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MYELOID NEOPLASIA
Characterization of the bone marrow niche in patients
with chronic myeloid leukemia identifies CXCL14 as a
new therapeutic option
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KEY PO INT S

• CXCL14 is lost in BM
stromal cells in patients
with CML, and
restoring CXCL14
suppresses CML LSC
engraftment in vivo and
survival in vitro.

• CXCL14 treatment
inhibits mTOR and
oxidative
phosphorylation
signaling pathways in
CML LSCs.
 by g
Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leu-
kemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing
disease persistence and relapse. Evidence indicates that LSC persistence may be because
of bone marrow (BM) niche protection; however, little is known about the underlying
mechanisms. Herein, we molecularly and functionally characterize BM niches in patients
with CML at diagnosis and reveal the altered niche composition and function in these
patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells
from patients with CML displayed an enhanced supporting capacity for normal and CML
BM CD34+CD38– cells. Molecularly, RNA sequencing detected dysregulated cytokine and
growth factor expression in the BM cellular niches of patients with CML. Among them,
CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM.
Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their
response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Impor-
tantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived
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xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with
suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated
mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of
CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.
4

Introduction
Chronic myeloid leukemia (CML) is a clonal myeloproliferative
neoplasm (MPN) arising from transformed primitive stem cells.
It is characterized by the presence of the BCR-ABL1 fusion gene
encoding a constitutively activated tyrosine kinase protein that
triggers an abnormal expansion of immature and mature
myeloid cells. Tyrosine kinase inhibitors (TKIs), targeting the
BCR-ABL1 protein, are effective in treating CML. However,
even after several years of continuous TKI therapy, molecularly
measurable residual disease can be detected in the majority of
patients.1 The persistence of residual leukemia-initiating stem
cells (LSCs) is common in these patients even after long-term
therapy.2-4 Of patients with CML who can stop TKI treatment
after having achieved deep molecular remission, ~50% show
molecular relapse within 12 months after stopping TKI therapy,5

which leads to an absolute requirement of life-long TKI treat-
ment in the majority of these patients. The persistence of LSCs
in leukemias is attributed to both intrinsic and extrinsic mech-
anisms, for example, the protection of LSCs by the bone
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marrow (BM) niche.6-13 The niche is reconstructed by leukemic
cells to become supportive of the LSCs but hostile to normal
hematopoietic stem cells (HSCs). Thus, to develop novel com-
plementary therapies to eradicate CML LSCs, it is essential to
identify the niche factors that are dysregulated and that have a
functional impact on CML LSC maintenance.

The BM niche encompasses various types of stromal cells
including osteoblasts, adipocytes, perivascular cells, endothe-
lial cells (ECs), mesenchymal stem cells (MSCs), and mature
stromal cells.10,14 In vitro, human MSCs can differentiate to
mesenchymal lineages including osteoblasts, adipocytes, and
chondrocytes, and have the capacity to form colony-forming
unit fibroblasts (CFU-Fs).15 Human BM MSCs can be pheno-
typically identified and isolated by fluorescence-activated
cell sorting (FACS) based on their cell surface markers
(CD45–CD235A–CD31–CD44–), which are mostly positive for
CD146 and CD271.14,16,17 To uncover the biological features of
these cellular niche populations in CML, it is essential to freshly
isolate the cells for subsequent molecular characterization.

Normal function and structure of the BM niche are required for
maintaining normal hematopoiesis.18 Studies in mice suggest
that structural and functional niche alterations in the BM can
lead to the initiation and progression of myeloid malig-
nancies.10 Genetic abnormalities in human BM MSCs are
associated with increased overall and leukemia-related mortal-
ity in myelodysplastic syndrome and acute myeloid leukemia
(AML).19 The malignant transformation caused by dysregulated
niches appears to be a gradual process and associated with an
abnormal production of inflammatory cytokines and growth
factors by the niche, which in turn promotes myelopoiesis at the
expense of lymphoid production and HSC maintenance.10,20,21

Furthermore, the composition and function of the BM niche are
dynamic. During leukemia progression, leukemic cells can
actively remodel their niche to self-reinforce their proliferation
but impair normal hematopoiesis.22-24 This, in turn, can advance
the disease and negatively affect treatment outcome. This
notion is well supported by recent reports that BM mesen-
chymal niche–derived factors including CXCL12,25 Wnt,26,27

and interleukin-1 (IL-1)28 can protect CML LSCs from TKI
treatment, mainly by maintaining CML LSCs in the quiescent
status. Furthermore, the upregulated inflammatory cytokines,
such as tumor necrosis factor α (TNF-α), acting together with
chemokines in the BM niche possibly confer CML LSCs a
growth advantage over normal HSCs during CML develop-
ment.8,22,24 Similar observations were reported in other myeloid
malignancies including myelodysplastic syndrome,29 MPN,20,30

and AML.31-33 However, very little is known about BM niche
alterations in patients with CML and the impact of such alter-
ations on CML progression and treatment response.

