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C1Q labels a highly aggressive macrophage-like
leukemia population indicating extramedullary
infiltration and relapse
D
ow

nloaded from
 http://ashpublica
Li-Xue Yang,1,* Cheng-Tao Zhang,2,* Meng-Ying Yang,1,* Xue-Hong Zhang,3,* Hong-Chen Liu,2 Chen-Hui Luo,1 Yue Jiang,2

Zhang-Man Wang,2 Zhong-Yin Yang,4 Zhao-Peng Shi,5 Yi-Ci Yang,2 Ruo-Qu Wei,1 Li Zhou,5 Jun Mi,5 Ai-Wu Zhou,5 Zhi-Rong Yao,1 Li Xia,5,*
Jin-Song Yan,2 and Ying Lu1

1Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; 2Department of Hematology, Liaoning Key
Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation,
Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China; 3Center of
Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; 4Department of General Surgery, Shanghai Key
Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
and 5Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong
University, Shanghai, China
tions.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-0
KEY PO INT S

• C1Q+ cells represent a
highly tissue-infiltrative
leukemia population
and could reconstitute
EMI phenotype of AML.

• Fibroblast attracts
C1Q+ leukemia cell via
C1Q–globular C1Q
receptor recognition
and stimulation of
transforming growth
factor β1 synthesis.
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Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor
outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly
understood and therapeutic options are limited. Here, we employed single-cell RNA
sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting
pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which
was enriched within cutis and existed in BM before EMI manifestations, was identified and
further verified in multiple patients with AML. Genomic and transcriptional profiling dis-
closed mutation and gene expression signatures of patients with EMI that expressed high
levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression
dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demon-
strated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expres-
sion, which was modulated by transcription factor MAF BZIP transcription factor B,
endowed leukemia cells with tissue infiltration ability, which could establish prominent
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cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line–derived xenograft models.
Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q–globular C1Q receptor recognition and
subsequent stimulation of transforming growth factor β1. This cell-to-cell communication also contributed to survival
of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis,
orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling
therapeutic target for EMI.
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Introduction
Acute myeloid leukemia (AML) is a lethal hematological
malignancy that originates from unlimited proliferation of
immature progenitors characterized by medullary and extra-
medullary invasion, with a 5-year overall survival (OS) rate of
<30% with chemotherapy.1-3 Infiltration of bone marrow (BM)
malignant leukemia cells into tissues other than the BM to form
an extramedullary mass, referred to as extramedullary infiltra-
tion (EMI), is a common concomitant symptom of AML, with an
incidence at initial diagnosis ranging from 2.5% to 30.5%,4-10 to
even 65% if diagnosed by positron emission tomography/
| VOLUME 141, NUMBER 7
computed tomography.11 Acute myelomonocytic (M4) and
monocytic leukemias (M5) are the 2 subtypes of AML that
display the most frequent incidence of EMI. Common EMI tis-
sues include skin, peritoneum, lymph nodes, gastrointestinal
(GI) tract, genitourinary system, and central nervous system
(CNS).5-7,12-15 The prognostic significance of EMI involvement is
not fully established. Some investigations showed that it serves
as an indication of poor prognosis, chemotherapy resistance, or
recurrence, including in patients who had received allogeneic
hematopoietic stem cell transplantation (HSCT).12,16,17 How-
ever, other studies including the ECOG-ACRIN Cancer
Research Group trials found no prognostic influence of EMI in
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AML.12,18,19 In contrast, a number of genetic molecular abnor-
malities including t(8;21), inv(16), NPM1 mutation, and CD56
expression were indicated to associate with EMI yet with
controversial results and limited evidence to construct direct
association between cytogenetic abnormalities and incidence
of EMI.5,6,20-22 Overall, the underlying causes of EMI remain
elusive and pose a clinical challenge for optimal treatment of
patients with EMI.

Herein, we started our investigation with a patient with
extremely aggressive monocytic leukemia who had experi-
enced multiple drug resistance and widespread leukemia cutis,
a phenomenon defined as cutaneous involvement of AML.21,23

Given the failure of conventional therapies and the lack of
alternative therapeutic options, we expected that single-cell
RNA sequencing (scRNA-seq) might offer a personalized med-
icine approach to enable the identification of altered pathways
that might be targeted via clinical available strategies.
Although, unfortunately, the patient passed away rapidly before
any targeted therapy could be developed, we identified the
most featured macrophage-like C1Q+ population associated
with EMI and adverse outcome and confirmed its unique
function in migration. More interestingly, we also illustrated the
contribution of tissue fibroblasts, and developed antibodies
that could block leukemia migration, which could benefit other
patients with AML who experience EMI.
d/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m
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Methods
Patient-derived xenograft (PDX) models from
patients with AML
Primary AML cells were transplanted via tail vein into a female,
8- to 10-week-old sublethally irradiated (2.5 Gy) NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory).
Human cells were assessed by flow cytometry using anti-human
CD45, CD33, CD14, CD16, and C1Q. Animal handling was
approved by the committee for humane treatment of animals at
Shanghai Jiao Tong University School of Medicine.

scRNA-seq and data processing
scRNA-seq was performed using the chromium system. Briefly,
cells were loaded, and a library was prepared using the Chro-
mium Single Cell 3 Reagent Kits (version 3). Reads were aligned
to the hg38/GRCh38 reference genome and gene expression
was quantified to generate the gene barcode unique molecular
identifier matrixes using the CellRanger software package
(version 3.0.1).
24
Results
scRNA-seq identifies C1Q+ macrophage-like
leukemia cells in P-S1022
Here, we report a case of M5 in a 39-year-old male patient (P-
S1022) who experienced extremely aggressive progression,
featuring multiple drug resistance and widespread leukemia
cutis (Figure 1A-B). The diagnosis of AML was further confirmed
according to negative staining for markers of blastic plasmacytic
dendritic cell neoplasm (supplemental Figure 1A, available on
the Blood website).4,24 The patient achieved complete remis-
sion after induction chemotherapy but became refractory
(relapse 1) to a second induction and developed uncontrolled
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
pervasive leukemia cutis (relapse 2) as evidenced by positive
peroxidase staining in skin biopsy (Figure 1A-C). We promptly
collected BM and cutis samples and conducted scRNA-seq with
the expectation to identify potential therapeutic targets. How-
ever, the patient passed away owing to disseminated intravas-
cular coagulation and multiple organ failure 7 days after
development of leukemia cutis.

