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Adoptively transferred virus-specific T cells (VSTs) have
shown remarkable safety and efficacy for the treatment
of virus-associated diseases and malignancies in hemato-
poietic stem cell transplant (HSCT) recipients, for whom
VSTs are derived from the HSCT donor. Autologous VSTs
have also shown promise for the treatment of virus-
driven malignancies outside the HSCT setting. In both
cases, VSTs are manufactured as patient-specific prod-
ucts, and the time required for procurement, manufac-
ture, and release testing precludes their use in acutely ill
patients. Further, Good Manufacturing Practices–
compliant products are expensive, and failures are com-
mon in virus-naive HSCT donors and patient-derived VSTs
that are rendered anergic by immunosuppressive tumors.
Hence, highly characterized, banked VSTs (B-VSTs) that
can be used for multiple unrelated recipients are highly
desirable. The major challenges facing B-VSTs result from
the inevitable mismatches in the highly polymorphic and
immunogenic human leukocyte antigens (HLA) that pre-
sent internally processed antigens to the T-cell receptor,
leading to the requirement for partial HLA matching
between the B-VST and recipient. HLA mismatches lead
to rapid rejection of allogeneic T-cell products and graft-
versus-host disease induced by alloreactive T cells in the
infusion product. Here, we summarize the clinical out-
comes to date of trials of B-VSTs used for the treatment
of viral infections and malignancies and their potential as
a platform for chimeric antigen receptors targeting
nonviral tumors. We will highlight the properties of VSTs
that make them attractive off-the-shelf cell therapies, as
well as the challenges thatmust be overcome before they
can become mainstream.
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Introduction
T cells expressing native T-cell receptors (TCRs) have exquisite
target antigen specificity and can effectively treat viral infec-
tions and malignancies without the side effects of conventional
therapies.1,2 In contrast to T cells expressing chimeric antigen
receptors (CARs) or transgenic TCRs,3-6 virus-specific T cells
(VSTs) recognize multiple epitopes in multiple viral antigens,
diminishing the likelihood of immune escape.7 VSTs have been
most effective in the allogeneic hematopoietic stem cell trans-
plant (HSCT) setting, where HSCT donor–derived (DD)-VSTs
can prevent or cure diseases caused by viruses including
Epstein-Barr virus (EBV), cytomegalovirus (CMV), adenoviruses
(AdVs), BK virus (BKV), JC virus, and human herpesvirus 6 (HHV-
6).8-16 Patient-derived (autologous) VSTs have also been suc-
cessful for the treatment of EBV and human papilloma
virus–associated malignancies occurring outside the HSCT
setting.17-22

Despite the clinical successes of autologous- and DD-VSTs,
major problems limit their broader application.23 First, the
time taken to expand VSTs (up to 16 days), combined with up to
14 days for sterility and other quality control testing, means that
T cells are not available for acute need. Although VSTs can be
selected directly from blood, either using peptides conjugated
to recombinant major histocompatibility complex molecules
(tetramers, multimers, or streptamers) or by selection of cells
that secrete interferon gamma in response to antigen stimula-
tion (γ-capture), the large volumes (>500 mL) of donor blood
required to generate sufficient VSTs for a single infusion pre-
clude the generation of banks and effectively make these
products patient-specific. Second, the donor must have an
immunological memory to the problem virus. Third, unrelated
HSCT donors are often unavailable for additional blood draws.
Fourth, in the case of autologous products, T cells derived from
patients are often damaged by chemotherapy and immuno-
suppressed by their tumors, resulting in manufacturing failures
or low antigen specificity. Fifth, the generation of a separate
product for each patient has a high cost. Hence, there is great
interest in the use of banked, cryopreserved VSTs (B-VSTs) that
can be expanded exponentially in vitro from the blood of
selected healthy donors. B-VSTs can be characterized for
phenotype, specificity, and function and are immediately
available for clinical use. Each B-VST line can be used to treat
up to 30 patients, or more if prepared as a “master” cell bank,
which requires significant additional testing. B-VSTs are also
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applicable for viral infections in solid organ transplant (SOT)
recipients,24-29 for virus-associated malignancies outside the
transplant setting,30 and for lethal viral diseases, such as
COVID-19.31,32 Beyond viral targets, the attractive properties of
VSTs can be harnessed to target nonviral antigens after modi-
fication with CARs.33-37

