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S100A9 upregulated by IFNGR signaling blockade
functions as a novel GVHD suppressor without
compromising GVL in mice
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• S100A9 upregulated by
IFNGR signaling
blockade functions as a
novel GVHD suppressor
without compromising
GVL in mice.

•Administration of
recombinant S100A9
proteins or
upregulation of S100A9
by anti-IFNGRα
antibodies reduces
GVHD in mice.
bloo
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for
both malignant and nonmalignant hematologic disorders. However, graft-versus-host
disease (GVHD) and malignant relapse limit its therapeutic success. We previously
demonstrated that the blockade of interferon-gamma receptor (IFNGR) signaling in donor
T cells resulted in a reduction in GVHD while preserving graft-versus-leukemia (GVL)
effects. However, the underlying molecular mechanisms remain inconclusive. In this study,
we found that S100A9 is a novel GVHD suppressor upregulated when IFNGR is blocked in
T cells. Both Ifngr1−/− and S100a9-overexpressing T cells significantly reduced GVHD
without compromising GVL, altering donor T-cell trafficking to GVHD target organs in our
mouse model of allo-HSCT. In addition, in vivo administration of recombinant murine
S100A9 proteins prolongs the overall survival of recipient mice. Furthermore, in vivo
administration of anti-human IFNGRα neutralizing antibody (αhGR-Nab) significantly
upregulates the expression of S100A9 in human T cells and improved GVHD in our mouse
model of xenogeneic human peripheral blood mononuclear cell transplantation. Consis-
d_bld-2021-01
tent with S100a9-overexpressing T cells in our allo-HSCT model, αhGR-Nab reduced human T-cell trafficking to the
GVHD target organs. Taken together, S100A9, a downstream molecule suppressed by IFNGR signaling, functions as a
novel GVHD suppressor without compromising GVL.
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Introduction
We previously reported that Ifngr1−/− T cells significantly
improved graft-versus-host disease (GVHD) severity and overall
survival without reducing graft-versus-leukemia (GVL) in our
mouse models of allogeneic hematopoietic stem cell trans-
plantation (allo-HSCT).1-3 Several mechanisms underlying the
reduction of GVHD by Ifngr1−/− T cells have been proposed by
several groups including ours: (1) alteration of allogeneic T-cell
trafficking to GVHD target organs by down-regulating CXCR3
expression1,3; (2) an increase in Treg cells by reducing IRF1 that
inhibits Foxp3 gene expression4; and (3) preferential T-cell dif-
ferentiation to Th2 (GATA3+) over Th1 (T-bet+) cells.3,5 Although
each of these proposed mechanisms plays a role in GVHD
reduction by Ifngr1−/− T cells, none of these are definitive: (1)
Cxcr3−/− T cells only partially reduced GVHD,1 (2) Treg-depleted
Ifngr1−/− T cells could partially but significantly reduce GVHD (J.
Ritchey and J. Choi, unpublished data, February 4, 2014), and (3)
GATA3-overexpressing T cells failed to reduce GVHD.3 All of
these suggest that Ifngr1−/− T cells use multiple pathways to
reduce GVHD. To the best of our knowledge, this is the first
study to demonstrate that targeting interferon-gamma receptor
(IFNGR) signaling in T cells results in a reduction of GVHD while
maintaining GVL through the overexpression of S100A9, a novel
GVHD suppressor molecule.

Study design
Mouse models of GVHD/GVL
Allo-HSCT (B6 to Balb/c with/without A20 cells) was performed as
previously described.1-3,6-8 For the xenograft model, 5 × 106

