune signaling is a hallmark of hematologic malignancies.
Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodys-
plastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase
IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in pre-
clinical studies and clinical trials for MDS and AML. The reasons underlying the limited
responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting
IRAK4 in leukemic cells elicits functional complementation and compensation by its
paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and
IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce
differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are
presumed to function primarily downstream of the proximal adapter MyD88, we found
that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML
occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses
ood_bld-2022-018718-m
ain.pdf by
revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of
pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To
translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4
inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in
xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results
provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including
MDS/AML.
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Introduction
Myelodysplastic syndrome (MDS) and acute myeloid leukemia
(AML) originate in hematopoietic stem and progenitor cells
(HSPCs), referred to as leukemia stem/progenitor cells (LSPCs),
that acquire genetic and/or epigenetic alterations.1,2 LSPCs
replenish the bulk leukemic blasts and contribute to treatment-
related relapse.3 Recent therapies targeting LSPCs have shown
improved clinical outcomes for patients with high-risk (HR)
MDS/AML.4,5 LSPCs share cellular states and transcriptional
programs with normal HSPCs, such as ones that maintain self-
renewal properties and prevent untimely differentiation.
Uncovering signaling dependencies unique to LSPCs is critical
to improve the therapeutic responses. It was recently reported
that LSPCs from MDS/AML exhibit extensive dysregulated
immune and inflammatory pathways.6 Moreover, many genetic
alterations in MDS/AML impinge on loll-like receptor (TLR) and
interleukin 1 receptor (IL-1R) pathways,7-13 which converge on
IL-1R–associated kinases (IRAKs).14 In healthy immune cells, the
activation of IL-1R/TLRs leads to the recruitment of MyD88,
which then forms a complex with IRAK4.15 IRAK4 subsequently
phosphorylates IRAK1 or IRAK2, which then activates IκB kinase
(IKK)/NF-κB and MAPKs. Chronic activation of canonical
MyD88-IRAK signaling axis is presumed to underlie malignant
hematopoiesis, as supported by activating MyD88 mutations in
lymphomas and genetic alterations that dysregulate the
MyD88-IRAK axis in MDS/AML, including splicing factor muta-
tions that induce hypermorphic IRAK4 isoforms.16-18 Conse-
quently, IRAK4 inhibitors and proteolysis targeting chimeric
(PROTAC) small molecule degraders are being assessed in
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preclinical studies and clinical trials for hematologic malignancies
and inflammatory conditions.14 The IRAK4 kinase inhibitor PF-
06650833 (zimlovisertib) is being evaluated for chronic inflam-
matory disorders,19 whereas CA-4948 (emavusertib) is being
evaluated for hematologic malignancies, including lymphoma,
MDS, and AML.20 The IRAK4 PROTACs are being tested in
immunoinflammatory disease and MyD88-mutant lym-
phomas.21,22 Initial results from the clinical trials in HR-MDS/AML
with CA-4948 showed reductions in leukemic blasts and
response rates of ~40%.23 Interestingly, patients with HR-MDS/
AML with spliceosome mutations achieved better responses as
compared with patients without spliceosome mutations, which
supports the findings that mutations in splicing factors induce
hypermorphic IRAK4 isoforms and consequently innate immune
signaling in MDS/AML.17,18 The ongoing clinical trials and
mounting evidence linking IRAK1 and IRAK4 to myeloid malig-
nancies suggest that therapies targeting IRAK4 will likely emerge
for MDS/AML. Although these studies propose that IRAK4 is a
relevant target in MDS/AML, the magnitude of responses sug-
gest IRAK4 inhibitors as monotherapy will likely be inadequate.23

Herein, we evaluated the mechanistic basis for the limited
responses to IRAK4 inhibitors and propose novel IRAK-directed
therapeutic strategies for MDS/AML.

Material and methods
See supplemental File, which is available on the Blood website,
for additional details.

Compounds and materials
PF-06650833 was purchased from Sigma-Aldrich. CA-4948 and
IRAK4 degrader-1 were purchased from MedChemExpress. KME-
2780 and KME-3859 were obtained from Kurome Therapeutics.

Clonogenic assays
Clonogenic progenitor frequencies were determined using
plating cell lines or patient samples in Methocult H4434 at a
density of 500 cells per mL. Plates were imaged after ~9 to 14
days using the STEMvision counter (StemCell Technologies).

NF-κB reporter
THP1-Blue NF-κB SEAP cells (Invivogen) were plated in tripli-
cates with the indicated inhibitor for 24 hours. The supernatant
was added to QuantiBlue Reagent (Invivogen), incubated for 30
minutes, and absorbance was read at 630 nm.

Kinome screens
Dissociation constants were measured using KINOMEscan
Profiling (DiscoverX). Kinase inhibition was measured by Reac-
tion Biology.

