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CLINICAL TRIALS AND OBSERVATIONS
Hypomorphic RAG deficiency: impact of disease
burden on survival and thymic recovery argues
for early diagnosis and HSCT
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KEY PO INT S

• Infections, autoimmunity,
and granuloma
predispose to organ
damage prior HSCT,
thereby compromising
survival and quality of
immune reconstitution.

• In patients with
hypomorphic
recombination-activating
gene deficiency, HSCT
with T-cell depleted
grafts shows poor
outcome.
Patients with hypomorphic mutations in the RAG1 or RAG2 gene present with either Omenn
syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hemato-
poietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report
on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT,
78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18%
had granulomas pretransplant. These complications are frequently associated with organ
damage. Eight individuals (13%) were diagnosed by newborn screening or family history.
HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) frommatched unrelated
donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and
30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall
survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection
was the main cause of death. In univariable analysis, active infection, organ damage pre-
HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were
predictive of worse outcome, whereas organ damage and T-cell depletion remained
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significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn
screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and
22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly
recovery of naïve CD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without
organ damage. These findings support the indication for early transplantation.
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Introduction
Variants in genes essential for V(D)J recombination lead to a
developmental arrest of T and B lymphocytes. These genes
encode components of the recombination activation complex,
including the recombination-activating gene 1 (RAG1) and
RAG2 proteins, and factors of the nonhomologous end-joining
pathway of DNA double-strand break repair.1

Loss-of-function variants in RAG1 and RAG2 genes impede
V(D)J recombination leading to severe combined immunodefi-
ciency (SCID) characterized by absent or severely reduced T and
B cells, but normal natural killer-cell numbers. In contrast, indi-
viduals harboring hypomorphic variants in the RAG genes usu-
ally present as either Omenn syndrome, or atypical combined
immunodeficiency (CID) with residual T and B cells but
decreased naïve T cells and a spectrum of clinical and immu-
nological phenotypes. Patients with atypical CID may experi-
ence frequent and opportunistic infections, including severe
infections with Herpesviridae and human papillomavirus, and a
wide range of autoimmune manifestations, including cytopenias
and granulomatous lesions of the skin.2 Autoimmune and
autoinflammatory manifestations frequently predominate over
infections. Patients with CID and hypomorphic RAG variants who
undergo hematopoietic stem cell transplantation (HSCT) are
often diagnosed in childhood or teenage years if not identified
by low levels of T-cell receptor excision circles at newborn
screening or by a positive family history. Although HSCT is
potentially curative, data on clinical and immunological out-
comes, including resolution of immune dysregulatory manifes-
tations, are scarce. Patients with hypomorphic RAG variants
often manifest infections, autoimmunity, and/or organ damage
at the time of HSCT. Compared with patients with null RAG
mutations presenting with SCID, they are at a higher risk of graft
rejection because of their residual T-cell function. In addition,
thymic abnormalities affectingmechanisms of immune tolerance
have been described in patients with hypomorphic RAG vari-
ants. How these abnormalities affect the capacity of the thymus
to sustain immune reconstitution and restore tolerance following
HSCT is unknown.3-5 Here, we report on a worldwide cohort of
60 patients with hypomorphic RAG variants, focusing on the
natural course before HSCT, HSCT characteristics and compli-
cations, as well as immunological outcomes following HSCT.

Methods
Inclusion criteria
Patients were eligible if they had received their first transplant
between 2004 and 2019 for a confirmed RAG1/RAG2 defi-
ciency, had >300 autologous T cells at diagnosis of immuno-
deficiency or <300 T cells but had received no HSCT before the
age of 18 months. RAG1/RAG2 deficiency presenting as typical
SCID or Omenn phenotype were excluded.
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Data source
The retrospective study was approved by the scientific review
board of the Inborn Errors Working Party of the European
Society for Immunodeficiencies, the European Society for Blood
and Marrow Transplantation (EBMT), the Primary Immune
Deficiency Treatment Consortium Steering Committee, and the
local IRB (TU Dresden BO-EK-372072021). A specific ques-
tionnaire for data collection and analysis was sent to the
participating centers. Data of all patients registered at the
EBMT office were in compliance with the General Data Pro-
tection Regulation (GDPR 2016/679). Data for patients previ-
ously enrolled in the Primary Immune Deficiency Treatment
Consortium studies in the United States and Canada, obtained
under approved Institutional Review Board protocols
(NCT01346150) were retrieved and shared in irreversibly de-
identified form. Data collected included clinical, genetic, and
immunological characteristics before transplant; characteristics
of HSCT; and outcome regarding engraftment, immunological
reconstitution, and clinical status.