human peripheral blood mononuclear cells (PBMCs) were trans-
planted on day 0 into sublethally irradiated (250 cGy at day −1)
NOD/SCID/γcnull (NSG) mice. Detailed information on the mouse
model of GVHD/GVL and all other methods are described in the
supplemental Data (available on the Blood website).
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Figure 1. S100a9-overexpressing T cells separate GVHD from GVL, increasing T-cell retention in the spleen. (A) WT or Ifngr1−/− CD4+CD25− T cells obtained from
C57BL/6 were cocultured with irradiated (2000 rad) whole splenocytes obtained from Balb/c as alloantigen stimulators. After 6 days of coculture, total RNA was purified from
CD4+CD25+ cells sorted by flow cytometry. RNA profiling analyses were performed using the Mouse Genome 430 2.0 array. Shown are up- (blue dots) or down-(red dots)
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Results and discussion
To identify the GVHD suppressor genes expressed in allor-
eactive Ifngr1−/− donor T cells, we performed RNA profiling
analyses on T cells (wild-type [WT] or Ifngr1−/−) stimulated with
allogeneic antigen-presenting cells (supplemental Table 1). The
expression of S100a9 was upregulated 26-fold in Ifngr1−/−

T cells compared with that in WT T cells (Figure 1A). Further
validation by quantitative polymerase chain reaction and
western blot analysis also showed a significant increase in
S100a9 messenger RNA and protein expression in Ifngr1−/−

T cells compared with that in WT T cells (Figure 1B). We then
determined whether S100A9 acts as a suppressor molecule that
Ifngr1−/− T cells use to reduce GVHD. We found that both
Ifngr1−/− and S100a9-overexpressing T cells significantly
increased the overall survival of recipients compared with WT
T cells after allo-HSCT (Figure 1C).

To define the mechanisms by which S100A9 reduces GVHD, we
tested whether overexpressed S100a9 in T cells alters T-cell
trafficking to GVHD target organs, as we previously reported in
Ifngr1−/− T cells.1 The S100a9-overexpressing T cells displayed
a significant increase in donor T-cell retention in the spleen
compared with WT T cells after allo-HSCT (Figure 1D-E).
Notably, S100a9-overexpressing T cells have no defects in
proliferation, differentiation (Th1, Th2, Th17, and Tregs), and
expression of CXCR3 and S1PR1, which are critical for T-cell
trafficking9,10 (supplemental Figures 1-3). In addition, S100a9-
overexpressing T cells did not increase the frequency of
myeloid–derived suppressor cells (supplemental Figure 4).11

These results indicate that the GVHD suppressor function of
S100a9-overexpressing T cells is independent of these factors.

Next, we examined whether S100a9-overexpressing donor
bone marrow (BM) cells also reduced GVHD. The over-
expression of S100a9 in donor T cells, but not in donor BM
cells, reduced GVHD, as S100a9-overexpressing donor BM cells
did not change overall survival (supplemental Figure 5). In
addition, the frequencies of donor BM-derived B cells, an
indicator of healthy immune reconstitution and less GVHD,
were higher in the peripheral blood of mice transplanted with
S100a9-overexpressing T cells than in those of WT T cells along
with either WT or S100a9-overexpressing BM cells.1 These
results suggest that the expression of S100a9 in donor T cells,
but not in donor BM cells, attenuates GVHD.

Based on our previous report that Ifngr1−/− donor T cells pre-
vent GVHD without compromising GVL, we examined whether
S100a9-overexpressing T cells preserve the beneficial GVL
Figure 1 (continued) regulated genes in Ifngr1−/− T cells. (B) Expression of S100a9 mRN
respectively. (C) Allo-HSCT was performed as follows; 5 × 106 TCD-BM (CD45.1+ WT) and
transplanted on day 0 into lethally irradiated (900 cGy on day −1) Balb/c allogeneic rec
monitored for survival. A pool of 3 independent experiments is shown. (D) In vivo BLI
obtained from dissected mice transplanted with WT (upper) and S100a9-overexpressing T
the spleen, GI tract, and the rest of the whole body. The ratio of signal intensities (photo
panel). (E) The percent donor T cells in the spleens of recipient mice transplanted with W
donor T cells were determined by H2-Kd− and CD45.2+. (F-H) Allo-HSCT was performed a
day of TCD-BM cell infusion (day 0), followed by delayed donor lymphocyte infusion (DLI
pool of 2 independent experiments. (F) Survival rate and (G) leukemia burden. Represent
of the small intestine of each group on day 21 after allo-HSCT. (i, TCD-BM only; ii, TCD-B
only group has no significant lesions. The arrows indicate crypt apoptosis, luminal debris,
day 21 after allo-HSCT (right panel). *P < .05, **P < .01, and ***P < .001. All error bar
gastrointestinal; mRNA, messenger RNA; PCR, polymerase chain reaction; TCD, T-cell d