By prospectively characterizing BM cellular niches in patients
with CML we have uncovered molecular and functional alter-
ations of CML BM MSCs. Among the dysregulated molecules,
CXCL14 was the most substantially reduced cytokine in the
CML BM stromal cell compartment. Restoring CXCL14
expression suppressed CML LSC maintenance and potentiated
TKI inhibition in vitro. Most importantly, in vivo CXCL14 treat-
ment significantly inhibited CML engraftment in mice with
patient-derived xenografts. This study identifies CXCL14 as a
new complementary therapeutic option targeting CML LSCs.
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Materials and methods
Human sample collection
BM aspirates were obtained from patients with chronic phase
CML at diagnosis (patient age, 21-85 years; median age, 63.5
years; supplemental Table 1, available on the Blood website)
and age-matched healthy adult volunteers (aged 22-86 years;
median age, 55 years) after informed consent was obtained
from all patients and healthy donors. The sample collection was
approved by the local ethical committee at Karolinska Institutet,
Stockholm (2012/4:10, 2013/3:1 and for age-matched healthy
donors 2018/1262-31).

Xenograft transplantation of CML LSCs
BM mononuclear cells (1 million cells per mouse) or
CD34+CD38– cells (1000 cells per mouse) from patients with
CML were intravenously transplanted into sublethally irradiated
(250 cGy) immunodeficient NSG/SGM3 mice (Jackson Labora-
tory). The CD34+CD38– cells were cocultured with stromal cells
with enforced CXCL14 expression or control cells for 3 to 4 days
before the transplantation. For testing the effect of CXCL14 and
imatinib (IM), 3 weeks after transplantation of BM mononuclear
cells from patients with CML, the mice with comparable
engraftment levels in blood were treated with saline, or IM
(50 mg/kg per day) or CXCL14 (500 ng/kg per day) or both, by
intraperitoneal injection for 7 to 12 days. CML engraftment in
the BM, blood, and spleen was analyzed at 1 day to 19 weeks
after the treatment. All the mice were maintained in specific
pathogen-free conditions in the animal facility of Karolinska
Institute. Animal procedures were performed with approval
from the local ethics committee (ethical number 15861-2018) in
Stockholm, Sweden.

LTC-IC and CAFC assays with BM MSCs derived
from patients
Long-term culture initiating cell (LTC-IC) and cobblestone area–
forming cell (CAFC) assays were done by using BM MSCs
(CD45–CD235A–CD31–CD44–) that were sorted from healthy
volunteers and patients with CML and culture-expanded for 2 to
3 passages. The MSCs were plated in 96-well plates at a density
of 10 000 cells per well in Dulbecco’s modified Eagle medium
GlutaMAX (Gibco) supplemented with 10% fetal bovine serum
(Gibco), 1% penicillin/streptomycin (HyClone), and 100 μM 2-
mercaptoethanol. After 24 hours, CD34+ or CD34+CD38–

cells (150-1200 cells per well) sorted from NBM and CML BM
were cocultured with MSCs for 6 weeks (LTC-IC) in MyeloCult
H5100 (Stem Cell Technology) supplemented with 10–6 M
hydrocortisone (Sigma-Aldrich) with a weekly medium change.
After 6 weeks of coculture, cells were subjected to CFU-C assay.
For the CAFC assay, BM CD34+CD38– cells were cocultured
with primary BM MSCs for 2 weeks at 32◦C to 33◦C.

Statistical analysis
The unpaired t test or Mann-Whitney test was used to compare
the differences between the cell types based on the data dis-
tribution. The paired t test or Wilcoxon tests were used to
compare the differences between 2 groups on the same cells,
and one-way analysis of variance test was used for determining
differences among multiple groups. All reported P values were
obtained using the GraphPad Prism 8.0, and P < .05 was
considered statistically significant.
DOLINSKA et al
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Additional methods
See the supplemental Data for additional methods.

Results
Alterations of BM stromal cells in patients with
newly diagnosed CML
To explore potential alterations in the composition of the CML
cellular niche, we characterized BM stromal cells freshly sorted
from healthy donors (NBM) and patients with CML by FACS
(Figure 1A-B). The BM stromal cells were subdivided into MSCs
(CD45–CD235A–CD31–CD44–), ECs (CD45–CD235A–CD31+),
and mature stromal cells (CD45–CD235A–CD31–CD44+).14

CD146 and CD271, reportedly expressed on normal BM
MSCs16,17 were present in most of the CD44– MSCs from NBM
and CML BM (Figure 1B). As in NBM, CFU-Fs were also
enriched in the CD44– MSC fraction in the CML BM
(supplemental Figure 1A), indicating that CML MSCs have a
similar immunophenotype to that of NBM MSCs. This finding
allows us to phenotypically compare CML MSCs with normal
MSCs using the same cell surface markers.

When further dissecting the stromal cell niche, we found that
the proportion of ECs (CD31+) was significantly increased
whereas the CML CD44+ mature stromal cells were reduced, as
compared with the normal BM. However, the CML MSCs
(CD44– or CD271+CD146+) fraction within total stromal cells
remained unaltered (supplemental Figure 1C).

