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CYBB regulation and expression
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KEY PO INT S

•We used a bioinfor-
matics-guided approach
to design a lentiviral
vector driven by
endogenous enhancer
and promoter elements
of the CYBB gene.

•Our novel vector
restores physiologic
regulation and
expression of CYBB for
the treatment of
X-CGD.
-202
X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency caused by
mutations in the CYBB gene, resulting in the inability of phagocytic cells to eliminate infec-
tions. To design a lentiviral vector (LV) capable of recapitulating the endogenous regulation
and expression ofCYBB, a bioinformatics-guided approachwas used to elucidate the cognate
enhancer elements regulating the nativeCYBB gene. Using this approach, we analyzed a 600-
kilobase topologically associated domain of the CYBB gene and identified endogenous
enhancer elements to supplement the CYBB promoter to develop MyeloVec, a physiologi-
cally regulated LV for the treatment ofX-CGD.When comparedwith an LV currently in clinical
trials for X-CGD, MyeloVec showed improved expression, superior gene transfer to
hematopoietic stem and progenitor cells (HSPCs), corrected an X-CGD mouse model leading
to complete protection against Burkholderia cepacia infection, and restored healthy donor
levels of antimicrobial oxidase activity in neutrophils derived from HSPCs from patients with
X-CGD. Our findings validate the bioinformatics-guided design approach and have yielded a
novel LV with clinical promise for the treatment of X-CGD.
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Introduction
X-linked chronic granulomatous disease (X-CGD) is a primary
immunodeficiency caused by mutations in the CYBB gene,
which encodes for gp91phox, the catalytic subunit of the
phagocyte nicotinamide adenine dinucleotide phosphate
oxidase complex. Mutations in CYBB result in the inability of
phagocytic cells to produce antimicrobial oxidase needed for
elimination of phagocytosed bacteria and fungi.1,2 Thus,
patients suffer from recurrent life-threatening infections.3,4

Autologous hematopoietic stem cell transplantation with
gene therapy is a potentially curative treatment for X-CGD.
However, prior lentiviral vector (LV) designs for X-CGD used
noncognate enhancers in combination with either an exoge-
nous myeloid promoter or the endogenous CYBB promoter
and have been unable to restore wild-type (WT) levels of
expression.5-7 The current LV for X-CGD in clinical trials is
driven by a chimeric promoter comprising the c-Fes and
cathepsin G promoter regions.8,9 Although patients in
the ongoing trial have improved gp91phox expression,
antimicrobial oxidase activity is restored to only ~33% of
healthy donor (HD) levels.8

The inability of prior LVs to restore physiologic expression and
regulation is likely due to a lack of cognate enhancers supple-
menting the endogenous promoter within the LV cassette.
Although gene editing strategies can potentially restore phys-
iologic CYBB expression and regulation, these approaches
either only target a specific mutation or have led to low effi-
ciency of full-length complementary DNA insertion into long-
term hematopoietic stem and progenitor cells (HSPCs).10,11

To design a LV capable of restoring physiologic levels of
gp91phox expression, we implemented a bioinformatics-based
approach to identify the cognate enhancers regulating the
CYBB gene. Our analysis revealed 15 putative endogenous
elements contained within a 600-kilobase (kb) topologically
associated domain (TAD). Each putative element was experi-
mentally assessed for on-target lineage-specific enhancer activ-
ity, and key elements were used to design a physiologically
regulated LV with optimized expression, titer, and gene transfer.
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Here, we describe a bioinformatics-guided approach used to
design a highly regulated LV and assess its ability to recapitu-
late the physiologic regulation and expression of the endoge-
nous CYBB gene. In addition, we demonstrate the LV’s capacity
to fully correct the X-CGD phenotype in both a X-CGD murine
model and in cells from patients with X-CGD, restoring WT
levels of gp91phox expression and antimicrobial oxidase activity.
More broadly, we demonstrate a revolutionary approach to LV
design, which may pave the way for new gene therapy targets
requiring highly regulated expression.
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Materials and methods
LVs
All LVs were cloned into an empty CCL backbone.12 Fragments
were synthesized as gBlocks (Integrated DNA Technologies) or
amplified from genomic DNA by polymerase chain reaction
with compatible ends to be cloned using NEBuilder HiFi DNA
Assembly Kit (New England Biolabs). The CCLchim plasmid9

was kindly provided by Bobby Gaspar. LVs were packaged
with a VSV-G pseudotype using 293T cells and concentrated
and titered on HT-29 cells, as previously described.13 A good
manufacturing practice–equivalent grade vector of MyeloVec
was generated by the Indiana University Vector Production
Facility and used for the in vitro genotoxicity studies.