CRISPR/Cas9 mutant cells
THP1 IRAK4-knockout (IRAK4KO) clone was generated as pre-
viously described.17 THP1 IRAK1KO and IRAK1/4-double KO
(IRAK1/4dKO) were established from the original wild-type (WT)
and IRAK4KO clones. The remaining cell lines and patient-
derived samples were generated from parental populations
using a guide RNA targeting exon 1 of IRAK4. MyD88KO and
TRAF6KO clones were generated from parental populations
using synthetic guide RNAs targeting exon 1 of MyD88 and-
TRAF6, respectively.
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Results
IRAK4 inhibition results in compensatory
activation of IRAK1 in MDS/AML
To investigate IRAK4 in MDS/AML, we evaluated the clinical-
stage IRAK4 inhibitors CA-4948 and PF-06650833 in cell
lines and patient-derived samples (supplemental Table 1). The
selected samples form colonies in methylcellulose, an indica-
tion of LSPC function24, and express the hypermorphic IRAK4
isoform (IRAK4-L). As expected, both IRAK4 inhibitors sup-
pressed TLR-mediated NF-κB activation in AML cells
(supplemental Figure 1A). As reported,17 CA-4948 treatment
resulted in a modest inhibition of colony formation in a subset
of MDS/AML cell lines and patient-derived samples
(Figure 1A). Despite a greater potency in NF-κB assays
(supplemental Figure 1A), PF-06650833 was not as effective as
CA-4948 at suppressing colony formation (supplemental
Figure 1B). This discrepancy may reflect the distinct
polypharmacology of the inhibitors. CA-4948 treatment
moderately suppressed the proliferation and survival of THP1
cells and had a negligible impact on the growth kinetics of
MDSL cells (supplemental Figure 1C), suggesting that IRAK4
inhibition is not cytotoxic. To confirm that the effects observed
with the IRAK4 inhibitors were mediated by targeting IRAK4,
we generated IRAK4-deficient isogenic cell lines (IRAK4KO)
(Figure 1B). The deletion of IRAK4 resulted in a moderate
reduction in LSPC colonies (Figure 1C). Collectively,
IRAK4 inhibition incompletely suppresses LSPC function,
recapitulating the observations from clinical trials for HR-
MDS/AML.

To explore the mechanisms contributing to the moderate and
incomplete responses to IRAK4 inhibitors in MDS/AML, we
examined gene expression changes upon targeting IRAK4.
RNA sequencing was performed using THP1 cells treated with
the IRAK4 inhibitors or a PROTAC (IRAK4 degrader-1) and
isogenic WT and IRAK4KO THP1 cells. To identify compensa-
tory pathways following either IRAK4 kinase inhibition or
degradation, we focused on upregulated genes (Figure 1D;
supplemental Tables 2-5). There were 91 commonly upregu-
lated genes after the treatment with CA-4948 and
PF-06650833 relative to vehicle-treated cells (Figure 1E;
supplemental Figure 1D). After the deletion (IRAK4KO) or
pharmacologic degradation (IRAK4 degrader-1) of IRAK4, 68
commonly upregulated genes were identified (Figure 1E;
supplemental Figure 1E). Unexpectedly, pathway analysis of
the overlapping upregulated genes corresponded with the
enrichment of TLR signaling upon IRAK4 kinase inhibition
(Figure 1F) and with that of inflammatory response and
IL-6/JAK/STAT signaling upon IRAK4 deletion (Figure 1G). As
such, we posited that compensatory signaling via proximal
effectors of MyD88-IRAK may contribute to the limited efficacy
of IRAK4 inhibitors (Figure 1H). Immunoblotting revealed an
increased protein expression of IRAK1 and TRAF6 but not
MyD88 or IRAK2 in IRAK4KO MDS/AML cells relative to control
cells (Figure 1I). Importantly, IRAK1 phosphorylation, an indi-
cation of its activated state, remained elevated upon the
deletion of IRAK4 (Figure 1J). Treatment with IRAK4 degrader-
1 (Figure 1K) or CA-4948 also resulted in increased IRAK1
phosphorylation (Figure 1L). Thus, IRAK4 deficiency or kinase
inhibition corresponds with IRAK1 activation in MDS/AML
cells.
BENNETT et al



Inositol phosphate metabolism
cAMP signaling pathway

Cortisol synthesis
Regulation of lipolysis

Fanconi anemia pathway
Ovarian steroidogenesis

Vesicular transport
Phototransduction

Inflammatory regulation (TRP channels)
Legionellosis (TLR signaling)

150

100

50

0

AML(1294)

150

200

100

50

0

AML(1714)

300

400

200

100

0

OCIAML3

150
200
250

100
50
0

TF1
80

60

40

20

0

MDSL
150

100

50

0Nu
m

be
r o

f c
ol

on
ie

s THP1

125

100

75

50

25

0

AML(1294)
300
250
200

100
150

50
0

OCIAML3
400

300

200

100

0Nu
m

be
r o

f c
ol

on
ie

s

THP1

*
400

300

200

100

0

MDSL

* 125

100

75

50

25

0

TF1

*

WT

IRAK4KO

CA-4948 vs DMSO

PF-066 vs DMSO

IRAK4KO vs WT

IRAK4 degrader-1 vs DMSO

WT IRAK4KO

IRAK4
inhibition

IRAK4 deletion/
degradation

WT IRAK4KO WT IRAK4KO WT IRAK4KO WT IRAK4KO

IRAK4

Vinculin

THP1 MDSL TF1 OCIAML3 AML(1294)

IRAK1

IRAK2
IRAK1

pIRAK1

IRAK4

TRAF6

MyD88

Vinculin Vinculin

THP1MDSL TF1 THP1MDSL TF1AML(1294)

CA-4948 0 uM 1 uM 10 uM

vs

vs
PF-066

DMSO

CA-4948
vs

DMSO

IRAK4
degrader

IRAK4KO
vs

WT

RNA-sequencing

Compensatory pathways

Up genes

Up genes

179 91 301

754 68 232

0.0 0.5 1.0
–Log(P-value)