scRNA-seq was performed on 18 213 cells from BM and cutis
samples, and 15 cell clusters were visualized by the t-distributed
stochastic neighbor embedding projection using Seurat
(Figure 1D; supplemental Table 1). The cell types were assigned
according to the expression of established cell-specific marker
genes.25-27 Finally, 4 leukemic populations were referred to as
granulocyte-monocyte progenitor–blasts (3, 6, 8, 10, and 11),
promonoblasts (1, 2, and 7), monoblasts (4 and 9), and macro-
blasts (5); and nonmalignant cells including B cells (15) and CD4+

and CD8+ T cells (12 and 13) were clearly recognized (Figure 1D-
E). Compared with BM, we observed reduced granulocyte-
monocyte progenitor–blasts and increased promonoblasts,
monoblasts, and macroblasts in cutis (Figure 1D,F).28-32 In addi-
tion, the pattern summarized as “differentiation trajectory” clearly
demonstrated differentiation heterogeneity of monocytic leuke-
mia cells and a more mature state of leukemia cells in cutis than in
BM (Figure 1G-H). Intriguingly, projection of the numbers of
differentially expressed genes revealed the most prominent tran-
scriptomic changes arose within the macroblasts (Figure 1I;
supplemental Table 2), strongly suggesting a critical role of this
macrophage cluster in EMI.

We further examined featured genes of each cluster and
observed that the macroblasts expressed a high level of
mature macrophage markers including C1QA, C1QB, C1QC,
FCGR3A(CD16), and MAFB (Figure 1J).29,31-35 Owing to the
unique feature of C1Q gene expression, we named this
cluster C1Q+ macroblast. Matched scatterplots revealed a
strong correlation between the signature genes of macro-
blasts (supplemental Figure 1B). Different from monocytic
clusters, C1Q+ macroblasts expressed moderate levels of
CD14, a high level of CD16, and low level of MKI67, indi-
cating a low proliferative state (Figure 1K). Strikingly,
monocle trajectory analysis revealed that C1Q+ macroblast
preexisted at very early pseudotime (Figure 1L). Collectively,
we identified a unique C1Q+ leukemia population bearing
macrophage markers, which is enriched in EMI lesion yet
preexisted in primary neoplasm.

C1Q expression associates with EMI and specific
oncogenic events
Next, we validated C1Q expression of P-S1022. Compared with
healthy donors, mononuclear cells of P-S1022 expressed a sig-
nificant level of C1Q (Figure 2A). In contrast, patients diagnosed
with M5 displayed heterogeneity regarding C1Q expression
(Figure 2B-C). C1Q expression was observed on each of the
classical (CD14highCD16low), nonclassical (CD14lowCD16high), and
intermediate (CD14highCD16high) populations of P-S1022 as well
as in healthy donors (Figure 2B).30,31,33

Next, high C1Q expression was validated in multiple extra-
medullary sites including cerebrospinal fluids from CNS
involvement of patients with AML (supplemental Figure 1C) and
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 767
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Figure 1. scRNA-seq identified unique C1Q+ macrophage-like leukemia cells in a patient with AML (P-S1022). (A) Disease course of P-S1022 from primary to deceased.
(B) Clinical presentations of leukemia cutis. (C) Wright staining and peroxidase staining of BM biopsy collected at relapse 1 and cutis sample of P-S1022. (D) Unsupervised
t-distributed stochastic neighbor embedding (t-SNE) plot displaying 18 213 cells from BM and cutis samples of P-S1022. Number- and color-labeled 15 different clusters.
Clusters belonging to the same category of cells were distinguished by type 1, 2, or 3. (E) Expression levels (x-axis) of cluster-defining genes in each cluster. Violin plots show
the distribution of normalized expression levels of genes and are color coded according to cluster, as in panel D. (F) Frequencies of defined clusters, color coded based on
origin (BM vs cutis). Red bar indicates cutis-derived cells; green bar, BM-derived cells. (G) Differentiation trajectory of 15 identified clusters. Arrow begins from the primitive
clusters to mature clusters. Red indicates increase and green indicates decrease of frequencies of defined clusters (cutis vs BM). (H) t-SNE projections of selected marker
genes of indicated clusters are shown (left). (I) Projection of differentially expressed genes (DEGs) between BM and cutis sample on t-SNE plot. DEGs: |log fold change| >0.5;
adjusted P < .05 was derived by a Wilcoxon rank-sum test. (J) Expression levels (y-axis) of featured genes in 15 clusters. Violin plots show the distribution of normalized
expression levels of indicated genes. (K) Expression levels of monocyte- (CD14 and FCGR3A/CD16) and proliferation-associated (MKI67) genes are illustrated by violin plots.
(L) Trajectory of leukemia cells of BM and cutis samples using the monocle 2 algorithm and pseudotime projections for the distinct transcriptional states, with each point
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EMI lesion presenting as pelvic neoplasm (P-WY022) whose
diagnosis was histologically confirmed (Figure 2D).