The balanced lineage differentiation potential of the MSCs is
important for maintaining normal HSC niche structure and
composition.34 CML MSCs showed reduced osteogenic and
chondrogenic differentiation potentials but enhanced adipo-
genic differentiation potential, compared with NBM MSCs
(supplemental Figure 1D-E). The altered differentiation poten-
tial is supported by downregulation of osteoblast- and
chondrocyte-associated genes in the CML MSCs, as revealed
by RNA sequencing analysis (supplemental Figure 1F).

CML MSCs provided better support for normal
and CML stem and progenitor cells
Impaired support of normal hematopoiesis but favorable support
of leukemic cells by the leukemic microenvironment was reported
in a CML mouse model.24-26 To test the hematopoiesis-supportive
function of the patient-derived primary MSCs, we performed LTC-
IC assay using primary CML BM and NBM MSCs (Figure 1C).
Surprisingly, coculture with CML MSCs supported NBM CD34+

cells to generate more LTC-ICs than with NBM MSCs (Figure 1D-
E), suggesting enhanced hematopoietic stem and progenitor cell
(HSPC) growth support by CML MSCs. To explore whether NBM
MSCs restrict CML CD34+ cell proliferation, we examined the
LTC-IC activity of CML CD34+ cells cocultured with NBM or CML
MSCs. We observed reduced LTC-ICs from CML CD34+ cells in
the culture with NBM MSCs compared with that with CML MSCs
(Figure 1E). These data suggest enhanced supportive function of
CML MSCs for both normal and CML HSPCs. Concurrently,
LAMA4, COL1A1, and CXCL14 were reduced in the cultured CML
MSCs (Figure 1F). This finding is consistent with our report that the
loss of Lama4 in mouse BMMSCs promotes AML cell proliferation
and drug resistance.35
THERAPEUTIC POTENTIAL OF CXCL14 IN CML
CML BM stromal cells do not carry BCR-ABL1
fusion gene
Whether BM stromal cells harbor any genetic mutations that
are found in the leukemic cells, which may be linked to the
pathophysiology of leukemia, has remained controversial. The
findings from the studies on culture-selected BM stromal cells
have been contradictory.36-38 The possible contamination of
remaining leukemic cells in the culture-selected stromal cells
could lead to a false-positive result. Therefore, in this study,
we analyzed the BCR-ABL1 fusion gene in freshly isolated
MSCs, ECs, and mature stromal cells from CML BM by fluo-
rescence in situ hybridization (supplemental Figure 2A). No
BCR-ABL1 fusions were detected in stromal cells from patients
with CML (supplemental Figure 2B-C). This suggests that
the CML BM stromal cells do not harbor the driver mutation
BCR-ABL1.

RNA sequencing reveals molecular alterations in
CML stromal cells at diagnosis
To unravel the molecular features of the stromal cells from
patients with CML, we performed RNA sequencing of freshly
sorted NBM and CML BM stromal cells. Principal component
analysis shows distinct molecular profiles of the CML niche cell
populations (supplemental Figure 3A). In line with the previous
findings,14,39 the niche factors, such as cytokines and growth
factors, were mainly expressed by MSCs and ECs, and not in
the CD44+ mature stromal cells (Figure 2A; supplemental
Figure 3B). Gene set enrichment analysis revealed differen-
tially expressed genes in the CML niche cells (Figure 2A). In
contrast with the enhanced inflammatory cytokine signaling
observed in the BM niche of mice with MPN,20 inflammatory
cytokine pathways including TRAF5, IL32, and interferon
signaling pathways were downregulated in CML stromal cells
whereas cell cycle and oxidative phosphorylation–associated
genes were upregulated (Figure 2A-D; supplemental
Figure 3C-D). PTPN11 activating mutation in mesenchymal
progenitor cells has been shown to cause MPN.21 Upregula-
tion of PTPN11 and downregulation of hematopoiesis-
supportive genes including ANGPT1, ANGPTL4, KITLG, and
LAMA4 in CML MSCs may indicate their possible contribution
to CML pathogenesis (Figure 2C; supplemental Figure 4A).
Cell-to-cell adhesive interactions are important for cell prolif-
eration, migration, and differentiation.40,41 In this study,
we detected dysregulation of adhesion molecules in the
CML niche, including downregulation of ICAM1 and integrin
α10/ITGA10, and upregulation of integrin α4/ITGA4/CD49D
and ALCAM/CD166 in CML MSCs (Figure 2C; supplemental
Figure 3E-5). However, ITGA4/CD49D, ITGA6/CD49F, and
VCAM1/CD106 were downregulated in CML ECs
(supplemental Figure 5).