1.5 2.0

0 1 2
–Log(P-value)

3 4

IRAK4 Inhibitor
(Up genes)

IRAK4KO/Degrader-1
(Up genes)

TNF signaling via NF-kB
Xenobiotic metabolism

IL-2/STAT5 signaling
UV Response Down

Epithelial Mesenchymal Transition
Mitotic Spindle

Hedgehog signaling
Apoptosis

IL-6/JAK/STAT3 signaling
Inflammatory response

WT IRAK4KO WT IRAK4KO WT IRAK4KO
WT IRAK4KO WT IRAK4KO WT IRAK4KOWT IRAK4KO

Canonical
MyD88-dependent

signaling

TLR/IL1R

NF-kB
MAPK

MyD88

IRAK4

IRAK1/2

TRAF6

A

C

F

H

I J

G

B

D

E

Figure 1. IRAK4 inhibition causes the activation of IRAK1. (A) Colony formation in a panel of MDS/AML cell lines and patient-derived samples treated with the indicated
concentrations of CA-4948 (2 independent experiments). (B) Immunoblots for IRAK4 in WT and IRAK4KO AML cell lines and patient-derived samples. (C) Colony formation of

IRAKs AND MYELOID LEUKEMIA 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11 991

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/142/11/989/2076529/blood_bld-2022-018718-m

ain.pdf by guest on 02 June 2024



IRAK1

IRAK4

pIRAK1

Vinculin

THP1MDSL

IRAK4 degrader-1 (�M)

0 0.5 1 5 0 0.5 1 5

K L

IRAK1

IRAK2

IRAK4

pIRAK1

Vinculin

AML (1714)MDSL

– + – +

CA-4948 CA-4948

Figure 1 (continued) WT and IRAK4KO AML cell lines and patient-derived samples. (D) Experimental overview: RNA sequencing was performed using WT and IRAK4KO THP1 cells,
and THP1 cells were treated for 24 hours with the indicated inhibitors. Genes upregulated upon IRAK4 deficiency or chemical inhibition were used to annotate compensatory
pathways. (E) Venn diagrams of overlapping upregulated genes upon IRAK4 deficiency or IRAK4 chemical inhibition. (F) Pathway enrichment of Kyoto Encyclopedia of Genes and
Genomes (KEGG) data sets using overlapping genes increased upon the treatment with IRAK4 inhibitors. (G) Pathway enrichment of KEGG data sets using overlapping genes
increased upon treatment with IRAK4 degrader-1 or after the deletion of IRAK4. (H) Overview of canonical Myd88-dependent signaling: upon TLR ligation, MyD88 nucleates a
complex with IRAK4, which signals through IRAK1 and/or IRAK2 and then TRAF6 to activate the NF-κB and MAPK pathways. (I) Immunoblots for IRAK1, IRAK2, TRAF6, and MyD88 in
WT and IRAK4KO AML cell lines and patient-derived samples. (J) Immunoblots for phoshpo-IRAK1, total IRAK1, and IRAK4 inWT and IRAK4KO cell lines. (K) Immunoblots for phoshpo-
IRAK1, total IRAK1, and IRAK4 in MDSL and THP1 cells treated for 24 hours with IRAK4 degrader-1. (L) Immunoblots for phospho-IRAK1, total IRAK1, IRAK2, and IRAK4 in MDSL and
AML (1714) treated for 24 hours with CA-4948 (10 μM). Significance was determined with a Student t test (*P < .05). Error bars represent the standard deviation.
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Cotargeting IRAK1 and IRAK4 is required to
suppress LSPCs
Because IRAK1 is activated upon the inhibition or deletion of
IRAK4, we speculated that targeting IRAK1 would augment
IRAK4 inhibitors in MDS/AML. Next, we generated IRAK1-
deficient (IRAK1KO) THP1 and MDSL cell lines (supplemental
Figure 2A). IRAK1KO MDS/AML cells exhibited similar growth
kinetics and colony formation as that of WT cells (Figure 2A-B).
However, IRAK1KO MDS/AML cells were more sensitive to
treatment with IRAK4 inhibitors or PROTAC (Figure 2B-C;
supplemental Figure 2B). To confirm these observations, we
knocked down IRAK1 in the isogenic WT and IRAK4KO

MDS/AML cells (Figure 2D). The combined deficiency of
IRAK1 and IRAK4 in THP1, MDSL, and AML (1294) resulted in a
significant reduction in LSPC colonies as compared with the
deficiency of either IRAK4 or IRAK1 alone (Figure 2E-F). Next,
we generated isogenic double IRAK1 and IRAK4-deficient
(IRAK1/4dKO) THP1 cells (Figure 2G). IRAK1/4dKO THP1 cells
expanded at a slower rate as compared with IRAK1KO or
IRAK4KO cells (supplemental Figure 2C). Moreover, IRAK1/
4dKO cells formed significantly fewer LSPC colonies as
compared with IRAK1KO or IRAK4KO cells after the initial
(Figure 2H) and secondary replating (supplemental Figure 2D).
To assess the effect of combined IRAK1/4 deficiency on leu-
kemia development, we xenografted the isogenic THP1 cells
into immunocompromised mice. Mice that received IRAK1/
4dKO THP1 cell engraftment survived longer than mice that
received WT, IRAK1KO, or IRAK4KO cell engraftment (Figure 2I;
supplemental Figure 2E). Histology samples collected at the
time of death revealed the reduced infiltration of IRAK1/4dKO