Bioinformatic analysis
Genomic regions containing putative regulatory elements of
the CYBB gene were compiled using data from ENCODE,
Ensembl, FANTOM, and VISTA.14-17 Functional boundaries of
the putative enhancer elements were defined using lineage-
specific DNase I accessibility, transcription factor binding,
epigenetic histone modification, and sequence conservation
data from ENCODE.14

Mice
All animals involved were handled in accordance with protocols
approved by the University of California, Los Angeles Animal
Research Committee under the Division of Laboratory Medi-
cine. B6.129S6-Cybbtm1Din/J (X-CGD mice), C57BL/6J, B6.SJL-
Ptprca Pepcb/BoyJ (Pepboy), NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ (NSG), and NOD.Cg-KitW-41J Tyr + Prkdcscid Il2rgtm1Wjl/
ThomJ (NBSGW) mice were purchased from the Jackson Lab-
oratory, and colonies were maintained at University of Califor-
nia, Los Angeles.

NSG xenografts
Transduced CD34+ cells were washed and incubated with
OKT3 (Tonbo Biosciences, 1 μg/100 μL) for 30 minutes at 4◦C to
prevent contaminating T-cell–derived graft-versus-host disease.
Immediately before transplant, 1- to 3-day-old NSG neonatal
mice were irradiated at a dose of 150 rads with a cesium-137
source. Each mouse was injected intrahepatically with 1 × 105

to 5 × 105 cells.

Murine X-CGD ex vivo gene therapy
For the CD45.2 into CD45.1 transplants, homozygous female
X-CGD (CD45.2) Lin− cells were injected retro-orbitally into
lethally irradiated 12-week-old female (CD45.1) Pepboy mice.
1008 2 MARCH 2023 | VOLUME 141, NUMBER 9
For the X-CGD into X-CGD transplants, hemizygous male
X-CGD Lin− cells were injected retro-orbitally into lethally irra-
diated 10- to 14-week-old female X-CGD mice. All recipient
mice received 2 doses of 600 rad irradiation administered 3
hours apart, 24 hours before transplant. For both experiments,
recipient mice were injected with 1 × 106 cells.
Burkholderia cepacia infection
Mice were injected intraperitoneally with 1 × 105 colony-
forming units (CFUs) of B cepacia resuspended in phosphate-
buffered saline (ATCC #25609) and weighed daily for 14 days
after infection. Peripheral blood (PB) was obtained via retro-
orbital blood drawn 24 hours after infection, and bacteremia
was evaluated by serial plate dilutions on agar 3 plates. Mice
were euthanized if they lost >20% of their original body weight
and were found moribund.
Genotoxicity evaluation
The in vitro immortalization (IVIM) assay and molecular surro-
gate assay for genotoxicity assessment (SAGA) were performed
at Hannover Medical School as previously described.18,19
Results
Elucidating the elements that regulate the
native CYBB gene
We first characterized the physiologic expression pattern of the
CYBB gene in the bone marrow (BM) and PB of human HDs
(supplemental Figure 1). In BM, we detected high levels of
gp91phox expression in mature neutrophils and bulk myeloid
cells, moderate expression in B cells, and no expression in
either T cells or HSPCs (supplemental Figure 1A). Using previ-
ously described cell-surface markers,20 we also observed that
gp91phox expression progressively increased throughout
neutrophil differentiation (supplemental Figure 1C). Similar
patterns of expression were observed in PB (supplemental
Figure 1B).

To mimic this endogenous expression pattern, we initially
evaluated all intronic regions of CYBB and 5000 base pairs
immediately upstream of the CYBB promoter for DNase I
hypersensitive sites suggestive of enhancer activity. This
revealed an enhancer element in intron 3, which increased
expression over 2.5-fold above the CYBB promoter alone in
neutrophils and monocytes (supplemental Figure 1F). Intron 1
of the CYBB gene was previously suggested to have enhancer
activity;21 however, we observed no effect on expression
(supplemental Figure 1F).

A further in-depth analysis of a 600-kb TAD surrounding the
CYBB gene revealed 15 putative enhancer elements in addition
to the previously identified intron 3 enhancer (Figure 1A). To
assess the function of each putative enhancer element, we
designed a series of LVs, each with a single enhancer element
cloned upstream of both the intron 3 enhancer and the
endogenous CYBB promoter to drive the expression of an
mCitrine reporter (Figure 1B). For comparison to the LV
currently in clinical trials for X-CGD,9 we included the chimeric
promoter LV (CCLchim) in our studies.
WONG et al
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Figure 1. Elucidating the endogenous elements that regulate the CYBB gene. (A) Visual representation of the University of California, Santa Cruz Genome Browser
displaying putative enhancers regulating the native CYBB gene. The CYBB gene is highlighted in the red box. Green arches represent the putative genomic sites interacting
with the CYBB promoter. (B) A series of LVs were designed, each containing a single putative enhancer element cloned upstream of the parental construct. The CCLchim
vector is used as a comparator of expression and regulation. Mean fluorescence intensity (MFI) of the mCitrine-positive population is shown for the human cord blood CD34+