Here, we explain the challenges to the clinical use of B-VSTs,
namely the HLA restriction of antigen recognition and the dual
threats of graft-versus-host disease (GVHD) and host-versus-
graft rejection, mediated by donor or host-derived allor-
eactive T cells, respectively. We will then summarize results to
date from clinical trials of B-VST treatment in immunocompro-
mised patients with opportunistic viral-driven diseases and
patients with chemotherapy-refractory virus expressing cancers.
Finally, we will discuss B-VSTs as vehicles for genetic modifi-
cations that extend their applicability to nonviral targets by
expressing CAR or recombinant TCRs or that enhance their
function, for example, by expressing transgenic cytokines or
constitutively active cytokine receptors.
shpublications.net/blood/article-pdf/141/8/877/2082573/blood_bld-2022-016202-c-m
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Challenges to clinical use of allogeneic
B-VSTs
HLA restriction
Viral antigens in infected cells are processed intracellularly into
short peptides and carried to the cell surface on HLA class I and
class II molecules, where they are recognized by the TCR as a
complex of peptides and the polymorphic antigen-presenting
domains of HLA molecules.38 Recognition of both peptide
and HLA molecule leads to the HLA restriction of TCR recog-
nition, whereby each virus-specific TCR recognizes a peptide in
the context of a particular HLA molecule. Therefore, B-VST
selected for infusion must recognize viral peptides through
“shared” HLA alleles. Because a given VST line is unlikely to
recognize viral peptides through all 12 possible surface HLA
class I and II alleles, knowledge of which HLA antigens present
viral peptides recognized by a B-VST line is critical. For this
reason, VST “banks” should include multiple donor products
with diverse HLA types that adequately cover the HLA types of
the recipient population.
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Alloreactivity
Allogeneic HLA molecules are highly immunogenic, resulting
in the dual risks of GVHD from alloreactive T cells in the
infusion product and graft rejection by alloreactive T cells in
the host. The TCR repertoire of VSTs is greatly reduced
compared with the CD3-activated T cells generally used to
generate CAR T cells. This reduced diversity lowers the
potential for alloreactivity,39,40 and indeed, the lack of GVHD
reported in multiple clinical trials (>300 recipients) of B-VSTs
confirms their suitability as a safe off-the-shelf (OTS) cell
therapy.24-32,41-46 However, allogeneic cells are rapidly
rejected when administered to HLA-incompatible hosts, and
because exponential expansion and persistence of T cells are
associated with durable antitumor or antiviral efficacy, host-
versus-graft rejection remains a major challenge to be over-
come before B-VSTs can enter mainstream use.
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VSTs in the immunocompromised host
Immunosuppression increases the risk for viral
infection and reactivation
Severely immunosuppressed patients are susceptible to severe
infections from common community viruses. Persistent viruses
such as the human herpes viruses (HHVs) establish clinically
silent, lifelong persistence after acute primary infection but can
reactivate, causing lethal disease in immunosuppressed hosts.
For example, EBV can transform normal B cells into perma-
nently growing lymphoblastoid cell lines in vitro, and after T-cell
depleted allogeneic HSCT, it can produce posttransplant
lymphoproliferative disorders (PTLDs) ranging from benign
lymphoproliferations to monoclonal lymphoma, which is fatal
without intervention.47 Other viral reactivations like CMV or
HHV-6 can cause life-threatening multiorgan diseases such as
pneumonia, hepatitis, gastroenteritis, or retinitis. Here, we will
discuss the clinical experience of using VSTs to treat the most
common opportunistic viral diseases of HSCT recipients,
including CMV, EBV reactivations and PTLD, HHV-6, AdVs, and
BKV.