Notably, among the commonly differentially expressed genes
in the CML MSCs, ECs, and mature stromal cells, CXCL14 was
the most considerably reduced cytokine (Figure 2E-F). This
alteration in CML MSCs was confirmed by quantitative poly-
merase chain reaction and FACS (supplemental Figure 4A;
supplemental Figure 4C-E). Low or undetectable CXCL14
expression in hematopoietic cells in CML BM emphasizes its
potential functional importance for CML cell growth
(supplemental Figure 4B).
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Figure 1. Altered BM niche composition and MSC function in patients with CML. (A) Strategy for isolation and characterization of the BM cellular niche components. (B)
Representative FACS profiles showing gating strategy for sorting of ECs (CD45–CD235A–CD31+), MSCs (CD45–CD235A–CD31–CD44–), CD45–CD235A–

CD31–CD44–CD146+CD271+ MSC subsets, and mature stromal cells (CD45–CD235A–CD31–CD44+) within total stromal cells (CD45–CD235A–) from BM samples of patients with newly
diagnosed CML and age-matched healthy donors (NBM). (C-E) Abnormal hematopoiesis supportive function of MSCs derived from patients with CML, examined by LTC-IC assay. (C)
Experimental design of coculture system for assessing LTC-ICs. Normal BM (NBM) or CML BM CD34+ cells were sorted and cocultured with either NBM MSCs or CML MSCs for 6
weeks. Subsequently, the cells were collected for CFU-C assay. (D) LTC-ICs derived from NBMCD34+ cells cocultured with NBM or CMLMSCs. (E) LTC-ICs derived from CML CD34+

cells cocultured with NBM or CML MSCs. (F) Quantitative polymerase chain reaction analysis of HSC niche factor expression in the NBM and CML MSCs. Horizontal lines represent
median values, and each dot represents the mean of triplicate or duplicate measurements on samples from an individual donor. The data were collected from 4 to 5 independent
experiments. The statistical differences were determined by paired t test (D-E) or unpaired Mann-Whitney test (F). See also supplemental Figure 1.
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Figure 2. RNA sequencing reveals molecular profiles of CML BM cellular niches. RNA sequencing was performed on FACS-sorted BM CD44– MSCs, CD31+ ECs, and
CD44+ mature stromal cells from 5 patients with CML and 6 healthy BM donors. The false discovery rate (FDR) q value (FDR-q value) represents the false discovery rate of the P
values. Gene set enrichment analysis (GSEA) was carried out on the RNA sequencing data to identify differentially expressed genes in the CML-derived stromal cells. (A) GSEA
reveals differentially expressed gene sets in the CML CD44– MSCs, CD31+ ECs, and CD44+ mature stromal cells. (B) GSEA plot showing the downregulation of genes involved
in the cytokine-receptor interaction in CML MSCs and the heatmap of the top 25 altered genes in this pathway. (C) Selected inflammatory cytokine and adhesion molecule
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Enforced expression of CXCL14 in stroma
suppresses CML LSC maintenance in vitro
To assess the impact of CXCL14 on the CML LSCs we took
advantage of CXCL14-overexpressing NIH3T3 stromal cells
(NIH3-CXCL14) using an in vitro coculture system followed by
LTC-IC assay and transplantation into immunodeficient mice
(Figure 3A). After a 7-day coculture of CML BM CD34+CD38−

cells with NIH3-CXCL14 cells, the total numbers of the cells
were increased but the numbers of LTC-ICs were reduced,
compared with that in cells cocultured with the control stromal
cells (NIH3-CTRL) (Figure 3B). Consistently, FACS analysis
showed a reduced frequency of residual CD34+CD38– LSCs but
increased fraction of CD15+CD66B+ myeloid cells from the
CML CD34+CD38– cells after coculture with NIH3-CXCL14 cells
(Figure 3C-D). In contrast, coculture with NIH3-CXCL14 stromal
cells did not elicit any significant effects on normal BM
CD34+CD38– cells (Figure 3B-D). These findings indicate that
the stromal-derived CXCL14 promotes proliferation and differ-
entiation of CML LSCs.

To further assess the impact of CXCL14 on CML LSCs, we
transplanted the CML CD34+CD38– cells (equivalent to 1000
starting CD34+CD38– cells) after 3 to 4 days coculture into
sublethally irradiated NSG-SGM3 mice. At 8 or 12 weeks after
transplantation, engraftment (hCD45+) in the BM of the CML
cells cocultured with NIH3-CXCL14 cells was significantly lower
than CML cells from the same donor cultured with the control-
NIH3 (Figure 3E-F). Taken together, these results suggest a
suppressive role of CXCL14 in the maintenance of CML LSCs.