differentiated neutrophils (C) and monocytes (D) as well as the RAMOs (E) and Jurkat cell lines (F). Data are presented as mean ± standard deviation (SD). Statistical sig-
nificance was analyzed using an unpaired t test. All statistical tests were 2-tailed and P < .05 was deemed significant; *P < .05, **P < .01, ***P < .001, ****P < .0001. Int3 enh,
CYBB intron 3 enhancer; mCit, mCitrine; ns, nonsignificant; pro, CYBB promoter; tRNA, transfer RNA; WPRE, Woodchuck hepatitis virus posttranscriptional regulatory element.
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To identify enhancers responsible for driving expression in each
of the on-target cell lineages, we screened the LVs in human
umbilical cord blood (CB) CD34+ differentiated neutrophils and
monocytes, and in the RAMOS B-cell line. We also screened the
LVs in the Jurkat T-cell line to detect any off-target expression.
All vectors were transduced to achieve equivalent vector copy
numbers (VCNs) ranging from ~0.10 to 0.20 to increase the
LENTIVIRAL GENE THERAPY FOR X-CGD
probability of each transduced cell containing a single inte-
grant, based on the Poisson distribution,22,23 for equal com-
parison of expression per integrated copy while factoring out
any benefits due to gene transfer (supplemental Figure 2). The
addition of element 4 increased expression threefold to four-
fold higher than the parental vector (Int3-pro-mCit-WPRE) and
1.5-fold to twofold higher than CCLchim in CD34+
2 MARCH 2023 | VOLUME 141, NUMBER 9 1009
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Figure 2. In vivo lineage-specific expression of MyeloVec. (A) Human HD CB CD34+ HSPCs were transduced and transplanted into sublethally irradiated NSG neonatal
mice. Mice were harvested 18 weeks after transplant and stable BM VCN (B) and BM engraftment (C) were measured. Expression of each vector was evaluated across the
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differentiated neutrophils and monocytes (Figure 1C-D).
Element 4 displayed no enhancer activity in RAMOS B cells,
whereas element 2 increased expression over twofold higher
than the parental vector (Figure 1E). Both elements 4 and 2
displayed no activity in Jurkat T cells, suggesting myeloid and
B-cell lineage–specific activity, respectively (Figure 1F). By
introducing a series of systematic deletions in these key ele-
ments to decrease proviral length, and combining these ele-
ments together, we generated our lead candidate, LV
MyeloVec (Ultra-Core variant of 2-4R-Int3-pro-mCit-WPRE), with
improved expression, titer, and gene transfer (supplemental
Materials and Methods; supplemental Figures 3, 4A, and 5,
available on the Blood website).
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MyeloVec recapitulates the endogenous
lineage-specific expression pattern of the
native CYBB gene
To investigate the lineage-specific expression pattern of Mye-
loVec in vivo, we transduced and transplanted human HD CB
CD34+ HSPCs into sublethally irradiated NSG neonatal mice
(Figure 2A). Experimental arms included MyeloVec, CCLchim,
and ubiquitin C (UBC) vectors, all expressing mCitrine to
display the expression pattern of each construct. The UBC
promoter-driven construct is constitutively expressed in all lin-
eages and was used as a positive control.24 We transduced
cells in each experimental arm with the aim of achieving
equivalent VCNs for an equal comparison of expression per
copy (supplemental Table 1). At 18 weeks after transplantation,
the average VCN in the BM of the mice was 2.36, 2.68, and
1.67 in the MyeloVec, CCLchim, and UBC treatment groups,
respectively (Figure 2B). A majority of the mice had engraft-
ment in the BM, ranging from 68% to 100% (Figure 3C). Two of
the mice in the CCLchim treatment group had lower engraft-
ment levels of 13% and 20%.
LENTIVIRAL GENE THERAPY FOR X-CGD
In the BM of the mice, MyeloVec displayed strict lineage-
specific expression in vivo, with high mCitrine expression in
neutrophils, monocytes, and bulk myeloid cells; modest
expression in B cells; and minimal expression in T cells and
HSPCs (Figure 2D). This corresponded to a 4.8-fold, 2.6-fold,
and 2.9-fold higher expression compared with CCLchim in
neutrophils, monocytes, and myeloid cells, respectively. A
similar pattern of lineage-specific expression was observed in
the PB and spleen (Figure 2E-F). As previously observed,25,26

we detected extremely low or no circulating neutrophils in the
PB of transplanted NSG mice.