To further define the association of C1Q with EMI, we measured
C1Q expression by flow cytometry in a larger AML population
in which patients were divided into EMI+ (n = 17) and EMI−

(n = 33) subgroups. In parallel, targeted DNA sequencing and
RNA-seq were conducted to define the molecular pathogenic
features. The results showed that the EMI+ group expressed
higher levels of C1Q compared with the EMI− (Figure 2E). Gene
set enrichment analysis of RNA-seq data disclosed complement
as the top enriched pathway (Figure 2F) with C1QA residing in
the top 10 upregulated genes in the EMI+ group vs EMI−

(supplemental Figure 1D). Targeted DNA-seq illustrated a
higher frequency of mutations in DNMT3A (6/17, P = .0314),
FLT3 (6/17, P = .2291), and NPM1 (6/17, P = .0609) in the EMI+

group and more NRAS (13/33, P = .0413) mutation in the EMI−

group, indicating distinct mutation patterns (Figure 2G;
supplemental Table 3). Interestingly, among all the oncogenic
aberrations, the association between DNMT3A mutation and
C1Q was further validated in our inhouse AML RNA-seq data
set (Figure 2H) and in a larger cohort BeatAML36 (Figure 2I),
suggesting a correlation between DNMT3A mutation and C1Q
expression. Interestingly, previous report showed that DNMT3A
mutation leads to leukemic EMI through TWIST1.37 Taken
together, these data established the correlation between C1Q
and EMI and identified an association of C1Q with specific
oncogenic events.

C1Q is an adverse prognosis marker in AML
To understand the prognostic significance of C1Q expression in
AML, we analyzed C1Q genes (C1QA, C1QB, and C1QC) in
publicly available data from BeatAML (n = 200),36 The Cancer
Genome Atlas (TCGA) (n = 173),38 and the Leucegene project
(n = 373) cohorts. Firstly, C1QA high expression showed
significant correlation with refractory patients (Figure 2J).
Secondly, high levels of C1Q genes were observed in
the adverse patient group according to 2017 European Leu-
kemiaNet classification in BeatAML,39 and in the group with
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
poor molecular feature in the TCGA cohort (supplemental
Figure 1E-F). Thirdly, deceased patients showed significantly
higher expression of C1Q compared with living patients
(supplemental Figure 1G). Furthermore, univariate Cox regres-
sion analysis revealed an association of high expression of
C1Q genes with decreased OS in BeatAML (Figure 2K)
and Leucegene cohorts (supplemental Figure 1H) and
decreased disease-free survival (DFS) in TCGA (Figure 2L).
Collectively, C1Q expression was a predictor for worse clinical
outcome of AML.

The prognostic significance of the C1Q was further confirmed in
a multivariate Cox analysis. For the DFS analysis, the poor
prognostic impact of high white blood cell counts, intermediate
risk stratification, and FLT3 mutation remained statistically sig-
nificant, consistent with previous reports.5,8,9 Strikingly, C1QA
overexpression was proven to be an independent DFS marker
with a hazard ratio of 6.05 in the TCGA cohort (Figure 2M;
supplemental Table 4). Although C1Q in BeatAML did not show
independent prognostic value for OS (P = .805 for C1QA),
C1QA overexpression remained significantly associated with
worse OS when survival analysis was applied to C1QA
plus FLT3-ITD, NPM1, CEBPA, DNMT3A, CBF fusion, or 2017
European LeukemiaNet classification (Figure 2N). Overall,
we propose that C1Q serves as an adverse prognostic marker
for AML.
C1Q was upregulated upon relapse in P-S1022 and
is associated with early recurrence
To clarify the status of C1Q across patients with AML, we
collected samples at primary stage as well as from healthy
donors and performed RNA-seq (Figure 3A) and quantitative
proteomic analysis (Figure 3B). Surprisingly, we observed a
lower level of C1Q in patients with AML compared with healthy
donors, which is similar in CD34+ populations. Further, AML
presents lower C1Q level compared to other types of cancers
(supplemental Figure 2A-B). Among all the French-American-
British classification subtypes of AML, M4, and M5 displayed
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 769
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Figure 2 (continued) C1QB, and C1QC for the induction response in patients with AML from the BeatAML data set. P values are shown from 2-sample 1-tailed t test. (K)
Differences in OS in patients with de novo AML from the BeatAML data set (n = 200) by expression of C1QA, C1QB, and C1QC. P values, hazard ratios (HRs), and 95%
confidence interval (CI) are shown from univariate Cox analysis. (L) Differences in DFS in patients with de novo AML from the TCGA data set (n = 173) by expression of C1QA,
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the highest level of C1Q expression in BeatAML and Leuce-
gene (supplemental Figure 2C), supporting the notion that
monocytic cells are the major origin of C1Q.40 The seemingly
contradictory results prompted us to suspect that C1Q might be
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
regulated during the progression of disease. We measured
C1Q level on longitudinally collected samples during treatment
(primary and relapse 1 and 2) of P-S1022 and observed elevated
C1Q upon relapses (Figure 3C). RNA-seq (Figure 3D-E) and
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 771



Ov
er

al
l s

ur
viv

al

1.00

0.75

0.50

0.25

0.00

High
Low

P = .009
Hazard Ratio = 2.14
(95% CI: 1.21–3.77)

0 10 20 30 40 50

Time (months)
Number at risk

High

Low

20 9 5 3 2 0

180 91 30 13 5 0

C1QB
1.00

0.75

0.50

0.25

0.00

Ov
er

al
l s

ur
viv

al

High
Low

P = .0126
Hazard Ratio = 2.09
(95% CI: 1.17–3.72)

0 10 20 30 40 50

Time (months)
Number at risk

High

Low

20 8 4 2 1 0

180 90 31 14 6 0

C1QA

K

1.00

0.75

0.50

0.25

0.00

Ov
er

al
l s

ur
viv

al

High
Low

P = .0078
Hazard Ratio = 2.02
(95% CI: 1.2–3.38)