CXCL14 suppresses CML LSC growth and
sensitizes the effect of IM in vitro
Next, we explored the impact of recombinant CXCL14 proteins
on the survival of CML CD34+CD38– LSCs during TKI treatment
by LTC-IC and CAFC assays using primary normal and CML BM
MSCs. To allow for maximal cell adhesion/migration to the BM
MSCs, IM was added to the cocultures 2 days after seeding
CML CD34+CD38− cells (Figure 4A). CXCL14 alone exerted a
significant inhibitory effect on CML LSC survival regardless of
being cultured with normal or CML BM MSCs (Figure 4B). It
appeared that CML LSCs were more resistant to IM in the
cocultures with NBM MSCs than in the cocultures with patient-
derived CML MSCs (Figure 4B). We observed an additive inhi-
bition from the combined treatment with CXCL14 and IM in the
cocultures with CML MSCs but not with normal MSCs
(Figure 4B). This might be because of the promoted prolifera-
tion of CML cells in the presence of CML MSCs, as shown in
Figure 1. The inhibitory effect of CXCL14 and IM on CML LSC
growth was also shown by CAFC assay using patient-derived
BM MSCs, as revealed by one-way analysis of variance anal-
ysis (Figure 4C). This was further supported by no detectable
CFU–granulocyte-macrophage-erythrocyte reflecting stem and
progenitors in the residual CAFCs after treatment with CXCL14
or IM (Figure 4D). These data suggest a suppressive effect of
CXCL14 on CML LSCs. Such an inhibition was not observed
with normal BM CD34+CD38– cells (supplemental Figure 6),
indicating a selective effect of CXCL14 on CML LSCs.

CXCL14 suppresses CML LSCs in vivo
To further determine the therapeutic impact of CXCL14 on
CML LSCs in vivo, we first established a xenografted mouse
THERAPEUTIC POTENTIAL OF CXCL14 IN CML
model by transplanting CML BM mononuclear cells into NSG-
SGM3 mice (Figure 5A). At 3 weeks after transplantation, the
mice with similar CML engraftment levels were distributed
into 4 groups (supplemental Figure 7A) and treated with
normal saline, CXCL14, IM, or the combination for 7 to 12
days. We did not observe any general side effects in the mice,
and the blood cell counts, BM cellularity, and spleen size
remained comparable with those of controls (supplemental
Figure 7). A significant inhibition of CML engraftment in the
spleen and blood but not the BM was detected after treat-
ment with IM (Figure 5B-D; supplemental Figure 7B). Notably,
CXCL14 treatment alone significantly inhibited CML engraft-
ment in the blood, spleen, and BM, even to a greater degree
than IM treatment in BM CML engraftment (Figure 5B-D;
supplemental Figure 8A). It is worth emphasizing that, in cells
from patients with suboptimal response to TKIs (BCR-ABL1
level >1% by 6 months after TKI initiation),42 CXCL14 inhibi-
tion persisted (Figure 5E). The CD34+ cell frequency in the
recipient BM treated with CXCL14 was significantly lower than
that in the IM-treated BM 8 days after the treatment discon-
tinuation (supplemental Figure 8B-C), suggesting a possible
stronger inhibition of CXCL14 compared with IM on CML
LSCs. Serial transplantation of the residual CML cells showed
a trend of decrease in the CML engraftment in secondary
recipients receiving BM cells from primary recipients who had
been treated with CXCL14 (supplemental Figure 8D). The
mice treated with CXCL14 showed undetectable CML
engraftment in the spleen and blood at 19 weeks after
treatment whereas 2 of 4 mice treated with IM remained
positive, with 1 showing relapse at 9 weeks after treatment
(Figure 5E; supplemental Figure 8A). The combined treatment
with CXCL14 and IM did not seem to further enhance inhi-
bition of CML engraftment (Figure 5B). Altogether, these data
suggest that CXCL14 strongly suppresses CML LSCs in vivo
and might result in better treatment outcomes.
RNA sequencing reveals molecular mechanisms of
CXCL14 inhibition on CML LSCs
To determine the molecular mechanisms of CXCL14 action,
we performed RNA sequencing of CML CD34+CD38– cells 6
and 24 hours after stimulation with conditioned media derived
from NIH3-CTRL or NIH3-CXCL14 cells (Figure 6A). MTORC1
signaling and oxidative phosphorylation (OXPHOS) are known
to be activated in CML cells and are critical to CML cell growth
during TKI therapy.43-45 Consistent with the suppressive effect
of CXCL14, after CXCL14 stimulation, the genes related to
mTORC1 signaling and OXPHOS were downregulated in the
CD34+CD38− cells (Figure 6B-E; supplemental Figure 9A-B).
Specifically, OPA3, CYC1, and ATP2A2, known to be impor-
tant for maintaining cell energy metabolism and growth,46,47

were markedly reduced (Figure 6E). Correspondingly, the
MYC targets, E2F targets and G2M checkpoints that are
downstream of these 2 pathways and BCR-ABL1 activa-
tion44,45,48 were downregulated (Figure 6C). Conversely, the
TNF-α and transforming growth factor β signaling pathways
were upregulated in the CML LSCs (Figure 6C-D). IL1RAP,
reported to specifically mark CML LSCs,49,50 was lost in these
cells after CXCL14 stimulation, suggesting possible selective
loss of CML LSCs (Figure 6E). The upregulation of CSF3R is
consistent with the promoted myeloid differentiation
(Figure 3C) in the coculture with NIH3-CXCL14 cells. CXCL14
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Figure 3. CXCL14 overexpression in stromal cells suppresses CML CD34+CD38− cell growth in vitro and engraftment in the NSG-SGM3 mice. (A) Scheme repre-
senting the experimental design of coculture system. BM CD34+CD38– cells from 5 to 10 patients with newly diagnosed CML and 7 age-matched healthy donors (NBM) were
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Testing the effect of CXCL14+/– IM on CML LSCs by LTC-IC and CAFC assays using primary BM MSCs
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was undetectable in CML BM CD34+CD38– cells but upregu-
lated after CXCL14 stimulation (supplemental Figure 4B;
Figure 6C), which might facilitate the CXCL14-induced effect
Figure 3 (continued) gating strategy of human CD45+ CML cells engrafted in the NSG-S
cells within total live cells. (F) Reduced CML engraftment from the CML CD34+CD38– cells
after transplantation. The tested CML cells were transplanted at 3 to 4 days after the cocu
Each dot represents engraftment in a single recipient mouse. Horizontal bars indicate m