To assess the expression kinetics of MyeloVec throughout
neutrophil differentiation, we measured mCitrine levels at each
cellular stage of development in the BM. Expression from
MyeloVec progressively increased as neutrophil progenitors
matured, recapitulating the expression pattern seen with the
endogenous CYBB gene throughout neutrophil maturation
(Figure 2G; supplemental Figure 1C).

Correction of the murine X-CGD model
To assess MyeloVec’s ability to functionally correct the X-CGD
phenotype, we replaced the mCitrine open reading frame with
a JCat codon optimized27 version of CYBB, further increasing
expression by 2.2-fold over the native CYBB complementary
DNA sequence (supplemental Figure 4B; Figure 3A). Murine
X-CGD HSPCs isolated from B6.129S6-Cybbtm1Din/J mice were
then transduced with MyeloVec or CCLchim to achieve an
equivalent VCN based on a previous dose response
(supplemental Figure 6A) and differentiated into mature neu-
trophils in vitro (supplemental Figure 7). MyeloVec was used at
a vector dose of 2.5e6 transduction units (TU)/mL (multiplicity of
infection [MOI], 2.5), and CCLchim was used a vector dose of
2e7 TU/mL (MOI, 20) to achieve equivalent VCNs of 1.96 and
1.97, respectively, for an equal comparison of expression per
2 MARCH 2023 | VOLUME 141, NUMBER 9 1011
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Figure 3. MyeloVec corrects the X-CGDmouse model in vivo. (A) Proviral map of MyeloVec. (B) Murine CD45.2 X-CGD Lin− HSPCs were transduced at an equal vector dose
of 2e7 TU/mL and transplanted into congenic CD45.1 (Pepboy) mice. WT C57BL/6 HSPCs and nontransduced X-CGD HSPCs were also transplanted as positive and negative
controls, respectively. VCN of the cell product are shown in the bottom panel. Mice were harvested 16 weeks after transplant and engraftment (C) and stable VCN (D) in the BM
were measured. Restoration of gp91phox (E-F) and oxidase activity (G-H) was evaluated across the different lineages in the PB of the mice at time of harvest. Each mouse is
represented as a different colored line in the histograms in panels E and G. MFI of gp91phox and rhodamine 123 of all cells within each lineage are shown. Data are presented
as mean ± SD. Statistical significance for panel D was analyzed using an unpaired t test, whereas panels F and H used a 2-way ANOVA followed by multiple paired comparisons
for normally distributed data (Tukey test). All statistical tests were 2-tailed and P < .05 was deemed significant; *P < .05, **P < .01, ***P < .001, ****P < .0001. bp, base pair; NT,
nontransduced.
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copy while factoring out any benefits from increased gene
transfer. At equivalent VCNs, MyeloVec restored gp91phox

levels 1.67-fold higher than CCLchim (supplemental
Figure 7A,C). Direct comparisons to WT gp91phox levels in the
murine cells were not feasible as the antihuman gp91phox (7D5
clone) antibody only detected vector-derived human gp91phox

expression but not endogenous murine gp91phox. However, we
measured functional oxidase activity, and MyeloVec-transduced
cells restored antimicrobial oxidase to WT levels in the murine
X-CGD HPSC-derived neutrophils (supplemental Figure 7B,D).

To demonstrate in vivo correction of the X-CGD phenotype
while taking into account both expression and gene transfer of
the LV constructs, we transduced murine X-CGD HSPCs
(CD45.2) with MyeloVec or CCLchim at an equal vector dose of
2e7 TU/mL (MOI, 20) and transplanted the cells into lethally
ablated (CD45.1) Pepboy mice (Figure 3B). At 16 weeks after
LENTIVIRAL GENE THERAPY FOR X-CGD
transplant, stable BM engraftment ranged from 95% to 99%
across all treatment groups (Figure 3C). MyeloVec displayed
superior gene transfer with average stable BM VCNs of 2.84
and 1.34 in the MyeloVec- and CCLchim-transplanted mice,
respectively (Figure 3D). We observed lineage-specific expres-
sion of MyeloVec in the PB with high-level restoration of
gp91phox in the mature neutrophil and monocyte populations
(Figure 3E). Mice transplanted with MyeloVec-transduced
cells produced an average of 67% gp91phox-positive neutro-
phils compared with 30% gp91phox-positive neutrophils seen in
the CCLchim treatment group (Figure 3F). All nontreated mice
showed a complete absence of gp91phox-positive neutrophils.
Oxidase activity was fully restored to WT levels in PB neutro-
phils of MyeloVec-treated mice (Figure 3G). We also observed
an increase in oxidase-positive neutrophils, with 72% and 55%
oxidase-positive neutrophils detected in the PB of MyeloVec-
and CCLchim-treated mice, respectively (Figure 3H). Analysis of
2 MARCH 2023 | VOLUME 141, NUMBER 9 1013
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the BM of MyeloVec-transplanted mice displayed lineage-
specific restoration of gp91phox, mimicking the pattern seen
with the WT-transplanted cells (supplemental Figure 8).