AML cells in the bone marrow (Figure 2J) and liver (Figure 2K)
and the absence of liver nodules as compared with mice that
received engraftment with WT, IRAK1KO, or IRAK4KO cells
(Figure 2L). Thus, concomitant targeting of IRAK1 elicits an
exaggerated LSPC defect in IRAK4-deficient MDS/AML
models.
992 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11
IRAK1 and IRAK4 dependency in MDS/AML is
independent of MyD88
IRAK1 and IRAK4 transduce canonical MyD88 signaling in a
mutually dependent manner (Figure 1H). However, this para-
digm is inconsistent with the exaggerated defect of leukemic
cells upon the concomitant targeting of IRAK1 and IRAK4.
Therefore, we hypothesized that IRAK1 and IRAK4 exhibit
functional redundancy downstream of MyD88 in leukemic cells.
Thus, we first examined the consequences of IRAK1 and IRAK4
deletion on IL1R and TLR2 activation in THP1 cells. The deletion
of IRAK4 or IRAK1 was sufficient to prevent the activation of NF-
κB upon the stimulation of IL-1R (supplemental Figure 2F). As
an exception, phosphorylation of IKKβ upon TLR2 stimulation
was partially reduced in IRAK4KO and IRAK1KO THP1 cells but
completely ablated in the IRAK1/4dKO cells (supplemental
Figure 2G). IRAK4 deletion was also sufficient to block JNK
and p38 upon TLR2 stimulation. Similar signaling dependencies
were observed in MDSL cells (supplemental Figure 2H). As
expected, the deletion of MyD88 resulted in a complete
termination of NF-κB and MAPK activation upon IL1R or TLR2
stimulation in AML cells (Figure 3A). Surprisingly, MyD88KO

THP1 or MDSL cells formed an equivalent number of colonies
as compared with WT cells, indicating that MyD88 is dispens-
able for LSPCs (Figure 3B-C).

Next, we assessed the dependency of MyD88KO AML cells on
the loss of IRAK4. Knockdown of IRAK4 in WT and MyD88KO

THP1 and MDSL cell lines resulted in a significant reduction of
LSPC function (Figure 3B-D). Thus, MDS/AML cells are depen-
dent on IRAK1/4 signaling but independent of MyD88. As the
proximal downstream effector of IRAK1/4, we wanted to discern
whether TRAF6 remains relevant to MyD88-independent
IRAK1/4 signaling. The deletion of TRAF6 resulted in a signifi-
cant reduction of LSPC colonies (supplemental Figure 3A-C),
suggesting that the MDS/AML cells are dependent on TRAF6-
mediated signaling despite the lack of a requirement for
BENNETT et al
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Figure 2. The inhibition of IRAK1 confers an exaggerated leukemic defect to IRAK4-deficient AML. (A) Growth curves of WT and IRAK1KO MDSL and THP1 cells treated
with CA-4948 (10 μM) or vehicle (2 independent experiments). (B) Colony formation of WT and IRAK1KO MDSL and THP1 cells treated with CA-4948 (30 μM) or vehicle
(3 independent experiments). (C) Colony formation of WT and IRAK1KO MDSL and THP1 cells treated with IRAK4 degrader-1 (MDSL, 5 μM; THP1, 10 μM) or vehicle. (D)
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MyD88. These findings demonstrate that IRAK1 and IRAK4
mediate MyD88-independent functions that are critical for
MDS/AML LSPCs.

Noncanonical IRAK1/4 signaling is essential for
maintaining undifferentiated LSPCs
To delineate MyD88-independent IRAK1/4 signaling in MDS/
AML, we performed a gene expression analysis in WT,
MYD88KO, IRAK1KO, IRAK4KO, and IRAK1/4dKO THP1 cells.
Principle component analysis of the isogenic cell lines affirmed
distinct expression programs (Figure 4A). To focus on MyD88-
independent gene programs, we excluded all differentially
expressed genes that overlapped with MyD88KO cells
(supplemental Figure 4A-B; supplemental Table 6). The dele-
tion of IRAK1 or IRAK4 resulted in 129 and 548 repressed
genes, respectively and 98 and 636 overexpressed genes,
respectively in comparison with WT cells (Figure 4B). The
combined deletion of IRAK1 and IRAK4 resulted in 614
downregulated and 720 upregulated genes. The examination
of differentially expressed genes yielded a subset of genes
unique to IRAK1KO, IRAK4KO, and IRAK1/4dKO cells (Figure 4C-
D; supplemental Table 7). KEGG and PANTHER analysis
revealed that the isogenic cell lines corresponded with the
enrichment of distinct pathways (Figure 4E). For example,
downregulated genes in IRAK1KO cells exhibit the enrichment
of pathways related to HIF1α, metabolism, and inflammatory
signaling; IRAK4KO cells exhibit enrichment of pathways
related to TLR and Wnt, and glycolysis; and IRAK1/4dKO cells
exhibit enrichment of pathways related to adenosine
monophosphate–activated protein kinase, inflammation, and
HSCs (Figure 4E). MyD88KO cells did not show enrichment of
these pathways, supporting the observations that IRAK1/4
signaling functions independent of MyD88 (supplemental
Figure 4C). Gene set enrichment analysis revealed that the
upregulated genes in IRAK1/4dKO cells are associated with the
loss of HSC states, suppression of mixed lineage leukemia-
rearranged leukemia, and myeloid differentiation programs
(Figure 4F).

