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Description of a novel subtype of acute myeloid
leukemia defined by recurrent CBFB insertions
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Molecular analysis of pediatric and adult acute myeloid leu-
kemia (AML) is used routinely to identify subtype-defining
driver structural variants and mutations which may provide
important information for risk stratification. For example, the
core-binding factor (CBF) AML subgroup defined by t(8;21)
RUNX1::RUNX1T1 or inv(16)/t(16;16) CBFB::MYH11 are asso-
ciated with favorable outcomes.1,2 Despite the extensive
genomic characterization of pediatric and adult AML, there
remains an important proportion of previously unclassified
cases where new driver lesions are still being identified,
including those that can influence patient management owing
to their association with outcomes. This includes the recent
identification of tandem duplications in UBTF in pediatric
AML3,4 and structural variants that dysregulate BCL11B in
lineage-ambiguous acute leukemia.5 Herein we describe an
additional new subtype of AML characterized by a recurrent
insertion mutation in CBFB.

We initially reanalyzed a cohort of 553 pediatric AML tran-
scriptomes from our previous study3 and identified 2 patients
(PARANT:SJAML040573, PARUTH:SJAML040605) with similar
gene expression profiles to CBFB::MYH11 AML, but without a
CBFB::MYH11 fusion or other known leukemic driver by con-
ventional testing, and without finding a CBFB::MYH11 fusion by
manual inspection of RNA sequence data (supplemental
Figure 1, available on the Blood website; Table 1). However,
in both of these patients, we identified a somatic 9-base pair
insertion in exon 3 of CBFB (NM_022845.3). The CBFβ protein
encoded by CBFB forms the non–DNA-binding regulatory
subunit of a heterodimeric transcription factor complex with a
DNA-binding CBFα subunit (RUNX1, RUNX2, or RUNX3).
Interestingly, both CBFB mutations were predicted to lead to
the same amino acid change, substituting aspartic acid at
position 87 (D87) for glycine, aspartic acid, serine, and tyrosine
[p.(Asp87delinsGlyAspSerTyr); GDSY] within the N-terminal
RUNX-binding domain6 (Figure 1A).
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Given these findings, we hypothesized that CBFB mutations
may be recurrent in AML and a defining feature of a novel
subtype. Through a combination of published data, clinical
sequencing, and screening driver-negative AML cohorts from
independent sources (supplemental Methods), we identified an
additional 16 cases with CBFB insertions involving D87,
including 15 AML and 1 B/myeloid mixed phenotype acute
leukemia, for a total of 18 cases (Table 1). These additional
cases also lacked a CBFB::MYH11 fusion or other known
leukemic driver alterations (supplemental Table 1). CBFB
mutations were confirmed in both DNA and RNA sequencing
when available, or Sanger sequencing, and were confirmed to
be somatic in 11 of 11 cases where matched germline data was
available (supplemental Table 1; supplemental Methods;
supplemental Figure 2). Remarkably, we identified 10 different
nucleotide insertions at codon 87 in these 18 cases; 9 out of 10
were predicted to encode for the same in-frame GDSY amino
acid change (p.(Asp87delinsGlyAspSerTyr)), with the other
nucleotide insertion leading to a GDTY amino acid change
(p.(Asp87delinsGlyAspThrTyr)) (Figure 1A). This highly stereo-
typed change at the protein level (ie, GDXY) strongly implies a
functional relevance.

We next integrated 8 of these additional cases into our tran-
scriptome cohort and observed a tight cluster of cases with
CBFB insertions adjacent to the CBFB::MYH11 cluster
(Figure 1B). Gene set enrichment analysis confirmed broad
similarities between AML with CBFB insertions and CBF AMLs
(Figure 1C; supplemental Figure 3; supplemental Table 2).
However, CBFB insertion cases showed uniquely high expres-
sion of BCL2L14, MEIS1, and HOXA cluster genes, demon-
strating a more stem-like signature compared with
CBFB::MYH11 AML.

We also examined the cooperating mutations in 10 CBFB
insertion cases from RNA sequencing data and integrated these
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Table 1. Clinical characteristics of the patients with acute leukemia harboring a CBFB-GDXY mutation

Identifier
CBFB-GDXY mutation
(CBFB NM_022845.3)

Age/
Sex Diagnosis

FAB
category Karyotype

Cooperating
gene

mutations
Risk
group

Treatment
protocol Outcome References

PARANT:SJAML040573 c.259_260insGAGATTCCT
p.(Asp87delinsGlyAspSerTyr)

17M AML M2 46,XY ETV6, KRAS, NF1 Standard AAML0531 Alive/CR 9,10

PARCEC c.259_260insGAGACTCCT
p.(Asp87delinsGlyAspSerTyr)

23F AML Unknown 46,XX NRAS Standard AAML0531 Refractory/
dead

9,10

PARUTH:SJAML040605 c.259_260insGGGACTCCT
p.(Asp87delinsGlyAspSerTyr)