HSCT DD-VSTs
In the earliest clinical trials, EBV-specific T cells (EBVSTs)
generated from peripheral blood mononuclear cells of the
HSCT donor (DD-VSTs) produced complete and durable
responses in patients with EBV reactivations and PTLD.8-11

Because the VSTs were from HLA-compatible stem cell
donors, they were not rejected, nor did they produce severe
GVHD. These trials were modified to add specificity for CMV
and AdV with similar clinical antiviral activity against all 3
viruses.12 Since then, several groups have extended the spec-
trum of targeted viruses to cover the most problematic post-
transplant viral reactivations and infections, adding specificities
for HHV-6 and BKV, and with improved culture conditions,
manufacturing has been reduced from ~3 months to 10 days
with similar clinical results.13-16,48-50 GVHD after DD multivirus-
specific T cells (MVSTs) administration was minimal, and 80%
to 90% of patients with drug-resistant viral reactivations and
PTLD had clinical responses that coincided with the in vivo
expansion of VSTs after infusion.8-16,49,50 This success promp-
ted the development of B-VSTs from virus-immune donors.
These are less expensive per patient, are immediately available,
and have proven successful in the clinic (Figure 1).

B-VSTs after solid organ transplantation
B-VSTs were first evaluated by Haque et al24 for the treatment
of EBV-driven PTLD in SOT recipients, who have a median
survival of 31.5 months after diagnosis.51 Multiple infusions of
partially HLA-matched B-VSTs produced complete responses
(CRs) in 3 of 8 (37.5%) SOT recipients that had failed conven-
tional measures, including withdrawal of immunosuppression
and rituximab. In a follow-up study of 33 patients, response
rates were up to 64%, and no cases of GVHD were reported.26

In both trials, patients with “early” PTLD, defined as arising
within 2 years of transplant, those with a low burden of disease
and those most closely HLA matched with the B-VST line were
more likely to respond. When comparing outcomes of B-VST
infusions to treat PTLD after SOT and HSCT, Prockop et al
showed that 67% of HSCT recipients (22/33) and 54% of SOT
QUACH et al
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Figure 1. Rapid availability and cost-effectiveness of B-VSTs vs recipient-specific VSTs. B-VSTs from a small number of donors are expanded in vitro and cryopreserved as
a bank. They can be thawed and used immediately for multiple recipients. By contrast, recipient-specific VSTs that are manufactured from the HSCT donor, require up to
4 weeks or longer to complete manufacture and quality assurance/quality control (QA/QC) testing and are used only for a single recipient.
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recipients (7/13) achieved objective responses (either CR or
partial response).29 Only 45% of HSCT recipients and 23% of
SOT recipients had responses to a single infusion, suggesting
that persistent activity by repeat infusions was required to
produce a tumor response. These investigators also showed
better outcomes with lower disease burden (<3 sites of
involvement) with a response rate of 80% vs 52% for those with
>3 sites, or when treated earlier in relation to other therapies
(45% when used after rituximab and chemotherapy vs 80%
when used after rituximab alone). The better responses of HSCT
recipients to B-VSTs may be explained by the more lympho-
depleted state of HSCT recipients and that it is rarely possible
to completely withdraw active immunosuppression from SOT
recipients, limiting both the expansion of the infusion product
and the reactivation of endogenous immunity. Common
themes that emerged from B-VST trials for PTLD include little or
no risk for inducing GVHD and that better outcomes were
associated with (1) earlier administration in the disease course,
(2) a lower burden of disease, and (3) multiple infusions.28

Banked third-party VSTs in the HSCT setting
In the HSCT setting, allogeneic VSTs not derived from the stem
cell donor are commonly referred to as third-party VSTs and
may be only partially HLA matched (≥1 matches) between
the hematopoietic stem cell donor and recipient. In 2 phase 2
trials, we evaluated B-MVSTs generated using different
manufacturing strategies.41,42 In the first multicenter study,
50 HSCT recipients with drug-refractory or drug-intolerant
CMV, EBV, or AdV received VSTs generated by stimulation
with Ad-pp65–modified EBV–lymphoblastoid cell lines. Com-
plete or partial responses were seen in 74% of patients, and
individual viral response rates are listed in Table 1.41 In the
second trial, MVSTs targeting HHV-6 and BKV, as well as EBV,
CMV, and AdV, were stimulated for 10 days with overlapping
peptide libraries representing viral proteins predicted to elicit
protective T cells. A single infusion of 2 × 107 B-VSTs produced
a cumulative response rate of 92% and rarely induced GVHD
(<10% de novo).42 However, not all lines recognized all
5 viruses (range, 0-5), with only 35 of 59 (59%) lines recognizing
≥3 viruses, and the HLA restriction of each virus specificity was
not studied. Banks at other centers have reported similarly
promising virologic response rates with low associated
BANKED VSTs FOR THERAPY
toxicity43-46 (Table 1). A key observation from studies on VSTs in
HSCT recipients is that VSTs targeting BKV and AdV, are often
predominantly HLA class II restricted. Thus, HLA matching at
both class I and II alleles is important for B-VST line selection.