To determine whether IRAK1 and IRAK4 signaling in LSPCs is
required for preserving an undifferentiated LSPC state, we
examined morphological changes of MDS/AML cells upon the
deletion of IRAK1 and IRAK4. In contrast to WT cells, IRAK1/
4dKO cells acquired heterogeneous morphologies and exhibi-
ted increased cytoplasmic to nuclear ratios (Figure 4G) and
decreased CD34 expression (Figure 4H), which is congruent
with myeloid differentiation. Moreover, aberrant myeloid cell
differentiation was not observed in MyD88KO cells
(supplemental Figure 4D). These findings suggest that IRAK1
and IRAK4 mediate functions that are critical for LSPCs by
preserving an immature cell state.
Figure 2 (continued) Immunoblots for IRAK1 and IRAK4 in WT and IRAK4KO cell lines tran
(E) Colony formation of WT and IRAK4KO AML cell lines transduced with nontargeting c
IRAK4KO AML (1294) cells transduced with nontarget control shRNA (shControl) or shIRAK
IRAK1KO, and IRAK1/4dKO THP1 cells. (H) Colony formation of isogenic THP1 cells. (I) K
engraftment with WT, IRAK4KO, IRAK1KO, and IRAK1/4dKO THP1 cells (Data represent 1 of
(n = 4), IRAK4KO (n = 5), IRAK1KO (n = 5), and IRAK1/4dKO (n = 5) THP1 cells in NSGS m
determined as the percentage of huCD45+huCD33+ cells. (K) Liver engraftment of WT (n =
that underwent xenograftment at the time of death. Leukemic engraftment was determine
Representative images of livers collected from NSGS mice that underwent xenograftmen
of AML cell infiltration. Significance was determined with a Student t test (*P < .05). Erro
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IRAK1 and IRAK4 interactomes reveal
noncanonical signaling networks in MDS/AML
We found that IRAK1 and IRAK4 coordinate complementary
gene expression programs implicated in maintaining LSPCs;
however, the noncanonical signaling mechanisms by which
IRAK1/4 regulates these programs remain unknown. To map
the IRAK1 and IRAK4 interactome in AML, we performed
proximity labeling of proteins with biotin using APEX2 followed
by mass spectrometry25 (Figure 5A; supplemental Figure 5A-B).
We identified 311 proteins proximal to IRAK4 and 142 proteins
proximal to IRAK1 (Figure 5B; supplemental Table 8-9). In total,
292 proteins were unique to IRAK4 and 123 were unique to
IRAK1 (Figure 5B), whereas 19 proteins were common to IRAK1
and IRAK4 (Figure 5B). Several proteins associated with
canonical IRAK1/4 signaling were identified, such as IKKβ/
IKBKB, RELB, p100/NFKB2, and ERK/MAPK1. To uncover novel
IRAK1/4 signaling networks in AML, we performed an ontology
pathway analysis26 using the list of IRAK1 and IRAK4 proximal
proteins. Proximal IRAK4 proteins included effectors of
messenger RNA metabolism, PI3K/AKT, and MAPK (Figure 5C),
whereas proximal IRAK1 proteins were enriched for interferon
and antiviral signaling (Figure 5D). There were also proteins
proximal to both IRAK1 and IRAK4, which include effectors of
STAT/interferon and vascular endothelial growth factor recep-
tor signaling and messenger RNA metabolism (Figure 5B,E).
The IRAK1 and IRAK4 proximal proteins are predicted to form
physical interactions as demonstrated by a protein-protein
interaction analysis27 (supplemental Figure 5C-D).

Next, we focused on a mechanistic explanation for the aberrant
expression of genes implicated in LSPC function after IRAK1/4
inhibition. The integration of enriched pathways derived from the
gene expression and interactome analysis highlighted the
convergence of IRAK1 on JAK/STAT/interferon-related signaling
and IRAK4 on the polycomb repressive complex 2 (PRC2)
(Figure 5F). As indicated, several IRAK1 proximal proteins are
implicated in JAK-STAT signaling (Figure 5F). We also identified
members of PRC2 among the top-ranking IRAK4 proximal pro-
teins (Figure 5F). SUZ12, EED, and EZH2 are part of the core
heteromeric PRC2 complex.28 JAK-STAT and PRC2 functions,
including activating EZH2 mutations, are well-defined in LSPCs
by regulating genes that promote cellular differentiation.29