9M AML Unknown 46,XY.nuc ish
CBFB×3

FLT3, NRAS,
BCORL1

Standard AAML0531 Relapse/
dead

9

PAVLBB c.259_260insGTGACTCCT
p.(Asp87delinsGlyAspSerTyr)

15M AML Unknown 46,XY Standard AAML1031 Refractory/
dead

Unpublished

PAWIHN c.259_260insGGGATTCCT
p.(Asp87delinsGlyAspSerTyr)

17F AML Unknown 46,XX,i(7)(p10) KDM6A Standard AAML1031 Alive/CR Unpublished

PAWZIX c.259_260insGGGACTCCT
p.(Asp87delinsGlyAspSerTyr)

13F AML Unknown 46,XX ETV6, NRAS Standard AAML1031 Relapse/
alive/CR2

Unpublished

PAXCCW c.259_260insGGGACTCCT
p.(Asp87delinsGlyAspSerTyr)

12F AML Unknown 47,XX,+6 NRAS Standard AAML1031 Alive/CR Unpublished

PAXDVZ c.259_260insGGGATTCCT
p.(Asp87delinsGlyAspSerTyr)

20M AML Unknown 46,XY BCORL1, KDM6A,
NRAS

Standard AAML1031 Refractory/
dead

Unpublished

SJMPAL017975 c.259_260insGAGACAGTT
p.(Asp87delinsGlyAspSerTyr)

18M B/M MPAL Unknown 51,XY,+Y,+4,+6,
+13,+22

FLT3, ASXL1,
BCORL1

Unknown Unknown Alive/CR 11

SJAML016545 c.259_260insGAGACTCGT
p.(Asp87delinsGlyAspSerTyr)

16M AML M2 47,XY,+22 FLT3 Intermediate AML02 Alive/CR 12

SJAML031769 c.259_260insGGGATTCCT
p.(Asp87delinsGlyAspSerTyr)

12M AML M2 47,XY,+6 NRAS, FLT3 Intermediate AML16 Alive/CR Unpublished

SJAML033048 c.259_260insGGGATTCCT
p.(Asp87delinsGlyAspSerTyr)

14F AML M2 46,XX BCORL1 Intermediate AML16 Alive/CR Unpublished

SBJ00860 c.259_260insGGGACTCCT
p.(Asp87delinsGlyAspSerTyr)

25M AML M1 BCORL1, ETV6,
KMT2D

Intermediate Induction: 7 + 3
Cytarabine/
idarubicin

Consolidation:
HiDAC ×3
cycles

Alive/CR Unpublished

AML, acute myeloid leukemia; CR, complete response; MPAL, mixed phenotype acute leukemia.

Full information is found in Supplemental Table 1.
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Table 1 (continued)

Identifier
CBFB-GDXY mutation
(CBFB NM_022845.3)

Age/
Sex Diagnosis

FAB
category Karyotype

Cooperating
gene

mutations
Risk
group

Treatment
protocol Outcome References

AML075 c.259_260insGGGATTCGT
p.(Asp87delinsGlyAspSerTyr)

10M AML M0-NOS 46,XY,inv(9)
(q11q12)

NF1, KDM6A,
WT1

Intermediate NOPHO-AML-93 Relapse/
dead

4,13

AMLNOS004 c.259_260insGCGATTCCT
p.(Asp87delinsGlyAspSerTyr)

15M AML M1 47,XY,+6 FLT3, BCORL1,
KDM6A

Standard NOPHO AML
2004

Alive/CR Unpublished

ALG201115 c.259_260insGAGATTCCT
p.(Asp87delinsGlyAspSerTyr)

27M AML M1 46,XY Intermediate VP2010-2012 Relapse/
alive/CR2

Unpublished

MLL_75644 c.259_260insGGGATTCCT
p.(Asp87delinsGlyAspSerTyr)

17M AML M1 46,XY FLT3, BCORL1,
ETV6

Intermediate Unknown Unknown Unpublished

115225 c.259_260insGAGATACCT
p.(Asp87delinsGlyAspThrTyr)

22M AML Indeterminate 46,XY FLT3, ETV6, WT1,
DNMT3A

Unknown Induction: 7 + 3
cytarabine/
daunorubicin,
with
concurrent
midostaurin (vs
placebo)

consolidation:
high-dose
cytarabine ×3
cycles with
concurrent
midostaurin (vs
placebo) + 12
mth
maintenance
midostaurin (vs
placebo)

Relapse/
alive/CR2

14

AML, acute myeloid leukemia; CR, complete response; MPAL, mixed phenotype acute leukemia.