Maintenance of gp91phox expression, oxidase
activity, and VCN in secondary transplants
In a separate experiment, we transduced murine X-CGD HPSCs
with MyeloVec or CCLchim to achieve equivalent VCNs for
transplantation into Pepboy mice. After 16 weeks, whole BM
from the primary transplants was harvested and transplanted
1014 2 MARCH 2023 | VOLUME 141, NUMBER 9
into secondary Pepboy mice for an additional 16 weeks to
evaluate long-term maintenance of gp91phox expression,
oxidase activity, and VCN. We detected similar levels of
gp91phox-positive and dihydrorhodamine-positive (DHR+) cells
in all lineages between the primary and secondary transplanted
mice (supplemental Figure 9). The average BM VCN was also
maintained between the primary and secondary transplants.
Lineage distribution of engrafted MyeloVec cells was similar to
that of HD controls in both the primary and secondary
transplants.
WONG et al
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Figure 4. MyeloVec gene therapy protects X-CGDmice from B cepacia infection. (A) Murine X-CGD Lin− HSPCs were transduced with MyeloVec or pCCLchim at an equal
vector dose of 2e7 TU/mL and transplanted into X-CGDmice. WT C57BL/6 HSPCs and nontransduced X-CGD HSPCs were also transplanted as positive and negative controls,
respectively. Nontransplanted WT C57BL/6 mice were also included in the study as a positive control. Stable VCN (B) and percentage of DHR+ neutrophils (C) in the PB of the
transplanted mice were measured 8 weeks after transplant. (D) Bacteremia was quantified 24 hours after infection as CFU per μL in the PB. (E) Proportion of surviving mice 14
days post experimental infection with 1 × 105 B cepacia is shown. Data are presented as mean ± SD. Statistical significance for panels B-D was analyzed using an unpaired t
test. All statistical tests were 2-tailed and P < .05 was deemed significant; *P < .05, **P < .01, ***P < .001, ****P < .0001. i.p., intraperitoneally.
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Table 1. Body weight of mice throughout 14-d infectious challenge with 1 × 105 B cepacia

Days post infection 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MyeloVec, % of original
body weight