Because the predicted IRAK4 interactions include nuclear pro-
teins, we examined the localization of IRAK1 and IRAK4 in
leukemic cells. IRAK4 localized to the cytoplasm and nucleus of
MDS/AML cells (Figure 5G). In contrast, IRAK1 was primarily
localized to the cytoplasm. Moreover, we found that EZH2
coimmunoprecipitated with IRAK4 (Figure 5H), suggesting that
nuclear IRAK4 can directly associate with the PRC2 complex
in AML. To further interrogate the IRAK1-IRAK4 network,
we determined whether the deletion of IRAK4 results in a
sduced with nontargeting control short hairpin RNA (shRNA; shControl) or shIRAK1.
ontrol shRNA (shControl) or shIRAK1. (F) Representative colony images of WT and
1 (original magnification ×40). (G) Immunoblots for IRAK1 and IRAK4 in WT, IRAK4KO,
aplan-Meier survival analysis of NSGS mice (n = 7 mice per group) that received
2 independent experiments with similar trends). (J) Bone marrow engraftment of WT
ice that underwent xenograftment at the time of death. Leukemic engraftment was
4), IRAK4KO (n = 5), IRAK1KO (n = 5), and IRAK1/4dKO (n = 5) THP1 cells in NSGS mice
d as the percentage of huCD45+huCD33+ cells normalized to the number of days. (L)
t with WT, IRAK4KO, IRAK1KO, and IRAK1/4dKO THP1 cells. Arrows indicate examples
r bars represent the standard deviation.
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corresponding increase in IRAK1-dependent JAK-STAT signaling.
IRAK4KO cells exhibited increased phosphorylated STAT5 as
compared with WT cells, whereas IRAK1KO cells expressed
phosphorylated STAT5 below the levels observed in WT cells
(Figure 5I). Moreover, IRAK4KO THP1 cells were sensitive to a
STAT inhibitor, as compared with IRAK1KO, MyD88KO, or WT cells
(Figure 5J). Collectively, these findings reveal extensive IRAK1
and IRAK4 signaling networks implicated in maintaining LSPCs.
IRAKs AND MYELOID LEUKEMIA
IRAK1/4 maintains undifferentiated leukemic cell
states through chromatin and transcriptional
networks
Next, we examined the regulatory effectors downstream of
IRAK1/4 signaling that are required for maintaining LSPCs.
Although our proteomic and transcriptomic analyses implicated
several relevant pathways in MDS/AML, we focused on how
IRAK1/4 signaling may coordinate chromatin and transcriptional
14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11 995
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factor networks. The PRC2 complex, which coordinates tran-
scriptional gene regulation via H3K27 trimethylation, was nomi-
nated as one of the top hits among IRAK4-proximal proteins.
PRC2-mediated H3K27 trimethylation can induce the compac-
tion of chromatin and loss of transcription factor accessibility at
select loci30; as such, we performed an assay for transposase-
accessible chromatin sequencing and mapped global changes
in chromatin accessibility in isogenic THP1 cells (Figure 6A). To
prioritize MyD88-independent pathways, we excluded differen-
tial chromatin peaks identified in MYD88KO cells (supplemental
Table 10). Although the number of closed peaks was similar in
the isogenic cells (Figure 6B; supplemental Table 11), IRAK1KO

THP1 cells exhibited fewer open peaks than IRAK4KO and IRAK1/
4dKO cells (Figure 6B). IRAK4-regulated chromatin accessibility
peaks are preserved in IRAK1/4dKO THP1 cells, whereas the
effects of IRAK1 on chromatin accessibility are minimal
(Figure 6C). To identify IRAK4-regulated factors that drive the
996 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11
IRAK1/4dKO AML cell phenotype, we assessed genes that are
both downregulated and associated with the loss of chromatin
accessibility in IRAK4KO and IRAK1/4dKO cells (Figure 6C). We
identified a significant overlap of genes that are repressed in
IRAK4KO and IRAK1/4dKO cells, which are enriched as targets of
CREB-binding protein (CBP) and E2F4 (Figure 6D) and impli-
cated in LSPCs.31,32 Next, we examined the genes associated
with open chromatin peaks and upregulated expression that are
conserved in IRAK4KO and IRAK1/4dKO cells (Figure 6C). This set
of genes were enriched for regulatory targets of PRC2 compo-
nents (SUZ12 and EZH2) and STAT3 (Figure 6E). Of the genes
associated with the loss of chromatin peaks in IRAK1KO cells, only
9 genes were downregulated (Figure 6C), which were the pre-
dicted targets of STAT (Figure 6D). Thus, the data suggest that
the deletion of IRAK1 and IRAK4 leads to the loss of JAK-STAT
signaling and PRC2 function and expression of genes that
mediate myeloid leukemia cell differentiation.
BENNETT et al
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IRAK1/4 signaling programs define a subset of
patients with MDS/AML
To establish whether IRAK1/4 signaling is operational in
patients with AML, we performed an unsupervised hierarchical
clustering analysis of RNA sequencing data from the BEAT AML
trial.33 We used the set of genes that were downregulated and
associated with the loss of chromatin accessibility in IRAK1/4dKO

cells (supplemental Table 12). Patients with AML were clustered
into 3 groups characterized by the expression of the IRAK1/4-
associated genes (Figure 6F). Group 1 consisted of patients
with elevated expression of the IRAK1/4-associated genes
(IRAK1/4High), whereas Group 2 and 3 consisted of patients
with decreased and/or variable expression of these genes
(IRAK1/4Intermediate/Low) (Figure 6F). IRAK1/4High AML were
enriched for mutations in BCOR, SRSF2, JAK2, TET2, RUNX1,
and EZH2 (Figure 6G). These mutation profiles are consistent
with altered chromatin assembly via the PRC1/2 complex and
JAK-STAT signaling and are enriched in AML with
myelodysplasia-related changes.34 Independent analysis of the
IRAK1/4-associated genes in additional adult and pediatric
AML and MDS cohorts also categorized the patients based on
the enrichment of IRAK1/4-associated genes (supplemental
Figure 6A-C). The IRAK1/4 signature correlated with myelo-
monocytic subtypes (M4 FAB) of adult (P = 3.28 × 10-5) and
pediatric patients with AML (P = .013) and with an antecedent
MDS (supplemental Figure 6D). These findings reveal that
998 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11
IRAK1/4 signaling programs are operational in MDS/AML and
could define patients with a greater dependency on IRAK1/4.