Lessons learned when using B-VSTs after
transplant
The requirement for partial HLA matching poses challenges to
B-VST trials. First, VST banks must be large enough to provide
partial HLA compatibility with all potential recipients. In a trial of
B-CMV–specific T cells (B-CMVSTs), we could cover the HLA
types of recipients in our catchment area with ≥8 HLA-diverse B-
VST products.41,42,52 However, when using B-MVSTs, not all
lines recognize all the viruses targeted because of the common
immunological dominance of T cells specific for CMV and EBV.
Further, VSTs may be restricted by only a few of the 12 possible
HLA class I (A, B, and C) and class II (DR, DP, and DQ) alleles. If
the restricting alleles are not known, the HLA matching may not
be appropriate. Identifying HLA restriction is very complex for
MVSTs with multiple virus specificities, especially when the
frequency of T cells specific for a particular target virus is low.
Although many studies select lines based solely on HLA
matching, better characterization of VST products to identify
the restricting alleles would enable more appropriate VST line
selection, likely with a better outcome. Second, in transplant
recipients, viral diseases may occur in either donor or recipient
tissues. For example, EBV-derived PTLD occurs in donor B cells
after HSCT but in recipient B cells after SOTs, whereas CMV,
AdV, and BKV cause disease in recipient tissues. Hence,
knowledge of both donor and recipient HLA types is required
to select the most suitable VST line.

To fully evaluate the mode of action of allogeneic VSTs, it is
important to track their persistence after infusion, but because
B-VSTs have thus far not been gene marked, persistence is
challenging to confirm. Immunoassays can monitor the fre-
quency of VSTs before and after infusion but cannot identify the
source of this activity. In a study of streptamer-selected
CMVSTs, Neuenhahn et al55 compared the persistence of DD-
CMVSTs and third-party donor CMVSTs by TCR sequencing
of the infused product. DD-CMVST TCRs were detected in 8 of
8 recipients 7 days after infusion, whereas only 1 of 8 third-party
23 FEBRUARY 2023 | VOLUME 141, NUMBER 8 879



Table 1. Clinical studies of allogeneic B-VSTs for opportunistic viral diseases

Publication Target Number of patients Safety Response

EBV

Haque et al, 200224 EBV-PTLD 8 0 3 CR

Sun et al, 200225 EBV-PTLD 2 0 1 CR

Haque et al, 200726 EBV-PTLD 33 1 aGVHD 19 CR

Gallot et al, 201427 Opportunistic EBV-lymphoma 11 1 fever 3 CR

Kazi et al, 201928 EBV-PTLD 59 2 skin only aGVHD 23 CR

Prockop et al, 202029 EBV-PTLD 46 1 aGVHD 21 CR

Other viruses

Leen et al, 201341 EBV 9 8 aGVHD EBV: 2 CR
AdV 23 AdV: 9 CR

CMV 18 CMV: 7 CR

Tzannou et al, 201742 EBV 2
3 de novo aGVHD

EBV: 2 CR
AdV 9 AdV: 5 CR
CMV 19 3 aGVHD reactivations CMV: 9 CR
BKV 20 BKV: 6 CR