THERAPEUTIC POTENTIAL OF CXCL14 IN CML
via an autocrine loop. These data suggest potential mecha-
nisms for the functional impact of CXCL14 on CML cells
(supplemental Figure 9C).
GM3 recipient mouse BM. The numbers in the panels are the percentage of positive
cultured with NIH3-CXCL14 stroma in the BM of NSG-SGM3 mice at 10 to 12 weeks
lture. Data were from 2 independent experiments on BM from 3 patients with CML.
edian values. The statistical difference was determined by unpaired t test.
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Testing the therapeutic effect of CXCL14 in patient-derived xenograft NSG-SGM3 mice
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Figure 5. CXCL14 treatment in vivo suppresses CML cell engraftment in a patient-derived xenograft NSG-SGM3 mouse model. (A) Experimental design for assessing
the in vivo effect of CXCL14 and IM on CML cell growth by xenograft transplantation into NSG-SGM3 mice. Primary BM MNCs from patients with CML were transplanted via
tail vein into the NSG-SGM3 mice. Peripheral blood was collected at 3 weeks after transplantation to examine CML engraftment before treatment. The mice with similar CML
engraftment were subjected to daily intraperitoneal injections of saline (NS), CXCL14, IM, or the combination for 7 to 12 days at the indicated doses. From 1 day to 19 weeks
after the last injection, CML engraftment in the BM, spleen, and PB of the recipient mice were analyzed by FACS. (B-D) The relative frequencies of the CML cells in the
recipient PB (B) at 1 day and 1 week after 7 to 12 days of treatment, and in the spleen (C) and BM (D) at the end points (1-8 days after treatment). The numbers in the panels are
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Reduced mitochondrial function of CML
CD34+CD38– cells after CXCL14 stimulation
Next, we tested whether CXCL14-induced downregulation of
MTORC1 signaling and OXPHOS could have any functional
impact on the cells (Figure 7A). Among the selected down-
regulated genes, CYC1, a key component in mitochondrial
respiratory chain, was confirmed to be reduced at protein level
in the CML CD34+CD38– cells, 24 hours after CXCL14 stimula-
tion (Figure 7B-D), which prompted us to explore the mito-
chondrial respiratory chain in these cells. Reactive oxygen
species (ROS) are byproducts of OXPHOS and the mitochondrial
respiratory chain. Consistent with reduced OXPHOS and CYC1,
82 6 JULY 2023 | VOLUME 142, NUMBER 1
we detected reduced ROS in the cells whereas the mitochondrial
mass remained unchanged (Figure 7E-F). To further examine the
effect of CXCL14 on the mitochondrial function of CML cells, we
adopted a FACS-based protocol51,52 on the CML cell line K562
to monitor their mitochondrial membrane potential (MMP), which
has to be maintained by mitochondrial respiratory chain, thus,
reflecting mitochondrial function (Figure 7G). The basal MMP
after CXCL14 stimulation was comparable with that of non-
treated cells. However, after the addition of pyruvate/malate to
measure complex I activity, the MMP of CXCL14-stimulated
K562 was reduced (Figure 7H), suggesting that CXCL14 treat-
ment may impair mitochondrial function.
DOLINSKA et al
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Discussion
The persistence of residual LSCs is the main cause of treatment
failure and relapse in CML.4 There is a great demand to identify
new therapeutic options targeting CML LSCs to prevent CML
relapse, particularly after TKI treatment discontinuation. Many
attempts have been made to search for overexpressed mole-
cules as therapeutic targets to prevent leukemia recurrence.
However, the drugs that target these molecules often cause
severe side effects because the targets are also expressed in
normal cells.53-55 On the contrary, restoration of the down-
regulated molecules may be more promising for treating can-
cers without strong side effects because they are abundantly
present in normal cells.