Low IRAK1/4 levels can be restored by the
reactivation of stem cell and leukemia-associated
transcriptional programs
To gain an insight into the cellular processes that contribute to
the attrition of LSPCs after IRAK1/4 inhibition, we performed a
genome-scale CRISPR activation screen to identify genes that
restore the growth ability of IRAK1/4-deficient AML cells. WT
and IRAK1/4dKO THP1 cells were transduced with a CRISPR
activation library consisting of single-guide RNA activating 18
000 coding isoforms (Figure 6H). Transduced cells were grown
for 3 weeks and the single-guide RNA libraries were deep-
sequenced. MAGeCK was then performed to identify candi-
date genes that were enriched in IRAK1/4dKO relative to WT
cells (Figure 6I; supplemental Table 13). Several candidate
genes enriched in IRAK1/4dKO cells have been shown to
mediate leukemic activity, such as ETV5, TEAD1, CDC42,
AKT1/2, and WNT10A.35-38 The pathway analysis on the
candidate genes identified in IRAK1/4dKO cells revealed the
enrichment of pathways implicated in stem cell activity and
cancer-related pathways (Figure 6J). These overexpressed
genes are predicted transcription targets of ATF3, USF1, E2F1,
and MYC (Figure 6K), which are implicated in LSPCs. Moreover,
we identified STAT3 target genes enriched in IRAK1/4dKO cells
BENNETT et al
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supporting our earlier observations that the loss of STAT
signaling contributes to the impairment of IRAK1/4-deficient
AML cells (Figure 6K). This analysis highlighted that IRAK1/4
inhibition can be undone by the reactivation of stem cell and
leukemia-associated transcriptional programs.

A dual IRAK1/4 inhibitor suppresses MDS/AML
LSPCs by promoting differentiation
The compensatory nature of IRAK1 and IRAK4 activation in
MDS/AML necessitates concomitant inhibition to maximize
therapeutic efficacy. Therefore, we sought an inhibitor that
simultaneously targets IRAK1 and IRAK4. We used a 3-(pyri-
dine-2-yl)imidazole[1,2-a]pyridine backbone with inhibitory
activity against IRAK1 and IRAK4 as a chemical starting point for
optimization.39,40 Structure-activity relationship exploration of
this core scaffold yielded molecules that potently targeted
IRAK1 and IRAK4. KME-2780 exhibited high affinity binding to
and inhibition of both IRAK1 and IRAK4 (Figure 7A). We also
identified a structurally similar derivative (KME-3859) with
selectivity for IRAK4 but not IRAK1. The dual IRAK1/4 inhibitor
was significantly more effective at suppressing TLR2-mediated
activation of NF-κB and autophosphorylation of IRAK1 in AML
cells as compared with the IRAK4 inhibitor (supplemental
Figure 7A-B). Next, we compared the gene expression
1000 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11
changes in AML cells treated with the dual IRAK1/4 inhibitor
(KME-2780) and IRAK4 inhibitor (KME-3859). As expected,
there were a common set of downregulated genes (IRAK4-
dependent genes) after the treatment with both inhibitors
(Figure 7B). These genes were enriched in MAPK/AP1, ATF4,
IGFBP, and EGFR signaling (Figure 7C). However, the dual
IRAK1/4 inhibitor also downregulated genes that remained
expressed with KME-3859 (IRAK1-dependent genes). Consis-
tent with our observation that IRAK1 mediates JAK-STAT
signaling, the genes selectively suppressed by the dual
IRAK1/4 inhibitor, but not the IRAK4 inhibitor, are enriched in
interferon-related pathways (Figure 7C). We also examined
whether the inhibitors suppressed the IRAK1/4 signature. KME-
2780 suppressed most genes (~65%) associated with the
IRAK1/4 signature in the AML cells, whereas KME-3859 had an
unremarkable effect on these genes (Figure 7B). As such, the
inhibition of IRAK1 and IRAK4 results in the suppression of gene
expression programs that are insufficiently inhibited upon tar-
geting IRAK4 alone.

Next, we compared the IRAK4 inhibitors’ ability to suppress
LSPCs. KME-3859 resulted in a ~75% reduction in colony
formation of MDS/AML cell lines and patient-derived samples
(Figure 7D). However, KME-2780 resulted in complete
BENNETT et al
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suppression of LSPC colonies in nearly all samples tested
(Figure 7D). At these concentrations, KME-2780 treatment of
healthy CD34+ cells only modestly inhibited myeloid cell col-
onies yet increased erythroid colony formation (supplemental
Figure 7C). Notably, KME-2780 suppressed OCI-AML3 cells,
which were insensitive to the genetic inactivation of IRAK1 and
IRAK4. This raises the possibility of off-target growth-inhibitory
activity of these compounds in AML cells. KME-2780 was also
more effective than KME-3859 at mediating the apoptosis of
AML cells (supplemental Figure 7D). Sustained treatment of
MDS/AML and patient-derived cell lines with KME-2780 and
KME-3859 coincided with heterogeneous morphologies and
increased cytoplasmic to nuclear ratios, suggestive of aberrant
differentiation (Figure 7E). These morphological changes
were more prominent in cells treated with KME-2780 relative to
1004 14 SEPTEMBER 2023 | VOLUME 142, NUMBER 11
KME-3859. KME-2780 treatment also resulted in a greater
expression of CD38, a glycoprotein expressed on mature
immune cells, as compared with KME-3859 or vehicle
(supplemental Figure 7E).