HHV-6 4 HHV-6: only partial response

Withers et al, 201743 CMV 28 2 de novo aGVHD CMV: 22 CR
EBV 1 EBV: 0 CR

AdV 1 AdV: 1 CR

Tzannou et al, 201952 CMV 10 0 CMV: 7 CR

Nelson et al, 202044 BKV 24 1 de novo aGVHD BK: 77% CR

Rubinstein et al, 202145 AdV 23 1 de novo aGVHD AdV: 42% CR

Olson et al, 202146 BKV 59 1 de novo aGVHD BK: 67% CR

1 aGVHD reactivation

Jiang et al, 202253 CMV 27 4 aGVHD CMV: 25 CR

EBV 3 EBV: 3 CR

Pei et al, 202254 CMV 31 3 aGVHD CMV: 80.6% CR

aGVHD, acute graft-versus-host disease.
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CMVST TCRs were detected, and this CMVST product was
closely HLA matched (>7 major HLA matches) with the recip-
ient. This patient and 2 others were responders, and in these
the reconstituting CMVSTs were endogenous (from the recip-
ient). Similarly, Haque et al and Gallot et al rarely detected
infused B-VSTs 7 to 10 days after infusion using either TCR
spectratyping or quantitative polymerase chain reaction for
infused TCRs, even though functional EBV-directed responses
were detected for months after infusion.24,26,27 These findings
suggest that B-VSTs were rejected and that clinical responses
rely on the reactivation of recipient VSTs by the infused VST
rather than on the long-term persistence of the B-VSTs. This
phenomenon, known as antigen or epitope spreading, results
from the release of cytokines and chemokines by the infused
T cells after antigen ligation at the site of infection or tumor.
These cytokines may reactivate local antigen-specific T cells,
convert inhibitory myeloid cells into a more activating pheno-
type, and/or recruit both professional antigen-presenting cells
and T cells to the disease site, creating a more favorable envi-
ronment for endogenous T-cell activation. Host alloreactive
T cells recognizing and rejecting the infusion product within
tumors or infected tissues may enhance this effect. Notably,
880 23 FEBRUARY 2023 | VOLUME 141, NUMBER 8
epitope spreading is less frequently reported after CAR T-cell
infusion, likely because of the invariable and necessary
lymphodepletion that precedes CAR T-cell infusions. Hence,
strategies that ensure the expansion of B-VSTs after infusion
while preserving epitope spreading, would be of great benefit.
B-VSTs for acute, lethal virus infections
The success of B-VSTs for viral infections and reactivations in
transplant recipients has led investigators to study their thera-
peutic potential in other problematic viral infections, such as
influenza, human metapneumovirus, respiratory syncytial virus,
and COVID-19, in both immunocompromised and immuno-
competent hosts.31,32,56,57 Because infections with these viruses
are generally short-lived, B-VSTs may have both antiviral activity
and the ability to boost the patient’s immune system before
they are rejected. B-MVSTs targeting respiratory viruses
(NCT04933968) and COVID-19 are currently in clinical trials in
many countries, including the United States, Singapore, and
Greece. Larger trials are needed to determine the success of B-
VSTs in these settings as well as their mechanism of action.
QUACH et al
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B-VSTs to treat virus-associated
malignancies outside the transplant
setting
EBV-PTLD develops only in individuals who are severely
immunosuppressed, but EBV is associated with a variety of
other neoplasms such as nasopharyngeal carcinoma (NPC),
leiomyosarcoma, gastric cancer, and lymphoma in individuals
who are not obviously immunosuppressed.58 Six other human
viruses, human papilloma virus, hepatitis B virus, hepatitis C
virus, Kaposi sarcoma–associated herpesvirus, human T-lym-
photrophic virus 1, and Merkel cell polyomavirus can also
induce cancers by direct oncogene expression or by inducing
chronic inflammation.59-61 Regardless of their contribution to
carcinogenesis, viral proteins expressed in tumor cells provide
unique target antigens for cancer immunotherapy. Thus, VSTs
may provide a safe and effective treatment against virus-
associated cancers, and in the next section we describe exam-
ples of their use in autologous settings and their potential as
allogeneic therapies.

EBV-expressing cancers in immunocompetent
hosts
To evade endogenous T cells in immunocompetent hosts, EBV-
expressing (EBV+) tumors express only a fraction of the 9 EBV
latent cycle proteins that are expressed by PTLDs. EBV+ lym-
phoma and NPC express LMP1, LMP2, EBNA1, and BARF1, a
pattern of gene expression termed type 2 latency, whereas
EBV+ Burkitt lymphoma and gastric carcinoma only express
EBNA1 and BARF1 (type 1 latency).47 Most of these proteins are
poorly immunogenic and provide a reduced pool of target
antigens for VSTs. Smith et al reported 16 patients with NPC
who showed longer overall survival after receipt of EBVSTs
compared with a retrospective comparator (523 days vs 220
days).62 We showed that autologous EBVSTs focused on LMP1-
and LMP2-induced CRs in 11 of 21 patients with EBV+ lym-
phoma who had failed at least 2 lines of conventional therapy.18