Definitions
Intensity of the conditioning regimen (CR) was categorized into
3 groups: myeloablative (MAC), reduced toxicity (RTC), and
reduced intensity (RIC)/nonmyeloablative regimen, as defined
in the last Inborn Errors Working Party guidelines6 and shown in
supplemental Table 1, available on the Blood website.

Based on HLA compatibility, donors were grouped into 4 cat-
egories: matched unrelated donor (MUD) defined as 10/10
identical unrelated donor or 6/6 unrelated cord blood, matched
sibling donor and matched family donor (MSD/MFD) as 10/10
or 6/6 HLA identical relatives, mismatched family donor
(MMFD), and mismatched MUD (MMUD) as ≤9/10 HLA-
matched. Engraftment definitions were in accordance with the
EBMT handbook.7 Acute and chronic graft-versus-host disease
(GvHD) were graded according to modified Seattle and
National Institute of Health criteria, respectively.8 Organ dam-
age was documented with respect to the affected organ: lung
(eg, chronic bronchitis, bronchiectasis, and interstitial pneu-
monitis), liver (eg, viral hepatitis, cholestasis, and hepatic side-
rosis), kidney (eg, glomerular or tubular damage), and other (eg,
colitis).

Immune reconstitution was assessed at different time points
after transplant: ≥6 to ≤12 months, >12 to ≤18 months, >18 to
≤24 months, >2 to ≤5 years, >5 to ≤10 years, and >10 years
after HSCT. For immune reconstitution, cumulative incidence
function was used. An event was defined as having reached a
cell count above a given threshold at a given time point. In case
of censoring, the last follow-up time point of measurement of
this parameter was used. Gray’s test was used to compare the
cumulative incidences by age.
SCHUETZ et al



Table 1. Characteristics of cohort

Population characteristics

Total patient
number
n = 60

Sex, n (%)

Male 27 (45)

Female 33 (55)

Median year of birth 2008 (1976-2017)

Mutation type, n (%)

RAG 1 46 (77)

RAG 2 14 (23)

Homozygous 19 (32)

Compound heterozygous 41 (68)

Median age at first symptoms, y (range) 1.4 (0-15.4)

Median age at diagnosis, y (range) 3.3 (0-39.9)

Diagnosed by newborn or family screening,
n (%)

8 (13)

Infection before HSCT, n (%) 47 (78)

Active infection before HSCT, n (%) 17 (29) out of 58

Presence of autoimmunity and/or granuloma
before HSCT, n (%)

47 (78)

Autoimmunity 43 (72)

Autoimmune cytopenia 33 (55)

Other autoimmune disease 24 (41)

Granuloma 11 (18)

Active autoimmunity and/or granuloma before
HSCT, n (%)

32 (58) out of 55

Malignancy/lymphoma, n (%) 2 (3)

Organ damage, n (%) 34 (57)

Lung 30 (50)

Liver 10 (17)

Kidney 6 (10)

Other 9 (15)

“Other” organ damage refers to gastrointestinal complications (n = 7), steroid-induced
diabetes (n = 1), and vasculitis-associated epilepsy (n = 1). For details of organ damage
please refer to supplemental Table 6.
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Immunophenotyping included absolute numbers of CD3+,
CD4+, CD8+, and CD19+ cells per μL. Percentages of naïve
CD4+ T cells defined as CD3+CD4+CD45RA+/total CD3+CD4+

cells were also collected. Normal immune reconstitution was
defined as CD3+ T cells >1000/μL, CD8+ T cells >300/μL, and
CD4+ T cells age-adjusted between 400 and 1200/μL for 1 to
>10 years of age. Normal percentages of naïve CD4+ T cells
were also age-adjusted (between 43% and 72%). Chimerism,
performed as per center protocols on whole blood or lineage-
specific where available, was retrieved at engraftment and
later during follow-up. Donor engraftment was documented as
full donor chimerism (>90%), mixed chimerism (any value
between 10% and 90% donor), or graft failure (<10% donor). B-
cell subset phenotyping, ongoing immunoglobulin substitution,
and T-cell functions were incomplete or unavailable for most of
the individuals.

Measurement of V(D)J recombination activity
Measurement of V(D)J recombination activity of RAG1 or RAG2
variants was performed with an assay based on a v-Abl RAG1/
RAG2−/− pro-B cell line containing a single pMX-INV integrated
cassette, as described.9,10 The list of RAG variants identified
and their respective levels of recombination activity are shown
in supplemental Table 2.