Herein, our study identifies CXCL14 as a new therapeutic
option for treating CML. Through molecular characterization of
freshly isolated BM stromal cells from patients with CML at
diagnosis, we have identified a set of dysregulated niche factors
in CML MSCs and ECs. Among them, CXCL14 is lost in CML BM
cellular niches, and, importantly, restoring CXCL14 expression
inhibits CML LSC growth in vitro and CML engraftment after
transplantation. Recombinant CXCL14 proteins inhibit CML LSC
survival and enhance TKI inhibitory effects on the CML LSCs in
LTC-IC and CAFC assays. Notably, CXCL14 single treatment of
mice with xenografts derived from patients with CML signifi-
cantly inhibited CML engraftment, even to a greater degree
THERAPEUTIC POTENTIAL OF CXCL14 IN CML
than IM. The inhibition persisted in patients with suboptimal TKI
response. Mechanistically, CXCL14 upregulates inflammatory
cytokine signaling but downregulates mTORC and OXPHOS
signaling pathways, accompanied by impaired mitochondrial
respiratory function. This finding is consistent with previous
reports that mTOR signaling inhibition sensitizes CML LSC
response to TKI.44,45,56,57

CXCL14 is a CXC chemokine highly conserved in mammals,
with only a 2–amino acid difference between mice and humans,
and was initially identified in breast and kidney cells,58 thus
termed BRAK. CXCL14 shares high amino acid sequence con-
servation with CXCL12,59 which is known to be important in
maintaining normal hematopoiesis60,61 and protecting CML
LSCs during TKI treatment.25,62 However, CXCL14 has a unique
5–consecutive amino acid insertion, which is different to
CXCL11 and CXCL12, and is essential for its degradation in
cancer cells.63 Recently, a G-protein–coupled receptor ACKR2
has been identified to mediate CXCL14 function in a breast
cancer model.64 Nevertheless, CXCL14-equivalent receptors in
CML remain to be identified.

CXCL14 plays a controversial role in solid cancers.65-69 Low
CXCL14 expression may result in low recruitment of dendritic
cells, thus inhibiting their ability to initiate antitumor immune
responses.70 Reexpression of CXCL14 suppresses solid cancer
6 JULY 2023 | VOLUME 142, NUMBER 1 83



Day-3 Day 0 6h 24hSeed NIH3-CTRL /
NIH3-CXCL14 cells

CD34+CD38–

+ NIH3-CTRL CM

+ NIH3-CXCL14 CM

- Collect conditioned media (CM)
- FACS sorting CD34+CD38– cells

culture

RNA Sequencing

(n = 3 patients)

Collect cells

10
5

CD
38

CD34

CD34+

cells enriched

10
4

10
3

10
2

0

0 10
2

10
3

10
4

10
5

A

10

5

0

–20 –10 0 10 20

Log2 fold change

CXCL14 vs CTRL at 24h

6

–L
og

10
 P 4

2

0

–10 –5 0

Log2 fold change
5 10

CXCL14 vs CTRL at 6h
B

NES: normalized enrichment score

TGF_BETA_SIGNALING

TNFA_SIGNALING_VIA_NFKB

MYC_TARGETS_V2

MTORC1_SIGNALING

E2F_TARGETS

MYC_TARGETS_V1

G2M_CHECKPOINT

OXIDATIVE_PHOSPHORYLATION

1,9

1,6

–1,9

–1,8

–1,7

–1,7

–1,7

–1,5

NES Gene sets

24h post-culture

UV_RESPONSE_DN

NES

1,6
1,6
1,5
1,5

–2,1
–2,1
–1,8
–1,6
–1,5
–1,5

Gene sets

6h post-culture

TNFA_SIGNALING_VIA_NFKB

TGF_BETA_SIGNALING

KRAS_SIGNALING_DN

MYC_TARGETS_V2

MYC_TARGETS_V1

OXIDATIVE_PHOSPHORYLATION

MTORC1_SIGNALING

UNFOLDED_PROTEIN_RESPONSE

XENOBIOTIC_METABOLISM

C

Figure 6. RNA sequencing reveals molecular changes in CML LSCs after CXCL14 stimulation. (A) Experimental setup. CML CD34+CD38– cells from the BM of patients
with CML were sorted and cultured with conditioned media derived from NIH3-CXCL14 or NIH3-CTRL. The CML cells were collected at 6 and 24 hours and sorted directly into
lysis buffer for subsequent RNA sequencing. Data were from 3 independent experiments with 3 patients with CML. (B) Volcano plots showing differentially expressed genes in
the CML LSCs 6 hours and 24 hours after stimulation with CXCL14-CM compared with that with the control BM. FDR-q value represents the false discovery rate of the P values.
(C) The upregulated and downregulated gene sets in the CML CD34+CD38− cells at 6 hours (left) and 24 hours (right) after stimulation with CXCL14-CM. Data are from 3
independent sorting experiments on 3 patients with CML. (D) The heatmap showing the top 25 dysregulated genes within the enriched gene sets of tumor necrosis factor
alpha signaling and MYC targets_V2 in the CML CD34+CD38− cells at 6 hours after stimulation with CXCL14-CM. (E) RNA sequencing shows expressions of outer mito-
chondrial membrane lipid metabolism regulator (OPA3), cytochrome c1 (CYC1), ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2), colony stimulating
factor 3 receptor (CSF3R), and IL-1 receptor accessory protein (IL1RAP) in the CD34+CD38– cells at 6 hours and 24 hours after stimulation with CXCL14. The numbers in the
panels are P values determined by unpaired t test. See also supplemental Figure 9. RPKM, reads per kilobase of transcript, per million mapped reads.