100 94 90 90 91 92 95 96 95 95 95 95 91 91 94

100 97 94 93 92 98 101 103 104 101 102 101 102 104 103

100 92 89 88 88 91 95 93 92 93 94 95 97 98 98

100 94 90 89 89 91 91 87 91 94 96 98 98 99 98

100 95 86 91 93 95 93 91 93 90 98 100 102 105 105

pCCLchim-gp91phox-WPRE,
% of original body weight

100 91 85 78 dead

100 94 88 82 dead

100 98 95 99 96 98 102 103 102 100 102 102 103 106 106

100 94 88 87 82 76 dead

100 91 83 80 dead

Nontransduced
CYBB−/− Lin−

cells, % of original
body weight

100 88 84 dead

100 88 dead

100 90 83 dead

100 87 80 dead

100 90 83 dead

WT C57BL/6 Lin−

cells, % of original
body weight

100 94 94 91 94 98 100 100 100 100 98 98 96 96 96

100 96 91 89 87 90 92 95 96 95 94 97 97 100 101

100 94 93 98 97 102 104 102 103 102 99 97 96 98 98

100 94 91 97 95 97 100 99 99 98 99 100 99 102 101

100 98 99 99 98 103 103 103 102 108 97 98 98 98 100

WT C57BL/6
(nontransplanted mice),

% of original body weight

100 100 98 103 100 103 101 99 100 97 100 98 100 100 99

100 96 96 100 97 96 95 95 99 98 95 94 97 98 97

100 99 97 101 100 103 101 100 103 100 96 95 97 98 98
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Infectious challenge
To evaluate the restoration of protective immune responses to
bacterial pathogens after gene therapy, we transduced murine
X-CGD HSPCs with either MyeloVec or CCLchim at an equal
vector dose of 1 × 107 TU/mL and transplanted the cells into
lethally ablated X-CGD mice (Figure 4A). At 8 weeks after
transplant, the average VCN in the PB of MyeloVec- and
CCLchim-treated mice were 2.83 and 1.32, respectively, which
corresponded with 76% and 63% DHR+ PB neutrophils
(Figure 4B-C). At 11 weeks after transplant, mice were infected
with 1 × 105 CFUs of B cepacia injected intraperitoneally. PB
was drawn to quantify bacteremia 24 hours after transplant.
MyeloVec-treated mice, mice receiving WT HSPCs, and non-
transplanted WT C57BL/6 mice all displayed very low or absent
levels of bacteremia, whereas the CCLchim-treated mice and
mice transplanted with nontransduced X-CGD HSPCs had an
average of 4.05 CFU per μL and 25.95 CFU per μL of blood,
respectively (Figure 4D). Body weights of the mice were
monitored preinfection and daily for 14 days postinfection
(Table 1). All MyeloVec-treated mice survived the infectious
challenge and regained weight, whereas 80% of the CCLchim-
treated mice developed a fatal infection (Figure 4E; Table 1).
X-CGD mice transplanted with nontransduced X-CGD Lin− cells
all developed fatal infections by 3 days after infection, whereas
X-CGD mice transplanted with WT HSPCs and nontransplanted
WT C57BL/6 mice all survived and regained weight throughout
the study.
1016 2 MARCH 2023 | VOLUME 141, NUMBER 9
Correction of HSPCs from patients with X-CGD
To demonstrate the ability of MyeloVec to correct HSPCs from
patients with X-CGD, CD34-selected HPSCs were transduced
with MyeloVec or CCLchim to achieve equivalent VCNs and
differentiated in vitro to produce mature neutrophils (Figure 5).
At an equivalent VCN of 1.90 and 2.00, 72.8% and 57.9%
gp91phox-positive neutrophils were produced in the MyeloVec-
and CCLchim-transduced cells, respectively (Figure 5A). Within
the bulk neutrophil population, MyeloVec-transduced cells
restored HD levels of gp91phox at an average VCN of 1.63,
whereas CCLchim was only able to restore gp91phox levels to
40% of HD levels at an equivalent VCN (Figure 5C). Oxidase-
positive neutrophils displayed HD levels of cellular oxidase
activity when transduced with MyeloVec, whereas CCLchim-
transduced cells showed 33% of HD levels (Figure 5B,D).
Furthermore, MyeloVec-transduced cells generated HD levels
of superoxide, whereas the CCLchim-transduced cells only
produced 19% of HD levels of O2

− at an equivalent VCN
(Figure 5E).

To evaluate the correction of HSPCs from patients with X-CGD
in vivo, MyeloVec-transduced HSPCs were transplanted into
sublethally irradiated NSG neonatal mice. Control mice
received nontransduced X-CGD or HD HSPCs. At 16 weeks
after transplant, the average stable VCN of MyeloVec-treated
mice was 2.66, and engraftment ranged from 10% to 12.5%
in the MyeloVec-treated mice compared with 2.5% to 3% in
WONG et al
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Figure 5. MyeloVec fully restores HD levels of gp91phox and cellular oxidase in human X-CGD HSPC-derived neutrophils. HSPCs from patients with X-CGD were
transduced with MyeloVec or CCLchim and differentiated into mature neutrophils in vitro. (A) Restoration of gp91phox was measured at day 18 of differentiation. (B) Oxidase
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mice transplanted with nontransduced X-CGD HSPCs
(Figure 6A-B). Mice transplanted with MyeloVec-transduced X-
CGD HSPCs restored gp91phox expression to HD levels in the
myeloid, B-cell, T-cell, and HSPC lineages (Figure 6C-D). Line-
age distribution of the engrafted MyeloVec-transduced patient
cells was similar to HD controls (supplemental Figure 10).

Long-term persistence of MyeloVec-transduced
HSPCs
To evaluate the long-term maintenance of MyeloVec-
transduced HSPCs, NBSGW mice were transplanted with
MyeloVec or mock-transduced HD HSPCs. At 16 weeks after
transplant, mice were harvested, and the whole BM was trans-
planted into secondary NBSGW mice for an additional 8 weeks.
Similar VCNs were observed in the whole BM of the primary
and secondary mice and also in the sorted CD34+ CD38−

primitive HSPCs in the BM of the secondary mice (supplemental
Figure 11).