In the allogeneic arm of the same trial, we demonstrated the
safety of LMP-directed DD-VSTs in 26 patients who had
undergone an allogeneic hematopoietic cell transplant for
lymphoma.63 Of the 7 patients with active lymphoma at the
time of infusion, 2 had objective responses, whereas the 2-year
overall survival for the remaining 19 adjuvant patients was 78%,
which was superior to the expected outcomes for this cohort (up
to 50% for lymphomas after allogeneic hematopoietic cell
transplant). With the safety of DD-VSTs demonstrated, we
initiated a phase 1 clinical trial of B-EBVSTs targeting LMP1,
LMP2, BARF1, and EBNA1 in patients with EBV+ lymphomas
(#NCT02287311) and reported preliminary results in abstract
form.30 None of the 19 B-VST recipients experienced GVHD or
any other infusion-related toxicity. Of the 14 evaluable patients,
8 had objective clinical responses, and the trial is now open for
any EBV+ malignancy.

Malignancies associated with other viruses
Virus-associated solid tumors present greater challenges to
immunotherapy than B-cell malignancies, and few robust
successes have been reported, even in the autologous
setting.22,64-71 Therefore, it is not surprising that trials of B-VSTs
targeting these malignancies have not yet been reported. Any
BANKED VSTs FOR THERAPY
cellular immunotherapy for a solid tumor must contend with a
tumor microenvironment (TME) that is “coinhibitory” instead of
“costimulatory,” local fibrosis preventing T-cell trafficking and
immunosuppressive cytokines and cellular infiltrates that inhibit
T-cell function. Before implementing banked approaches,
overcoming these barriers in solid tumors will be necessary, and
we will further discuss how genetic modification of B-VSTs may
improve their function and address potential obstacles.
The potential of B-VSTs to treat
nonviral malignancies
Only 15% to 20% of all cancers are virus associated, but VSTs
are interesting candidate hosts for CARs, which allow them to
target nonviral tumor antigens in an HLA-unrestricted manner.
To overcome exhaustion and inadequate stimulation in the
TME, CAR-VSTs may receive additional stimulation via their
native TCR. This could come from endogenous viruses like EBV,
viral vaccines, or oncolytic viruses. Because viruses potently
activate the innate immune response, this stimulation may
overcome the anergy induced by tumors.37 Autologous and
DD-VSTs have been tested clinically as hosts for GD2.CARs and
CD19.CARs for the treatment of neuroblastoma and B-cell
acute lymphocytic leukemia, respectively. In patients receiving
both EBVSTs and CD3-activated T cells expressing a first-
generation GD2.CAR,72 5 of 11 patients had tumor responses,
including 3 CRs.73 However, it was not possible to determine
which product produced the tumor responses. Studies with DD-
MVSTs expressing a CD19.CAR to treat patients with relapsed
B-cell acute lymphocytic leukemia after allogeneic HSCT33

suggested that EBV reactivation could drive the expansion of
CD19.CAR-MVSTs, resulting in the elimination of normal B
cells, which did not occur in patients without virus reac-
tivation.34 This supports the hypothesis that the expansion,
function, and persistence of CAR T cells could be driven
through the endogenous TCR. VSTs have also been modified
with transgenic TCRs to target intracellular tumor antigens.74,75

However, the studies have been small and the tumor responses
inconsistent, so improvements are required before such studies
can be moved to the banked allogeneic setting.

Improving the efficacy of B-VSTs
Although unmodified allogeneic VSTs are attractive because of
their relative simplicity, they are unlikely to be effective long
term in immunocompetent patients with cancers that do not
express viral epitopes. Thus, strategies to prevent rejection and
improve their activity and longevity will likely be required.