A dual IRAK1/4 inhibitor suppresses MDS/AML in
xenografted mice
Impaired cellular differentiation is a hallmark of MDS/AML, and
therapies that promote differentiation are curative in certain
subtypes.41 To confirm that the differentiated state of the
leukemic cells upon IRAK1/4 inhibition correlates with LSPC
suppression in vivo, we first evaluated the leukemic potential
of patient-derived AML cells that were exposed to the dual
IRAK1/4 or selective IRAK4 inhibitors for 21 days in vitro
(Figure 7F). The exposure of patient-derived AML cells to
BENNETT et al
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KME-2780 corresponded with diminished colony formation
(supplemental Figure 7F) and loss of leukemic engraftment and
AML development in vivo (Figure 7G-H). However, KME-3859
only partially suppressed LSPCs. These findings suggest that
IRAK1/4 is important for preserving leukemia-propagating cells
and that targeting IRAK1/4 can induce the differentiation of
LSPCs and suppress AML.

To evaluate the therapeutic potential of targeting IRAK1/4, we
also performed xenograft studies using patient-derived MDS/
AML samples. Mice that were immunocompromised receivent
engraftment with leukemic cells from patients with AML or MDS
for 2 weeks and then treated with vehicle, KME-2780, or KME-
3859 (Figure 7I). Leukemic cell engraftment in the peripheral
blood was significantly reduced with KME-2780 treatment for
AML(64519), MDS(76960), and AML(0169) (Figure 7J-K) as
compared with vehicle-treated mice. In contrast, KME-3859 did
not significantly suppress leukemic cell engraftment during the
same time (Figure 7J-L). To determine whether the reduced
leukemic cell engraftment affects the overall survival, we
monitored mice that received engraftment with AML (0169).
Mice treated with the vehicle or KME-3859 achieved a median
survival of 29 and 33 days, respectively (Figure 7M). In contrast,
mice treated with KME-2780 survived significantly longer
(median of 40 days) (Figure 7M). These findings suggest that
dual IRAK1 and IRAK4 inhibition more effectively suppresses
AML as compared with targeting IRAK4 alone.
icle-pdf/142/11/989/2076529/blood_bld-2022-018718-m
ain.pdf by guest on 02 June 2024
Discussion
MDS/AML LSPCs exhibit the dysregulation of immune and
inflammatory pathways, many of which converge on IRAK1/4
signaling.6 IRAK1 and IRAK4 have been independently studied
in MDS/AML17,18,39,42-46; however, their cooperative functions
have not been investigated. Initial data from clinical trials
evaluating IRAK4 inhibitors in HR-MDS/AML revealed encour-
aging responses in patients with activated IRAK4.23 These
studies propose that IRAK4 is a relevant target in MDS/AML;
however, they also suggest that IRAK4 inhibitors as mono-
therapy will likely be insufficient to yield durable responses. We
confirmed that targeting IRAK4 can impair LSPCs but also elicits
compensatory IRAK1 activation. Our study presents a model in
which IRAK4 regulates epigenetic machinery and signaling
pathways that mediate a differentiation block in leukemic cells,
and the targeting of IRAK4 upregulates IRAK1 to activate
complimentary pathways. Future studies are needed to deter-
mine whether the MyD88-independent functions of IRAK1 and
IRAK4 can be extended to other pathologies and normal
immunobiology. Functional complementation by proximal
effectors and paralogs are reported mechanisms underlying
therapy resistance in cancer.47 For example, TP53 can be
inactivated by MDM2 or its paralog MDMX; accordingly, dual
targeting of MDM2/MDMX is required for superior therapeutic
efficacy in AML.48 Therapeutic efforts to target IRAKs have
adopted paradigms formed by studies based on the models of
acute receptor stimulation, wherein MyD88 recruits IRAK4 to
activate IRAK1 and initiate signaling.49 In contrast, we showed
that MyD88 is dispensable in MDS/AML and uncovered
MyD88-independent IRAK1/4 functions necessary to preserve
LSPCs. Proteomic studies identified interactions between IRAK4
IRAKs AND MYELOID LEUKEMIA
and the PRC2 complex, an epigenetic regulator that is essential
for LSPCs.28 These findings are further corroborated by the
enrichment of BCOR and SRSF2 mutations in patients with AML
with the IRAK1/4 signature. BCOR is part of the PRC1 complex,
whereas SRSF2 mutations mis-splice EZH2.50,51 We found that
IRAK1 interactions mapped to the mediators of JAK-STAT
signaling, which could account for the induction of
STAT signaling upon targeting IRAK4. A large cohort of adult
and pediatric patients with AML and MDS exhibit an IRAK1/4
signature, which suggests that IRAK1/4 signaling is operational
and could represent patients with a greater sensitivity to
IRAK1/4 inhibitors. Because our findings formed a basis for dual
IRAK1/4 targeted therapy, we revealed a therapeutic advan-
tage for dual IRAK1/4 therapy in myeloid malignancies using
a small molecule inhibitor. Although the IRAK1/4 inhibitor–
induced differentiation of LSPCs and suppressed IRAK1/
4-depended signaling more effectively than an IRAK4-selective
inhibitor, we anticipate that combination therapies will be
necessary to achieve maximal efficacy in the clinic.
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