S100A9 SEPARATES GVHD FROM GVL
effect after allo-HSCT. The mice transplanted with S100a9-
overexpressing T cells demonstrated improved overall survival
with equivalent tumor clearance compared with those trans-
planted with WT T cells (Figure 1F-G; supplemental Figure 6A).
In addition, we found significantly reduced overall histological
GVHD grades, clinical GVHD scores, and weight loss in mice
transplanted with S100a9-overexpressing T cells compared with
those transplanted with WT T cells (Figure 1H; supplemental
Figure 6B-C). These observations suggest that the over-
expression of S100a9 in donor T cells resulted in the reduction
of GVHD while preserving the beneficial GVL effect.

As we found that S100A9 was overexpressed in Ifngr1−/− T cells,
we tested whether in vivo administration of recombinant murine
S100A9 (mrS100A9) could suppress GVHD in mice. We orally
administered mrS100A9 and mrS100A8 proteins to maximize the
bioavailability of the proteins in the gut, where the proteins exert
antimicrobial functions by forming S100A9 homodimers and
S100A8/A9 heterodimers.12-14 Although the optimal timing and
dose of mrS100A9 proteins remain undetermined, mrS100A9
proteins with or without mrS100A8 prolonged survival and
reduced GVHD compared with the vehicle control (Figure 2A;
supplemental Figure 7). As gastrointestinal GVHD is associated
with significant changes in the intestinal microbiota and antimi-
crobial functions of immune cells against pathogenic microor-
ganisms,15 mrS100A9 might have contributed to the modulation
of the intestinal microbiota to reduce GVHD. Nonetheless, its
effects on microbiota in our study are not clear. Interestingly, fecal
S100A8/A9 are biomarkers of gastrointestinal GVHD in patients.16

It is possible that S100A8/A9 are increased to serve as counter-
regulatory molecules to maintain immune homeostasis in the
development of GVHD after allo-HSCT.

Lastly, we examined whether anti-murine/human IFNGRα
neutralizing antibodies (αmGR-Nab and αhGR-Nab) also reduced
GVHD through upregulation of S100A9. Treatment with αmGR-
Nab and αhGR-Nab upregulated the expression of S100a9 in
mouse and human T cells, respectively (Figure 2B-C). Likewise,
in vivo administration of αhGR-Nab significantly increased the
number of S100A9-expressing human T cells in the intestine
(Figure 2D-E). In addition, αhGR-Nab significantly improved
overall survival, clinical GVHD scores, and body weight loss
compared with the isotype control in our mouse model of human
PBMC–mediated xenogeneic GVHD17,18 (Figure 2F; supplemental
Figure 8). Because we found that both Ifngr1−/− (refer to Choi
et al1) and S100a9-overexpressing donor T cells display altered
donor T-cell trafficking, we examined whether αhGR-Nab also
alters human T-cell trafficking to GVHD target organs in our
A and S100A9 protein was determined using real-time PCR and western blotting,
5 × 105 T cells (CD45.2+ WT, Ifngr1−/−, or S100a9-Tg) obtained from B6 mice were
ipient mice. The TCD-BM only group serves as no GVHD control. The mice were
was performed to track T cells after allo-HSCT. The representative BLI images are
cells (lower) on day 11 after allo-HSCT. Photon flux (photons/s) was measured from
ns/s per cm2 per sr) from the spleen and the rest of the body were compared (right
T or S100a9-overexpressing T cells was measured on day 21 after allo-HSCT. The