0 10 20 30 40 50

Time (months)
Number at risk

High

Low

28 11 6 3 2 0

172 87 29 13 5 0

C1QC

L

0 10 20 30 40 50 60 70 80 90 100

1.00

0.75

0.50

0.25

0.00

Di
se

as
e 

fre
e 

su
rv

iva
l

Time (months)
Number at risk

High

Low

27 8 3

146 77 51

3

40

2

30

0

21

0

17

0

13

0

8

0

4

0

1

High
Low

P = .0015
Hazard Ratio = 2.45
(95% CI: 1.41–4.27

C1QA C1QC

0 10 20 30 40 50 60 70 80 90 100

1.00

0.75

0.50

0.25

0.00

Di
se

as
e 

fre
e 

su
rv

iva
l

Time (months)
Number at risk

High

Low

18 8 3

155 77 51

3

40

2

30

0

21

0

17

0

13

0

8

0

4

0

1

High
Low

P = .0409
Hazard Ratio = 1.9
(95% CI: 1.03–3.53

C1QB

0 10 20 30 40 50 60 70 80 90 100

1.00

0.75

0.50

0.25

0.00

Di
se

as
e 

fre
e 

su
rv

iva
l

Time (months)
Number at risk

High

Low

18 7 2

155 78 52

2

41

1

31

0

21

0

17

0

13

0

8

0

4

0

1

High
Low

P = .0096
Hazard Ratio = 2.27
(95% CI: 1.22–4.22

Characteristics

C1QA
Age

6.05 [1.47, 24.85]

1.34 [0.48, 3.77]

3.77 [1.25, 11.36]
2.02 [0.72, 5.65]
0.70 [0.30, 1.64]

2.02 [1.11, 3.66]
0.52 [0.24, 1.12]
0.76 [0.26, 2.20]
1.37 [0.23, 8.25]
0.86 [0.32, 2.26]
1.09 [0.58, 2.04]
1.31 [0.38, 4.52]

1.17 [0.42, 3.27]
0.99 [0.18, 5.57]
1.03 [0.36, 2.93]
0.37 [0.09, 1.61]

0.013
0.401
0.134

0.577
0.766
0.991
0.955
0.186

0.018

0.021
0.095
0.615
0.730
0.754
0.800
0.666

0.179
0.410

<0.001

1.29 [0.71, 2.32]
0.68 [0.41, 1.13]
3.25 [1.76, 5.98]

Sex
WBC

FAB
M1
M2
M3
M4
M5

Intermediate
Poor

Risk_Molecular

CBF_Fusion
Mutation
FLT3
NPM1
CEBPA
TP53
RUNX1
DNMT3A
KIT

HR (95%CI) P

0.1 1 2 3 4

HR
5 6 7 8

M

Figure 2 (continued)

772 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 YANG et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m

ain.pdf by guest on 17 M
ay 2024



C1QA = low, FLT3-ITD = negative

C1QA = low, FLT3-ITD = positive

C1QA = high, FLT3-ITD = negative

C1QA = high, FLT3-ITD = positive

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0

P = .0074
Hazard Ratio = 2.22
(95% CI: 1.24–3.97)

10 20 30 40 50

Time (months)

Number at risk

133 166 24 12 5 0
47 24 7 2 1 0
16 6 4 2 1 0
4 2 0 0 0 0

C1QA = low, CEBPA = negative

C1QA = low, CEBPA = positive

C1QA = high, CEBPA = negative

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0

P = .0488
Hazard Ratio = 2.15

(95% CI: 1–4.62)

10 20 30 40 50

Time (months)

Number at risk

94 51 19 9 5 0

16 8 3 2 0 0

10 5 2 1 0 0

C1QA = low, DNMTA = negative

C1QA = low, DNMT3A = positive

C1QA = high, DNMT3A = negative

C1QA = high, DNMT3A = positive

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0

P = .0454
Hazard Ratio = 2.48
(95% CI: 1.02–6.04)

10 20 30 40 50

Time (months)
Number at risk

62 28 9 5 1 0
25 13 3 2 1 0
2 1 0 0 0 0
8 3 1 0 0 0

C1QA = low, CBD_Fusion = negative

C1QA = low, CBF_Fusion = positive

C1QA = high, CBF_Fusion = negative

C1QA = high, CBF_Fusion = positive

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0

P = .0976
Hazard Ratio = 1.7
(95% CI: 0.91–3.17)

10 20 30 40 50

Time (months)

Number at risk

143 71 21 10 5 0
25 13 6 2 1 0
16 8 4 2 1 0
1 0 0 0 0 0

ELN2017 = Favorable

ELN2017 = Intermediate

ELN2017 = Adverse

C1QA = low

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0

P = .0073
Hazard Ratio = 2.22
(95% CI: 1.24–3.97)

10 20 30 40 50

Time (months)
Number at risk

70 34 14 6 3 0
60 35 9 4 1 0
50 21 8 4 2 0
10 3 3 1 0 0
5 4 0 0 0 0
5 1 1 1 1 0

C1QA = low, NPM1 = negative

C1QA = low, NPM1 = positive

C1QA = high, NPM1 = negative

C1QA = high, NPM1 = positive

1.00

Ov
er

al
l s

ur
viv

al

0.75

0.50

0.25

0.00

0 10 20 30 40 50

Time (months)

Number at risk

131 66 21 10 3 0
49 24 10 4 3 0
8 3 1 1 1 0
12 5 3 1 0 0

P = .0084
Hazard Ratio = 2.24
(95% CI: 1.23–4.08)

N

ELN2017 = Favorable

ELN2017 = Intermediate

ELN2017 = Adverse

C1QA = high

Figure 2 (continued)

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m

ain.pdf by guest on 17 M
ay 2024
quantitative proteomic analysis (Figure 3F; supplemental
Tables 5 and 6) revealed enrichment of complement pathway.
Specifically, C1QA, C1QB, and C1QC were remarkably
increased during relapses (Figure 3G-H). Patients who
expressed high levels of C1Q either at primary (P-Z0119) or
during progression (P-S1022 and P-L2021) showed early
relapse after HSCT or resistance (Figure 3G-I; supplemental
Figure 2D; supplemental Table 7).