Safety profile of MyeloVec
To evaluate the safety profile of MyeloVec, we performed an
IVIM assay using good manufacturing practice–equivalent
MyeloVec LV. Both MyeloVec- and CCLchim-transduced cells
did not elicit the growth of insertional mutants (Figure 7A) and
showed normal proliferation rates and viability compared with
controls (supplemental Figure 12A). We also performed SAGA
to evaluate whether MyeloVec dysregulated gene expression. A
positive normalized enrichment score (NES) indicates an upre-
gulation of a core set of oncogenic genes. All MyeloVec-
transduced samples displayed negative NES scores, whereas
1 out of 6 and 8 out of 8 CCLchim and RSF91 samples had
positive NES scores, respectively (Figure 7B; supplemental
Figure 12B). In addition, we performed a CFU assay using
MyeloVec-transduced HD CD34+ cells. Clonal output and
lineage distribution was similar to that of nontransduced con-
trols (supplemental Figure 13).
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Discussion
We have implemented a bioinformatics-guided approach to
develop a highly regulated LV driven by endogenous regulatory
elements of theCYBB gene.Our initial proximal analysis revealed
an enhancer located within intron 3 ofCYBBwith lineage-specific
activity in neutrophils, monocytes, and B cells. Further analysis of
the entire TAD revealed 2 additional genomic elements vital for
the physiological expression pattern of the CYBB gene. Element
4, located 25 kb upstream of the CYBB promoter, presented as a
myeloid-specific enhancer lacking activity in lymphoid cell line-
ages. Chromatin immunoprecipitation sequencing transcription
factor–binding site data from ENCODE revealed various
myeloid-associated transcription factor–binding sites such as
PU.1, SP1, and GABP within element 4.

Element 2, located 38 kb downstream of the CYBB promoter, was
found to be a B-cell–specific enhancer with no enhancer activity in
either the myeloid or T-cell lineages. Many of the current LV
designs for X-CGD primarily focus on myeloid expression while
Figure 5 (continued) activity of the mature neutrophils was measured by DHR flow cyt
neutrophils is shown. (E) Production of reactive oxygen species was measured by the c
analyzed using an unpaired t test. All statistical tests were 2-tailed and P < .05 was deem
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overlooking restoration of gp91phox in the B-cell compartment.5,6,9

However, as we andothers have shown, gp91phox is expressed in B
cells and is capable of producing low levels of reactive oxygen
species (ROS).28 It has been hypothesized that this low level of
ROS facilitates regulatory and signaling functions.28,29 Further-
more, loss of gp91phox expression and ROS production in the
B-cell lineage has been shown to impair the memory B-cell
compartment and proliferative capabilities.30 Accordingly, we
rationalized the importance of recapitulating the expression of
gp91phox in all physiologically expressed lineages.

As titer and gene transfer have been previously shown to be
negatively correlated with proviral length,31,32 we introduced a
series of systematic deletions to decrease the proviral length of
our vector and increased titer and gene transfer by 3.3- and 10-
fold, respectively. Improvements to titer and gene transfer are
considerably beneficial for the clinical translation of our therapy,
as they drastically reduce the cost of vector production and the
amount of LV required to treat each patient.

Removing nearly 3 kb of proviral sequences also led to an
unexpected increase in expression in the on-target cell lineages,
whereas off-target expression remained undetectable. At pre-
sent, themechanism behind this increase in expression is not well
understood considering our previous observation of a positive
correlation between the size of enhancer elements and their
enhancer activity.33 A plausible explanation may be that the
removal of inert sequences brought the core enhancer fragment
closer to the promoter, leading to increased expression. Alter-
natively, it is plausible that the removal of potential transcriptional
repressor–binding sites led to an increase in enhancer activity.
Loss of regulation is a concern with this unexpected amplification
in expression, however, off-target activity remained negligible.

Reporter gene studies in transduced human CB CD34+ cells
transplanted into NSG neonates demonstrated preferential
expression of MyeloVec in the mature neutrophil and bulk
myeloid lineages, with moderate expression in the B-cell line-
age and minimal expression in either the T-cell or HSPC pop-
ulations. Furthermore, MyeloVec exhibited stage-specific
expression that increased through neutrophil differentiation. As
such, MyeloVec’s expression recapitulates the expression
pattern seen with the endogenous CYBB gene.

Both gene transfer and expression are important metrics
contributing to the therapeutic potential of an LV. An
improvement in gene transfer increases the number of trans-
duced cells and also leads to more integrated copies of the LV
per transduced cell, thereby increasing overall cellular expres-
sion, whereas an improvement in expression directly leads to
more therapeutic protein being produced per integrated copy.
To emphasize the improved expression of MyeloVec per vector
copy while factoring out any benefits from improved gene
transfer, we lowered the LV dose of MyeloVec in the in vitro
studies to compare MyeloVec to CCLchim at an equal VCN.
However, in other studies, we evaluated the vectors at an equal
vector dose, factoring in both expression and gene transfer to
fully showcase the therapeutic potential of MyeloVec.
ometry. (C) MFI of the entire neutrophil population is shown. (D) MFI of the DHR+