84 6 JULY 2023 | VOLUME 142, NUMBER 1 DOLINSKA et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/142/1/73/2061929/blood_bld-2022-016896r1-m

ain.pdf by guest on 16 M
ay 2024



1

0

–1Re
la

tiv
e 

ex
pr

es
sio

n

MRTO4
SUPV3L1
PPRC1
UNG
PUS1
IPO4
PLK1
MYBBP1A
PHB
PPAN
FARSA
EXOSC5
GRWD1
HK2
DDX18
HSPD1
HSPE1
NOP56
SLC19A1
RRP9
NOP16
NDUFAF4
TBRG4
MCM4
RCL1

M
YC

 TA
RG

ET
 V

2

CTRL CXCL14
6h post-culture

1

0

–1Re
la

tiv
e 

ex
pr

es
sio

n

CTRL CXCL14
6h post-culture

PLPP3

TN
FA

 S
IG

NA
LIN

G

DNAJB4
CSF1
DUSP5
DENND5A
CLCF1
FUT4
TNFAIP2
NFAT5
SOCS3
KLF2
BCL3
CEBPB
IFNGR2
RCAN1
BCL6
HES1
CXCL10
CXCL11
NFKB1
IL7R
MARCKS
GEM
NFIL3
KLF4

D

5000

4000

3000

2000

1000

0

CYC1

0.00810.32

CTR
L

CXCL1
4

CTR
L

CXCL1
4

6h 24h

1500

1000

500

0

ATP2A2

0.0053

CTR
L

CXCL1
4

CTR
L

CXCL1
4

6h 24h

800

OPA3

<0.0001

CTR
L

CXCL1
4

CTR
L

CXCL1
4

600

400

200

0

6h 24h

No
rm

al
ize

d 
co

un
ts 

in
 R

PK
M

3000

2000

1000

0

CSF3R
0.0248

6h 24h

CTR
L

CXCL1
4

CTR
L

CXCL1
4

1500

1000

500

0

IL1RAP

6h 24h

CTR
L

CXCL1
4

CTR
L

CXCL1
4

0.0500

No
rm

al
ize

d 
co

un
ts 

in
 R

PK
M

E

Figure 6 (continued)

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/142/1/73/2061929/blood_bld-2022-016896r1-m

ain.pdf by guest on 16 M
ay 2024
growth and progession.71 However, high CXCL14 expression in
the stroma is reportedly associated with shorter survival in
breast cancer.72 Here, we found that CXCL14 is exclusively
expressed in normal human BM stromal cells, suggesting that
BM stromal cells might be the major cellular resources for
CXCL14 in human BM, and that any changes in CXCL14
expression in these cells may have biological consequences.
THERAPEUTIC POTENTIAL OF CXCL14 IN CML
Along with this, enforced CXCL14 expression in the stroma
promoted CML LSC differentiation at the expense of their self-
renewal. Altogether, our data suggest that restoring CXCL14
may be a promising therapeutic option for treating CML.

Several mechanisms have been proposed for the tumor
suppressive effects of CXCL14 in solid cancer, such as
6 JULY 2023 | VOLUME 142, NUMBER 1 85
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CXCL14-induced immune cell recruitment, cell cycle arrest, and
suppressed angiogenesis.73 Here, we show that CXCL14 may act
through downregulating OXPHOS, accompanied by declined
mitochondrial respiratory function and ROS levels in the CML
LSCs, which might lead to disturbed energy metabolism and
induced susceptibility to apoptosis in the LSCs. However, other
mechanisms might be involved in this regulation. IL1RAP, a
marker reportedly specifically expressed in CML LSCs,49,50

became undetectable in the CD34+CD38− cells after CXCL14
stimulation, pointing to a possible selective loss of CML LSCs.

In addition to CXCL14, we found the downregulation of several
other factors in the CML MSCs. This includes KIT ligand,
LAMA4, and IL-32. We recently reported that Lama4 loss in BM
MSCs increases AML proliferation and chemoresistance,35

meriting future studies on the impact of LAMA4 expression
on CML progression. PTPN11 is critical for the survival and
maintenance of normal HSPCs74 and its activating mutation in
mesenchymal progenitor cells has been shown to evoke
MPN.21 It is upregulated in the CML MSCs. These changes may
collectively contribute to the functional alterations of CML
MSCs including their hematopoiesis-supportive function and
differentiation. More work is required to elucidate the exact
impact of these niche alterations.

In conclusion, our study has revealed molecular and functional
characteristics of BM stromal cells in patients with CML and
loss of CXCL14 in BM stromal cells in these patients at diag-
nosis. Restoring CXCL14 suppressed CML LSC survival, pre-
sumably by downregulation of mTORC signaling and
OXPHOS associated with reduced mitochondrial dysfunction
and MYC targets (supplemental Figure 9C). Importantly,
CXCL14 treatment inhibits engraftment of CML cells from
patients who failed to optimally respond to TKIs. Together, our
study has identified CXCL14 as a promising therapeutic option
targeting CML LSCs.
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