Based on the aforementioned findings, to further confirm the
association of C1Q with disease progression, we conducted
scRNA-seq on another patient with AML (P-Z0119) who
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
experienced early relapse post-HSCT. Unsupervised clustering
analysis identified 19 distinct cell clusters (Figure 3I;
supplemental Table 8). Nonmalignant cells including hemato-
poietic stem cells, common myeloid progenitors, granulocyte-
monocyte progenitors, megakaryocyte erythroid progenitors,
natural killer cells, dendritic cells, and CD4+ and CD8+ T cells
were clearly recognized (Figure 3I). Intriguingly, despite high
heterogeneity among all the clusters in relapse samples,
2 C1Q+ macrophage-like leukemia clusters (2 and 3) were
identified with 5 marker genes (C1QA, C1QB, C1QC, FCGR3A,
andMAFB), identical to that of C1Q+ macroblasts from P-S1022
(Figure 3J; supplemental Figure 3A-B). C1QA and MAFB were
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Figure 3. C1Q level is modulated during disease courses and is associated with early recurrence after HSCT. (A) RNA-seq analysis of BM mononuclear cell samples
collected from patients with de novo AML (AML, n = 85) and healthy donors (HDs, n = 54). The messenger RNA (mRNA) expression level of C1QA, C1QB, and C1QC are
shown. (B) Quantitative proteomic analysis of BM mononuclear cell samples collected from patients with de novo AML (AML, n = 58) and healthy donors (HDs, n = 61). The
protein level of C1QA, C1QB, and C1QC are shown. (C) C1QA mRNA level measured by quantitative polymerase chain reaction (qPCR) in leukemia blasts of P-S1022 at the
time point of primary, relapse 1, and relapse 2. P value was calculated by 2-sample t test. (D) RNA-seq analysis and pathway enrichment of indicated samples of P-S1022. (E)
Volcano plot of DEGs that are upregulated (red) in relapse 1 vs primary (top) or relapse 2 vs primary (bottom). Relevant DEGs identified in the pathways are labeled. P value
was derived by Wilcoxon rank-sum test. (F) Quantitative proteomic analysis and pathway enrichment of samples in panel D. (G) C1QA, C1QB, and C1QC mRNA expression
levels on longitudinally collected samples of patients with AML (n = 8) measured by RNA-seq. (H) Relative expression heat map of complement genes on longitudinally
collected samples of indicated patients with AML. (I) Timeline of disease course of P-Z0119 from primary to deceased (top). Unsupervised t-SNE plot displaying 13 097

774 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 YANG et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m

ain.pdf by guest on 17 M
ay 2024



tSNE_1

Primary
HSCT

Relapse

DA

Primary

25

25 25 25 50250500

–25

–50

0

tS
NE

_2

Relapse

1 Monocyte CD14
+

Monocyte CD14
+

Monocyte CD14
–

DC
GMP

GMP

MEP

CMP

HSC
NK

Progenitors

Macrophage Normal 

Monocyte CD14
–

Monocyte CD14
–

Monocyte CD14
–

Macroblast C1Q
+2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

BHA DLI HA
Decitabine

+FLAG

0
blast 91.0% 41.5% 87.0% 53.3%0% 0%

1 2 3 4 5 6 7 8 9 10(months)

I

K

tS
NE

_2

tSNE_1

25

S100A10Number
of DEGs

2000
1500
1000
5
0

S100A11
LYZ

FTL
FCER1G
CD14
THBS1
HLA-DRA
LGALS3
CEBPD
LGALS1
S100A6
SH3BGRL3
C1QA
MAFB
ANXA2
VIM
PFN1
HLA-DRB1
SRGN
MS4A7

–25

–50

0

25 25 500

J
4
2
0

4
6

2
0

4
6

2
0

3
4

2
1
0

3
4

2
1
0

3
4

2
1
0

4
6

2
0

4
6

2
0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
2
3
4
5

Ex
pr

es
sio

n 
le

ve
l

C1QA

C1QB

C1QC

MAFB

FCGR3A

S100P

S100A12

IFITM2

FCGR3B

P-S1022
P R1 R2

P-Z0119
P R1 R2

P-L2021 P-Y1204
P P

PR0C
2

1

0

–1

–2

VWF
C7
CD59
F2R
CR2

C4A

CFI

PLAU
SERPING1

SERPINF2

SERPINE1
C1S
TFPI
C5
PLAT
CFH
MASP2
F13A1
F3
CFD
SERPIND1
C4B
F8
PR0S1
C9
A2M
CPB2
C8G
C4BPA
C4BPB
C3
F12
C1R
F5
THBD
PLAUR
FCGR3A
MAFB
C2
CFB
CD46
KLKB1
C3AR1
C1QA
C1QB
C1QC
CD55
CD14
SERPINA1
C5AR1
CR1

SERPINC1

R1 R1R2

H
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further identified as the most significantly regulated genes of
cluster 5 in differentially expressed gene analysis (Figure 3K).
Overall, these data indicate that C1Q could be associated with
early relapse of leukemia.

C1Q+ leukemia cells are cancer-initiating cells
To investigate the oncogenic role of C1Q in AML cells in vivo,
we constructed a PDX model by injecting human CD45+

(hCD45+) cells purified from BM of P-S1022 at relapse 1 into
mice. The mice died of leukemia rapidly as evidenced by
enlarged spleen and infiltration of leukemia cells into BM,
spleen, and liver (Figure 4A-C), which displayed positive stain-
ing for hCD45 and hCD33 (Figure 4D-G). Interestingly, nearly
100% of hCD45+ cells recovered from NSG mice were C1Q+

(Figure 4D-G; supplemental Figure 4A), in contrast to 36.5%
and 15.3% positive for peripheral blood and BM mononuclear
cell samples, respectively, from P-S1022 (Figure 4H), indicating
a tumorigenic advantage of C1Q+ cells. Depletion of C1Q+

cells remarkably reduced tumor-propagating potential as evi-
denced by extended survival of recipient mice and delayed
body weight loss (Figure 4I-J; supplemental Figure 4B), sug-
gesting that C1Q+ cells are essential for leukemia progression.