ytochrome C assay. Data are presented as mean ± SD. Statistical significance was
ed significant; *P < .05, **P < .01, ***P < .001, ****P < .0001. ctrl, control.
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Figure 6 (continued) the different hematopoietic lineages in the BM. Data from each mouse are overlaid in the histograms. (D) The MFI of gp91phox-positive cells is
shown. Data are presented as mean ± SD. Statistical significance was analyzed using a 2-way ANOVA followed by multiple paired comparisons for normally distributed data
(Tukey test). All statistical tests were 2-tailed and P < .05 was deemed significant; *P < .05, **P < .01, ***P < .001, ****P < .0001.
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Figure 7. Safety profile of MyeloVec. (A) IVIM assay
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assay are shown. (B) SAGA assay displaying gene
expression analysis. A positive NES indicates an upre-
gulation of oncogenic core set genes. Data are
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indicate means. Difference in the incidence of positive
and negative IVIM assays relative to Mock-MA or
RSF91-MA were analyzed by Fisher exact test with
Benjamini-Hochberg correction. Statistical comparison
with MA-RSF-91 in SAGA was analyzed by Kruskal-
Wallis with Dunn correction; *P < .05, **P < .01,
***P < .001, ****P < .0001. RSF91, mutagenic gam-
maretroviral vector with enhancer/promoter of spleen
focus–forming virus in both LTRs; LV-SF, self-inactivat-
ing LV under control of the spleen focus–forming virus
internal promoter; EFS, self-inactivating LV under con-
trol of the shorten promoter of the EEF1A1 gene; LOD,
limitation of detection.
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B cepacia is one of the main micro-organisms responsible for
infections in patients with CGD and a leading cause of death,
second only to Aspergillus.3,4 In an experimental infectious
challenge with B cepacia, X-CGD mice transplanted with
MyeloVec-transduced X-CGD HSPCs provided a complete
survival benefit compared with X-CGD mice receiving
CCLchim-transduced X-CGD HSPCs at an equal vector dose.
The reasons for the survival of the MyeloVec-treated mice are
likely twofold, owing to a greater number of gene-corrected
oxidase-positive neutrophils and a greater level of antimicro-
bial oxidase per gene-corrected cell, due to the higher gene
transfer and expression of MyeloVec, respectively. This obser-
vation agrees with Dinauer et al,34 who suggested that both the
relative cellular level of antibacterial oxidase and the number of
oxidase-positive neutrophils contribute to the level of protec-
tion against B cepacia, especially with a large number inoculum.

In neutrophils derived from transduced HSPCs from patients
with X-CGD, MyeloVec fully restored gp91phox and cellular
oxidase activity to HD levels at an average VCN of 1.63,
whereas CCLchim was only able to restore cellular oxidase
activity to 33% at an equal VCN. This difference in expression
between MyeloVec and CCLchim is more pronounced in
human than in murine neutrophils as MyeloVec is composed of
human regulatory elements, which may have enhanced
expression and regulation in human cells as it is optimized to be
bound by human transcription factors.

It is notable to point out that gp91phox was detected in HSPCs
in the BM of mice engrafted with HD HSPCs but was not
detected in primary human HD BM samples. This may be due to
the phenotypic differences of HSPCs residing in primary human
BM compared with those in the BM of engrafted mice. Never-
theless, MyeloVec restored gp91phox to physiological levels in
HSPCs from patients with X-CGD engrafted into NSG mice.

The incorporation of novel enhancer elements into a lentiviral
gene therapy raises concerns about insertional mutagenesis
due to transactivation of oncogenes. However, the restriction of
enhancer activity toward the mature myeloid lineages rather
than in early progenitors greatly reduces this risk.35 This is
further supported by both IVIM and SAGA, demonstrating that
MyeloVec has undetectable transformative capabilities.

In the context of gene therapy for X-CGD, regulated expression
is an important factor to consider, as constitutive over-
expression of gp91phox in HSPCs has been hypothesized to
trigger aberrant ROS production, leading to decreased
engraftment potential.36,37 Furthermore, uncontrolled expres-
sion of gp91phox may increase the risk of an immune response
against the gene-modified cells. Similarly, achieving physio-
logical levels of expression must also be considered, as sub-
physiological antimicrobial oxidase activity may not provide
complete protection, as shown in our experimental infectious
challenge and as previously suggested.34

Although MyeloVec is not the first LV to be fully regulated by
endogenous elements of the target gene, our work demon-
strates the implementation of a predictive bioinformatics-guided
LENTIVIRAL GENE THERAPY FOR X-CGD
approach coupled with experimental validation which can be
applied to other gene targets. The outcome of this study has not
only yielded a novel LV for the treatment of X-CGD with potential
to advance to the clinic, but it will also transform the design of
future LVs for gene therapy.
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