Full information is found in Supplemental Table 1.
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Figure 1. A novel subtype of AML characterized by CBFB-GDXY mutations. (A) Graphical representation of CBFB exons 1 to 6 (NM_022845.3) showing the location
(arrowhead) and sequence of the 9 bp insertion mutations (highlighted in red) relative to the wild-type complementary DNA sequence. The number of patients with each
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findings with mutational information from other studies
(Figure 1D; supplemental Tables 1 and 3). Recurrent mutations
were detected in BCORL1 (7/18 [39%]), FLT3 (7/18 [39%]),
NRAS (6/18 [33%]), ETV6 (5/18 [28%]), KDM6A (4/18 [22%]), and
NF1 (2/18 [11%]). FLT3 tyrosine kinase domain (TKD) mutations
were most common, although internal tandem duplications and
mutations outside the TKD were also observed. Overall, these
mutations are different from the mutational spectrum previously
reported for CBF leukemias,7 most notably the absence of KIT
mutations and a higher frequency of FLT3-TKD and BCORL1
mutations. Recurrent chromosomal alterations in the CBFB
insertion group included trisomy 6 and trisomy 22, whereas
trisomy 8 was not observed (Figure 1D; supplemental Table 1).
Additionally, the CBFB mutation was conserved at both diag-
nosis and relapse in 2 cases profiled at both time points
(AML075 and 115225). Collectively, these data suggest that
CBFB insertions are a subtype-defining lesion, and we have
provisionally termed this group CBFB-GDXY.

Like CBF AML, AMLs with CBFB-GDXY mutations were
observed in both children and adults, but were enriched in
adolescent and young adult age groups (median age, 16.5
years; range, 9-27 years). Overall, this mutation in AML cohorts
was rare, including 3 of 188 in the TARGET pediatric AML
cohort, 5 of 1048 in the pediatric AAML1031 cohort and 1 of 350
in the Clinseq-AML Swedish adult cohort, whereas more than
2000 cases from multiple large cohorts composed primarily of
adult AMLs did not harbor a CBFB insertion (supplemental Data
for a description of cohorts screened). Additionally, unlike the
typical myelomonocytic morphology with abnormal eosinophils
(FAB M4 Eo) observed for CBFB::MYH11 AML, CBFB-GDXY
AML had fewer mature morphologies (FAB M0, n = 1; FAB M1,
n = 4; or FAB M2, n = 4), consistent with the stem-related
expression profiles, where morphologic reports were available.
However, an increase in eosinophils was still observed
(Figure 1E). Like RUNX1::RUNX1T1 AML,8 we noted that CBFB-
GDXY AML may express CD19 (supplemental Figure 4;
supplemental Table 1). Further supporting this observation is
the identification of the GDXY insertion in 1 case of B/myeloid
mixed phenotype acute leukemia.

This cohort is small and collected from different sources with
varied treatment protocols, precluding a definitive assessment
of the impact of this mutation on outcomes. However, 8 of 17
patients (where data were available) had either relapsed or
refractory disease after initial treatment, whereas patients with
RUNX1::RUNX1T1 or CBFB::MYH11 AMLs commonly have a
good outcome and these AMLs are considered favorable risks.
Figure 1 (continued) mutation is shown in the circles. The predicted protein sequence o
projection (UMAP) of expression profiles of the pediatric AML cohort (AML, n = 561; cor
genes. Dots are colored by the molecular feature of the sample. (C) Gene set enrichmen
gene sets derived from differentially expressed genes in CBFB::MYH11 AML or RUNX1
expressed between AML with CBFB insertions and CBFB::MYH11 or RUNX1::RUNX1T1
detected at diagnosis are shown) and CBFB::MYH11 AML (n = 65) collected in the previou
to mutation calling from RNA sequencing data. Eight FLT3 mutations were detected in se
the tyrosine kinase domain (TKD), or mutations outside the TKD (other domains). (E) (i) Gie
arrowhead marks single slender Auer rod (original magnification ×1000). (ii) Giemsa-stain
blasts, and eosinophils (original magnification ×1000); arrowhead marks salmon-colored
stained bone marrow biopsy (original magnification ×500) showed a hypercellular marr
increased eosinophils in the background. (F) Measurable residual disease assessmen
sequencing in SBJ00860.
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To investigate the treatment response in one patient, we
designed a CBFB mutation-specific ultradeep next-generation
sequencing assay (supplemental Methods) for longitudinal
tracking of measurable residual disease. This 25-year-old
patient (SBJ00860) was treated with cytarabine and idarubicin
induction (7 + 3), followed by high-dose cytarabine consolida-
tion. Measurable residual disease assessment after each cycle
of chemotherapy showed detectable but decreasing CBFB
insertion variant allele frequency, becoming undetectable after
the last cycle of therapy and remaining undetectable at 9
months of follow-up (Figure 1F).

In summary, we have reported a novel subtype of AML char-
acterized by recurrent in-frame insertion mutations in CBFB,
leading to a GDXY amino acid sequence change at position
D87. Molecular characterization demonstrated transcriptional
similarity to CBF AML, while also highlighting an enrichment of
FLT3-TKD mutations, lack of KIT mutations, and stemness-
related gene expression signature. Recognition of this sub-
type and further study in clinical trials, as well as investigation of
the underlying leukemogenic mechanism of the CBFB insertion,
will be important to understand the full clinical relevance of this
novel entity.
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