Notably, all passage 1–recipient mice (P-S1022) developed
multiple EMI lesions including leukemia cutis, confirmed by
infiltration of leukemia cells and positive staining of hCD45 and
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
hCD33 (Figure 4A-C,F). In contrast, PDX mice engineered using
cells from P-W2021, P-C0531, and P-Y1204, which displayed
low levels of C1Q, did not show any sign of leukemia cutis
(supplemental Figure 4C). Moreover, hCD45+ cells from cutis of
P-S1022 or from cutis of passage 1 PDX mice could be fully
engrafted in recipient mice (supplemental Figure 4D,F), which
was also possible in a PDX model of P-WY022 successfully
constructed through injection of pelvic neoplasm cells, as evi-
denced by infiltration of leukemia cells into spleen and liver
(supplemental Figure 4G). Importantly, C1Q expression was
confirmed to be highly presented in multiple leukemia cutis
collected from different P-S1022 PDX mice (Figure 4K) as well
as in liver and spleen of P-WY022 PDX (supplemental
Figure 4G). Overall, these data demonstrate full oncogenic
potential of EMI leukemia cells and universal expression of C1Q
in various EMI locations.

C1Q+ leukemia cells show higher migration
capability, promoted by fibroblasts
The frequency of C1Q+ varied among human leukemia cell lines
(supplemental Figure 5A). To gain insight into the mechanism
through which C1Q promotes leukemia, we sorted C1Q+ and
C1Q– cells from Molm13 (Figure 5A). No significant differences
in proliferation and the 50% inhibitory concentration to
chemotherapy drugs including etoposide, daunorubicin, and
cytarabine was observed between Molm13C1Q+ and
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Molm13C1Q– populations or upon C1Q depletion
(supplemental Figure 5B-D). However, Molm13C1Q+ presented
remarkably increased migration capacity (Figure 5B-C), which
776 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
was abrogated upon depletion of C1Q (Figure 5D-E). Next, we
transplanted cells into NSG mice and observed significantly
more EMI nodules in skin and GI tract, and larger GI metastasis
YANG et al
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nodules in Molm13C1Q+ recipients, with zero skin nodules in the
Molm13C1Q– group (Figure 5F-G).

Gene set enrichment analysis of our EMI+ and EMI– AML sam-
ples revealed an enrichment of the epithelial mesenchymal
transition signature in the EMI+ group, supporting a highly
migrative characteristic (Figure 2F). Transcriptomic profiling of
C1Q+ clusters between BM and cutis of P-S1022 identified
upregulation of CXCL2 and CXCL8 in cutis,41 which was asso-
ciated with worse survival and were impeded by shC1Q
(supplemental Figure 5E-G). RNA-seq data identified an
enrichment of cell adhesion in Molm13C1Q+ cells (supplemental
Figure 5H). Overall, these data demonstrate that C1Q endowed
cancer cells the ability to migrate.

To understand whether EMI target tissues contribute to the
metastasis of leukemia cells, we cocultured epithelium or
fibroblasts with Molm13 cells in a transwell migration assay. Skin
and GI fibroblasts, but not epithelium, could remarkably pro-
mote migration of Molm13C1Q+ but not Molm13C1Q− cells
(Figure 5B). Tumor-derived transforming growth factor β (TGF-β)
is a critical factor that accelerates metastasis through activating
fibroblasts.42 Similar levels of TGF-β were observed between
Molm13C1Q+ and Molm13C1Q− cells (Figure 5H-I). Interestingly,
TGF-β1 and TGF-β2, but not TGF-β3, were significantly
upregulated in Molm13C1Q+ cells upon coculture with skin
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
fibroblasts (Figure 5J-K). Furthermore, inhibition of TGF-β1 by
galunisertib could remarkably block migration of Molm13C1Q+

to skin and GI fibroblasts (Figure 5L; supplemental Figure 6A).
These data demonstrate that fibroblasts stimulated TGF-β1
synthesis of Molm13C1Q+ cells and enabled migration.

C1Q+ leukemia cells communicate with tissue
fibroblasts via surface C1Q-gC1QR signaling
Next, we explored the interaction between C1Q+ leukemia cells
and fibroblasts. A much higher level of surface globular C1Q
receptor (gC1QR) was observed on fibroblasts than epithelium
(Figure 6A).40,43-45 Moreover, immunofluorescence staining of
gC1QR colabeled with fibroblast-specific protein 1 in human
skin, peritoneum, lymph nodes, and brain tissue sections
(Figure 6C), the most frequently affected sites of EMI,5,10,12 as
well as in cultured primary skin and GI fibroblasts and CNS
fibroblast HEB cells colabeled with F-actin, (Figure 6B;
supplemental Figure 6B) confirmed the expression of gC1QR
on these tissue fibroblasts. Importantly, deletion of gC1QR in
skin and GI fibroblasts significantly diminished its ability to
facilitate migration of Molm13C1Q+ cells and induction of TGF-
β1 (Figure 6D-G, supplemental Figure 6C-E). Preincubation of
recombinant gC1QR or gC1QR76-100 (C1Q binding domain)
with Molm13C1Q+ cells to preoccupy the C1Q-gC1QR binding
site blocked the migration of Molm13C1Q+ cells toward fibro-
blasts (Figure 6H; supplemental Figure 6F-G). These results
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 777
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demonstrate that C1Q-gC1QR–mediated communication of
leukemia cells with fibroblasts is necessary for induction of
migration and TGF-β1.

We further analyzed 3 publicly available scRNA-seq data sets of
dermal fibroblasts and found no significant difference regarding
gC1QR expression between different fibroblasts sub-
populations, indicating a universal expression of gC1QR in
dermal fibroblasts despite their potential functional heteroge-
neity (supplemental Figure 6H-I).46-48 In addition, TGF-β1
treatment of fibroblasts did not increase gC1QR expression
(supplemental Figure 6J).

Finally, we generated monoclonal blocking antibodies against
the C1Q binding sequence of gC1QR (supplemental
Figure 6K).44,49 Clone numbers 4 and 5 significantly impeded
migration of Molm13C1Q+ cells in the presence of fibroblasts
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
(Figure 6I), suggesting a potential for C1Q-targeted therapy in
blocking EMI.