Overcoming GVHD and graft rejection
The most common approach to preventing GVHD from an
allogeneic T-cell product is to knock out the endogenous
αβ-TCR, the main effector molecule of alloreactivity.76 Caveats
to this approach include the necessity for near complete
depletion of TCR-expressing cells because patients infused with
<1% residual αβ-TCR–positive T cells have developed GVHD,77

the increased manufacturing complexity of gene editing, and
the associated regulatory burden. Further, there have been
reports of reduced function of CAR T cells lacking TCRs.78 An
alternative approach is to use cell products that naturally lack
alloreactivity, such as natural killer (NK) T cells that have
23 FEBRUARY 2023 | VOLUME 141, NUMBER 8 881
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invariant TCRs recognizing lipids presented by nonpolymorphic
CD1d molecules, γδ-TCRs whose limited array of TCRs recog-
nize a range of pathogen and cellular stress–related proteins
independent of polymorphic major histocompatibility complex
molecules,79 or αβ T-cell populations with a limited TCR
repertoire, such as VSTs as described above.39,40

Preventing rejection is more difficult and complex. Because it is
impossible to eliminate all alloreactive T cells and NK cells in
the recipient, the most common approach is to prevent
recognition of the infused cells by eliminating HLA expression
on the cell surface. Surface expression of HLA class I molecules
can be prevented by knockout of β2 microglobulin, the com-
mon β chain of all HLA class I molecules.80 Class II molecules
can be knocked out individually or in combination by deletion
of CIITA, the master regulator of class II gene expression.81-83

Whether these modifications affect the function or persistence
of T cells is not yet clear, but HLA class I–negative cells become
targets for NK cells, so that additional expression of non-
polymorphic HLA class I molecules like HLA-E becomes
necessary.84 Because NK cells heterogeneously express a range
of activating and inhibitory receptors,85 this modification may
not inhibit all NK cells and again the extensive gene editing
required to produce immunologically invisible effector cells
poses regulatory issues.

We took an alternative approach of actively eliminating
recipient alloreactive T cells using a chimeric protein that
fused β2 microglobulin to the cytotoxic CD3 zeta chain of the
TCR,86 so that allogeneic VSTs expressing this chimeric HLA
accessory receptor (CHAR) could kill host alloreactive T cells
that engage their class I alloantigens. We have extended this
concept by developing alloimmune defense receptors
comprising CARs directed against molecules such as 4-1BB
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or CD30 that are upregulated on activated T cells. CD3-
activated T cells expressing alloimmune defense receptors
are protected from allorejection both in vitro and in murine
models.87 EBVSTs expressing a CD30.CAR have bispecificity
for CD30 and EBV and can eliminate both alloreactive T cells
and CD30+ lymphoma. Because autologous CD30.CAR
CD3-activated T cells have already been proved safe and
effective for the treatment of CD30+ lymphoma,88,89 we are
now evaluating a bank of CD30.CAR-EBVSTs manufactured
from healthy EBV-seropositive donors as an OTS treatment
for CD30+ lymphoma in a phase 1 trial (Figure 2) (#NCT04288726)
with promising early results.90

Improving the function of B-VST
VSTs have advantages as a platform for banked allogeneic cell
therapies because they have been proved safe in the clinic, lack
alloreactivity, and have long-term memory potential. They are
amenable to genetic modification, allowing them to target
additional tumor antigens, be protected from rejection, and
providing enhanced function in the immunosuppressive
TME.91-94 Examples tested clinically include dominant-negative
receptors to counteract inhibitory cytokines, such as trans-
forming growth factor β, secreted and tethered cytokines, and
constitutively active cytokine receptors to prolong cytokine
signaling.92-98 Many gene modifications have been proposed in
preclinical models, but relatively few have been tested clini-
cally, and thus far only in the autologous setting.

Conclusion
The adoptive transfer of B-VSTs has demonstrated efficacy
comparable to recipient-specific products in the treatment of
viral infections of transplant recipients, leading to ongoing
Food and Drug Administration registration trials. Their
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efficacy in this setting may be owing to reactivation of
endogenous immunity rather than to the persistence of the
infused product. Regardless, this success has led to their
evaluation for the treatment of problematic viral diseases and
malignancies outside the immunocompromised setting.
Challenges to B-VSTs outside the HSCT setting is limited
persistence because of rejection and the almost universal use
of lymphodepletion that may prevent the reactivation of
endogenous immunity. Despite these obstacles, VSTs offer
advantages as a candidate T-cell platform, including their
demonstrated lack of alloreactivity and amenability to gene modi-
fications to provide additional anticancer specificity, improve their
persistence, and overall efficacy. Although B-VSTs have yet to
demonstrate their potential in large late-phase studies, efforts to
provide well-characterized, immediately available, and cost-
effective OTS T-cell therapies that are safe, clinically effective,
and provide durable responses are warranted.
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