Statistical analysis
End points were overall survival (OS) and quality of immune
reconstitution with a focus on naïve CD4+ T cells. Statistical
analysis was performed using the program “RStudio.” OS was
estimated via Kaplan-Meier analysis. Survival analyses were
censored as the last follow-up time point before the end of the
study on 8 February 2021. Log-rank test was used to compare
survival curves regarding certain variables. Risk factors for death
were calculated via Cox regression with the time of death as end
point. Hazard ratios (HR) were calculated by univariable Cox
regression for pretransplant, transplant variables, and post-
transplant variables. The maximum number of variables to insert
in the Cox-regression model depended on the number of events
(1 predictor per 10 events).11 For multivariable Cox regression, a
stepwise selection was performed in a sense of forward selection
owing to the small number of events (18 events). Only variables
significant on the P = .05-significance level in the univariable
model were added successively to the multivariable model and
eliminated stepwise. The remaining variables with the highest
impact were included in the final adjusted model. For Cox
modeling, the proportional hazards assumption was checked via
Schoenfeld and scaled Schoenfeld residuals test. Logistic
regression was performed to find determinants for significant
variables resulting from the Cox model.

To define the variable importance, a random forest algorithm
was used. According to Breiman, random forests are a combi-
nation of tree predictors: each tree depends on the values of a
random vector sampled independently and with the same dis-
tribution for all trees in the forest.12

By permuting data only for the variable of interest during the
calculation of decision trees, the increase in prediction error can
be used to estimate the importance of the variable.13

Missing data had been imputed by predictive mean matching.
HSCT FOR HYPOMORPHIC RAG DEFICIENCY
Results
Population and HSCT characteristics
A total of 60 patients with homozygous or compound hetero-
zygous variants in either RAG1 (n = 46) or RAG2 (n = 14) fulfilled
the inclusion criteria and were included in the study. The
median age at symptom onset was 1.4 years (range, 0-15.4
years). Median age at genetic diagnosis was 3.3 years (range, 0-
40 years), with 8 patients (13% of the cohort) diagnosed
neonatally via either newborn screening or positive family his-
tory, all free of symptoms at transplant. Median age at HSCT is
shown in supplemental Figure 1. The characteristics of the
cohort, including pre-HSCT complications, are detailed in
Table 1. Infections were documented in 78% of patients (29%
16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 715
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with active infection at HSCT), granulomas in 18% (all active at
HSCT) and autoimmunity in 72%. Of all, 43 patients experi-
enced 91 autoimmune manifestations (median of 2 manifesta-
tions per patient, range 1-5 for those with autoimmunity).
Cytopenias occurred in 33 patients who had 50 episodes of
autoimmune hemolytic anemia (n = 21), ITP (n = 15), neu-
tropenia (n = 13), and pure red cell aplasia (n = 1). Twenty-one
patients experienced 41 episodes of autoimmune organ
involvement, the most frequent being skin disease (dermatitis,
vitiligo, alopecia areata), followed by colitis, myositis, and
myasthenia gravis. Autoimmunity was active at the time of
HSCT in 30 of 37 patients for whom information was available
(supplemental Table 3). Malignancies were a rare complication;
2 patients had developed lymphoma before HSCT: 1 EBV-
associated lymphoma and 1 diffuse large B-cell lymphoma.
Pre-HSCT complications resulted in organ damage in 57% of
patients, mostly affecting the lungs (50%) or liver (17%)
(supplemental Table 4).

A total of 62 HSCTs were performed in this cohort of 60 patients
between 2004 and 2019 at 31 different centers (40 patients in
Europe, 18 in North America, and 2 in Australia). The charac-
teristics of HSCT detailed in Table 2 are given for the first HSCTs.
Median age was 3.4 (0-43) years. Donors were MUD, MSD/MFD,
MMFD, and MMUD in 48%, 22%, 18%, and 12% of cases,
respectively. Ex vivo T-cell depletion of the graft was performed
Table 2. Characteristics of HSCT

Transplant characteristics
Total patient number

n = 60

Median year of HSCT (range) 2014 (2004-2019)

Median age at HSCT, y (range) 3.4 (0.3-42.9)

Age < 3.5 31 (52)

Age ≥ 3.5 29 (48)

Donor, n (%)

MSD or MFD 13 (22)

MMFD 11 (18)

MUD 29 (48)

MMUD 7 (12)

Graft, n (%)