Fibroblasts promote chemoresistance of C1Q+

leukemia cells
Our analysis of BeatAML illustrated that high C1QA expression
correlated with refractory to chemotherapy (Figure 2J). We
speculate that extramedullary tissues could contribute to leu-
kemia survival under chemotherapy stress. We cocultured
Molm13C1Q+ cells with skin fibroblasts followed by exposure to
daunorubicin or cytarabine. Survival of the tumor cells was
dramatically enhanced upon coculture with fibroblasts rather
than with gC1QR-depleted fibroblasts (Figure 6J-L).

Next, RNA-seq was performed on both leukemia cells
and fibroblasts to profile the pathways that may contribute to
chemoresistance (supplemental Figure 6L). Upon coculture,
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 779
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Figure 6 (continued) assay of Molm13C1Q+ cells in the presence of recombinant gC1QR (H) or antibodies against C1Q binding sequence of gC1QR (I). (J-K) Molm13C1Q+ cells
cocultured with skin fibroblasts were treated with daunorubicin or cytarabine for 48 hours. Cell apoptosis was measured by annexin V/propidium iodide (PI) staining.
Representative flow cytometry plots (J) and quantified apoptosis (K) are shown. (L) Molm13C1Q+ cells cocultured with skin fibroblasts with or without gC1QR deletion were
treated with daunorubicin or cytarabine. Cell apoptosis was measured by annexin V/PI staining. (M-N) Molm13C1Q+ cells cocultured with or without fibroblasts were subjected
to RNA-seq. A volcano plot of DEGs (M) and top 15 biological processes for upregulated DEGs (N) are shown. Relevant DEGs identified in the pathways are labeled. (O-P)
Fibroblasts cocultured with or without Molm13C1Q+ were subjected to RNA-seq. A volcano plot of DEGs (O) and enriched biological processes for upregulated DEGs (P) are
shown. (Q) Gene set enrichment analysis for complement pathway in daunorubicin-resistant (DNR-R) and sensitive (WT) HL-60 leukemia cells. (R) The hCD45+ cells of BM and
leukemia cutis from PDX mice were treated with daunorubicin or cytarabine. Cell apoptosis was measured by annexin V/PI staining. (S) The percentage of living hCD45+ cells
was evaluated by flow cytometry in BM from recipient mice injected with BM or leukemia cutis–derived cells after cytarabine treatment (10 mg/kg, once daily for 3 consecutive
days, intraperitonially).

C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 781

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m

ain.pdf by guest on 17 M
ay 2024



D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079
1612 genes were upregulated and 1835 were downregulated in
Molm13C1Q+ cells. Gene ontology analysis illustrated enrich-
ment of TGF-β receptor signaling.50 Notably, multiple pathways
known to be associated with therapy resistance, including
upregulated cell shape and positive regulation of angiogenesis
accompanied by downregulated cell division, were observed
(Figure 6M-N; supplemental Figure 6M).50,51 In contrast, skin
fibroblasts also underwent remarkable transcriptional reprog-
ramming with enrichment of extracellular matrix synthesis and
organization pathways, which have been documented to
contribute to chemoresistance (Figure 6O-P; supplemental
Figure 6N).50,52 These data disclose chemoresistant-favorable
reprogramming of both cancer cells and fibroblasts upon
coculture. In addition, we analyzed publicly available tran-
scriptomic data obtained from daunorubicin-resistant and sen-
sitive (WT) HL-60 leukemia cells and found that genes
upregulated in daunorubicin-resistant cells showed a strong
enrichment for complement pathway (Figure 6Q),53 suggesting
an association of complement with chemoresistance.

Furthermore, we treated cells of leukemia cutis and BM samples
from PDX mice with doxorubicin and cytarabine and found that
hCD45+ cells from BM were more sensitive to both drugs
(Figure 6R). Next, we employed a passage 2 PDX model by
injecting same amount of hCD45+ cells collected from BM or
cutis of passage 1 P-S1022–PDX mice followed by cytarabine
treatment. The percentage of living hCD45+ cells were higher in
the recipients of leukemia cutis–derived cells (Figure 6S), sug-
gesting a more chemoresistant feature of EMI leukemia in vivo.

Overall, these data demonstrate that cell-to-cell communication
leads to reprogramming of both cancer cells and fibroblasts to
create a microenvironment to accommodate leukemia.
741/blood_bld-2022-017046-m
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MAFB modulates C1Q and TGF-β expression and
contributes to EMI
Among the marker genes of C1Q+ macroblast, the transcription
factor MAF BZIP transcription factor B (MAFB) has been docu-
mented as a critical regulator of C1Q expression and was
significantly upregulated in EMI tissue (Figure 7A-B;
supplemental Figure 7A)35 and upon relapse, in parallel with its
known regulators interleukin 10 and retinoic acid receptor α
(Figure 7C; supplemental Figure 7B-D). Importantly, MAFB
depletion significantly decreased C1Q, whereas ectopically
expression of Flag-tagged MAFB increased C1Q levels in
Molm13 cells (Figure 7D-F; supplemental Figure 7E). Chromatin
immunoprecipitation assay revealed MAFB occupancy at the
MAF recognition elements of C1Q gene (supplemental
Figure 7F) in Molm13 cells,35 indicating a direct modulation.

Furthermore, PDX models constructed with cells from P-S1022
infected with sgNC or sgMAFB showed a lower proportion of
peripheral hCD45+ and hCD33+ cells in the sgMAFB group
(Figure 7G). CDX models constructed with MAFB-depleted
Molm13C1Q+ cells displayed a smaller number and size of skin
and GI nodules compared with the sgNC group (Figure 7H-I;
supplemental Figure 7G). In parallel, expression of C1Q of
hCD45+ cells recovered from spleen, skin, and GI nodules was
significantly decreased in the sgMAFB group (Figure 7J),
providing in vivo evidence for MAFB in modulating EMI and
C1Q expression.
782 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
To explore the mechanism of the expression abnormalities of
the MAFB-C1Q axis, we performed whole exome sequencing
for P-S1022 and found no point mutation or copy number
variations in C1Q and MAFB genes (supplemental Table 9).
Next, we found that 5 out of 200 patients concurrently harbored
the copy number amplifications of the C1Q genes and found
high levels of C1Q in the TCGA cohort (supplemental
Figure 7H). Characterization of clinical information revealed
that all 5 individuals presented complex karyotypes and poor
outcomes (supplemental Table 10). The copy number variation
of MAFB was identified in only 2 individuals (supplemental
Figure 7H). These data did not support genomic aberrations
as the dominant mechanism of C1Q and MAFB overexpression.
Moreover, C1Q was highly expressed in patients with mutated
DNMT3A (Figure 2H-I). Interestingly, MAFB level was also
revealed to be significantly increased in patients positive for
DNMT3AR882 in BeatAML (supplemental Figure 7I), which is
supported by a recent report showing association of
DNMT3AR882 mutation with elevated expression of MAFB in
patients with M4/M5 AML.54