s follows; luciferase/RFP-expressing A20 leukemia cells (1 × 105) were injected on the
; 2 × 106 T cells) on day 11. The leukemia burden was measured weekly using BLI. A
ative images of each group from days 11 to 31 are shown. (H) Representative images
M+A20+WT T cells; and iii, TCD-BM+A20+S100a9-overexpressing T cells). TCD-BM
and crypt dropout. The scale bar represents 100 μm. Overall histological grades on
s are presented as mean ± standard deviation. BLI, bioluminescence imaging; GI,
epleted.
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Figure 2. Recombinant S100A9 proteins or upregulation of S100A9 by treatment of anti-IFNGRα antibodies reduce GVHD by altering donor cell trafficking.
(A) Survival rate of mice treated with recombinant murine S100A9 with or without S100A8 proteins (1 μg/injection starting on day 0, 5 times per week for 2 weeks), after allo-HSCT.
(B) T cells obtained from C57BL/6 were cocultured with irradiated (2000 rad) whole splenocytes obtained from Balb/c in the presence of αmGR-Nab (10 μg/mL) or isotype control
(10 μg/mL). After 6 days of coculture, mRNA was isolated and the expression of S100a9 was determined by real-time PCR. (C) Human PBMCs were stimulated with a CD3/CD28
activator and LPS (100 ng/mL) in the presence of αhGR-Nab (10 μg/mL) or isotype control (10 μg/mL). After 4 days, CD4 and CD8 T cells were sorted by flow cytometry and mRNA
was extracted from them. The expression of S100A9 was determined by real-time PCR. (D-F) Xenogeneic cell transplantation was performed as follows. 5 × 106 human PBMCs
were transplanted on day 0 into sublethally irradiated (250 cGy at day −1) NSG recipient mice. αhGR-Nab (200 μg/injection) was administered on days 0, 3, 7, and 10. (D) On day 14
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Figure 2 (continued) after xenogeneic cell transplantation, intestines were harvested, and immunofluorescence staining was performed with anti-human S100A9 (red) and CD3
(green). DAPI was used for counterstaining (blue). (E) The absolute numbers of S100A9+CD3+ T cells in mm2 of the small intestines are shown. (F) Survival rate after xenogeneic cell
transplantation. Shown is a pool of 2 independent experiments. The scale bar represents 50 μm. *P < .05 and ***P < .001. The error bars for panels B-C and F are represent the
mean ± standard deviation and mean ± SEM, respectively. mRNA, messenger RNA; PCR, polymerase chain reaction; SEM, standard error of the mean.
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xenogeneic transplantation model. Strikingly, human donor
cells were observed significantly less in the liver and lungs
(2 of the major GVHD target organs of NSG mice after human
PBMC–mediated xenogeneic transplantation)19 of the mice
treated with αhGR-Nab compared with the control mice, even
though there was no difference in the number of T cells that
infiltrated the intestines and skin, the other 2 GVHD target
organs19 (supplemental Figure 9).

To date, separating GVHD from the beneficial GVL is a major
goal of allo-HSCT because current immune suppressants reduce
both GVHD and GVL, thereby increasing malignancy relapse.20

Although several therapeutic strategies to reduce GVHD
without abrogating GVL in animal models and human patients
have been proposed, the mechanisms by which allogeneic
donor T cells differentially modulate GVHD and GVL remain
largely unknown. Our studies demonstrated that blockade of the
IFNGR signaling in T cells upregulates S100A9, a novel effector
molecule that selectively suppresses GVHD over GVL. Thus, our
findings provide new insights into the mechanism by which
Ifngr1−/− T cells reduce GVHD while maintaining GVL levels.
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Following the peer-reviewed publication of our mouse models
described in this study, mice will be distributed to investigators at
academic institutions wanting them for noncommercial research at no
cost except for standard maintenance and transportation expenses. The
recipient investigators must provide written assurance and evidence that
the animals will be used solely in accord with their local Institutional
Animal Care and Use Committee review, that animals will not be further
distributed by the recipient without our consent, and that animals will
not be used for commercial purposes. Requests for mice from for-profit
corporations to use the mice commercially will be negotiated by our
institution’s technology transfer office. All licensing shall be subject to
distribution pursuant to Washington University policies and procedures
on royalty income. The technology transfer office will report any
invention disclosure submitted to them to the appropriate Federal
Agency. For the mice we generate, we will use standard nomenclature
and receive approval from the Mouse Genome Informatics nomencla-
ture committee (http://www.informatics.jax.org/mgihome). We will pro-
vide relevant genotyping protocols upon request.

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.
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