A previous report demonstrated that aberrant TGF-β1 expres-
sion was controlled by MAFB in high myopia.55 In Molm13C1Q+

cells, deletion of MAFB could significantly decrease the level of
TGF-β1, whereas ectopic expression of MAFB increased TGF-β1
levels (Figure 7K-L; supplemental Figure 7E).

Overall, these findings strengthen the role of MAFB-C1Q and
MAFB–TGF-β signaling in the EMI of leukemia (Figure 7M).
Discussion
It is still clinically challenging to conduct timely treatment owing
to a lack of understanding of EMI. In-depth study of a single
patient using scRNA-seq followed by successful intervention
has been achieved in several diseases.56-58 Inspired by these
studies, we had expected similar result for P-S1022. Although
rapid disease progression of this patient did not permit timely
identification of clinical targetable markers, we did identify a
population that unexpectedly bear mature macrophage
markers including C1Q, which was further confirmed in multiple
patients with AML.1,25 Our data also demonstrate the impor-
tance of eradicating tissue-resident EMI cells for long-term
disease control owing to the ability of cutaneous blasts to
reconstruct systematic AML.5

C1Q, a collagen-like glycoprotein, is the recognition unit of the
C1 component of complement. Binding of C1Q to appropriate
targets leads to sequential activation and cleavage of comple-
ment components, which plays a fundamental role in innate
immunity.43 Data accumulated over the last few years have
revealed noncanonical functions of C1Q and its receptors in
cancers. Ghebrehiwet et al showed that addition of C1Q to
cultured leukemia cells inhibited their growth.44,59 More
recently, however, stromal-derived C1Q displayed cancer-
promoting effects in a number of human cancers including
colon, lung, breast, pancreatic adenocarcinoma, and mela-
noma.60,61 Interestingly, another complement component, C5a,
generated in the tumor microenvironment, favored human
cervical cancer growth yet inhibited murine mammary sar-
coma.62 These seemingly opposite effects of complement
YANG et al
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components urged a deeper understanding of complement
components in cancer.31,33

There are 2 well-known types of C1Q receptors, calreticulin and
gC1QR (gC1QR/p33), the latter exhibits a high affinity for the
globular domain of C1Q.63 Blocking the binding between
gC1QR and C1Q reportedly inhibits cancer cell prolifera-
tion.45,64 The expression discrepancy of surface gC1QR partially
explains how fibroblasts but not epithelial cells effectively
attracted the migration of leukemia cells. How the leukemia
cell homes to targeted tissues, and the signaling pathway after
C1Q and its receptors recognition still require investigation. In
addition, because tissue distribution of chemotherapy drugs or
C1Q LABELS EXTRAMEDULLARY-INFILTRATIVE AML CELLS
immune effector cells between BM and skin may also contribute
to EMI and thus recurrence of leukemia, there is a requirement
for future studies to explore other potential mechanisms.48

Successful intervention with targeted therapy guided by the use
of scRNA-seq and multiomic analysis remains clinically chal-
lenging when confronting rapidly progressing disease. Patients
with extreme manifestations, although rare and presented
deviation from average, could provide important insights for
biomarkers that are linked to certain phenotypes. This study
acknowledged this diversity and enabled identification of
patient subsets with EMI risk and potential early clinical
intervention.
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 783



0
sgNC

10

5

15

20

Nu
m

be
r o

f s
ki

n 
m

od
ul

es 25 P = .1094

sgMAFB-1
0.0

sgNC

0.1

0.2

Si
ze

 o
f s

ki
n 

m
od

ul
es

 (c
m

3 ) 0.3 P = .0067

sgMAFB-1
0.0

sgNC

0.2

0.4

0.6

0.8

Si
ze

 o
f G

I m
od

ul
es

 (c
m

3 ) 1.0

P = .0186

sgMAFB-1

I

spleen

C1Q

leukemia cutis

61.4%53.2% 38.7%

15.2%28.1%

hC
D1

5

15.9%

GI nodule

sgNC

sgMAFB-1

J

0.0

0.5

1.0

1.5
P = .0405

sg
NC

Re
la

tiv
e T

GF
-β

1 
m

RN
A 

le
ve

l

sg
M

AFB
-1

sg
M

AFB
-2

P = .01816

0.0

0.5

1.0

2.0

1.5

P = .9844

sg
NC

Re
la

tiv
e T

GF
-β

2 
m

RN
A 

le
ve

l

sg
M

AFB
-1

sg
M

AFB
-2

P = .6773

0.0

0.5

1.0

1.5
P = .1219

sg
NC

Re
la

tiv
e T

GF
-β

3 
m

RN
A 

le
ve

l

sg
M

AFB
-1

sg
M

AFB
-2

P = .6603
K

sg
N

C

55 MAFB

TGF-β1

β-actin

55

40

40

sg
M

A
FB

-1

sg
M

A
FB

-2

L

TGF-β

C1Q

g
C

1Q
R

Leukemia cell

MAFB

TGF-β

Fibroblast

C1Q Colla
genCollagen

M

Figure 7 (continued)

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/7/766/2079741/blood_bld-2022-017046-m

ain.pdf by guest on 17 M
ay 2024
Acknowledgments
Some of the results presented in this manuscript are based on data
generated by the Leucegene group, located at Institute for Research in
Immunology and Cancer in Montreal, QC, Canada, and supported by
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