Bone marrow 35 (58)

Cord blood 7 (12)

PBSC 18 (30)

In vitro T-cell depletion, n (%) 15 (25)

CR, n (%)

MAC 19 (32)

RIC 18 (30)

RTC 22 (37)

Serotherapy, n (%)

ATG 32 (53)

Alemtuzumab 17 (28)

ATG, anti-thymocyte globulin.
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in 15 cases (25%), with CD34+ positive selection (n = 5), TCRαβ/
CD19 depletion (n = 6), or CD45RA+ depletion (CD34+ selection
followed by CD45RA+ depletion of the negative fraction) (n = 4).
Donors were MMFD (n = 7), MMUD (n = 2), MUD (n = 5), and
MFD (n = 1). There was an equal distribution between MAC vs
RTC vs RIC (Table 2). Nonmyeloablative conditioning with flu-
darabine was only applied to a single patient. The sources of
stem cells for HSCTwere bonemarrow, PBSC, and cord blood, in
58%, 30%, and 12% of cases, respectively. All patients (98%)
received GvHD prophylaxis with 1 agent (n = 19) or a combina-
tion of immunosuppressive drugs (n = 41). Serotherapy was
given to 49 patients (rabbit ATG n = 32, alemtuzumab n = 17).
d/article-pdf/141/7/713/2079707/blood_bld-2022-017667-m
ain.pdf by guest on 09 June 2024
Survival analyses
The median follow-up was 39 months (57 months for survivors).
Forty-two patients were alive at last follow-up. Most patient
deaths occurred within the first 12 months, whereas 4 patients
died between 12 and 48 months post-HSCT. Estimated OS at 1
and 4 years were 77.5% and 67.5%, respectively (Figure 1A).
Eighteen patients (30%) died at a median interval of 5 months
after HSCT (range, 0-46 months). The main causes of death
were infections (n = 10), GvHD plus infections (n = 2), graft
rejection (n = 2), and post-transplant autoimmunity (n = 1). Late
deaths (>12 months posttransplant) were related to infection
(n = 2), GvHD, and new-onset autoimmunity, each in 1 case.

In univariable analysis, age at HSCT (with a cutoff defined by the
median age of 3.5 years) did not influence OS (Figure 1B).
Survival of patients diagnosed by newborn screening or family
history was 100% (Figure 1C).

In particular, the survival probability with or without organ
damage prior HSCT was 65% vs 92% after 12 months and 55%
vs 87% at 4 years post-HSCT (P = .008, Figure 2A). Any type of
active infection at HSCT had a negative impact (P = .001,
Figure 2B) whereas autoimmunity before HSCT had no impact
on survival (Figure 3). In vitro T-cell depletion of the graft had a
strong negative impact with an estimated OS at 12 months and
4 years, respectively, of 46% and 19% compared with 87% and
85% for patients transplanted with an unmanipulated graft
(P < .001, Figure 2C; supplemental Table 5). Patients trans-
planted with MMFD donors had an inferior survival probability
(45% at 12 months and 18% at 4 years post-HSCT, P < .001),
compared with other donor sources (eg, MUD: 87% at 12
months and 76% at 4 years, P=.004, Figure 2D). Recipients of
grafts from MMFD or T-cell depleted grafts did not differ for
age at HSCT or morbidity pre-HSCT, and these variables did
not confound each other. The choice of CR had no impact on
survival (Figure 3). All variables with significance or borderline
significance had the maximum drop in survival probability
within the first 12 months after HSCT (Figure 3).

Multivariable analysis revealed that organ damage before HSCT
and T-cell depletion of the graft were the major predictors for
death (HR = 6.01, HR = 8.46, respectively), whereas age at
HSCT, infections before HSCT, and active infectious burden at
HSCT were not significant predictors. Random forest analysis
showed the highest variable importance for T-cell depletion
(2.39), followed by MMFD (1.7) and organ damage before
HSCT (1.13) (Table 3 and supplemental Table 6).
SCHUETZ et al
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Figure 1. Overall survival. Survival after HSCT (A) and according to age at HSCT (B) and newborn screening/family history (C) is depicted.
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Owing to the strong negative impact of pre-HSCT organ damage
on OS, we examined parameters that may be associated with its
occurrence. Logistic regression revealed that autoimmunity and
or/granulomas before HSCT (P = .003), age at HSCT ≥3.5 years
(P = .005), infection before HSCT (P = .01), and a delay of >12
months between birth and diagnosis were significant determi-
nants for organ damage before HSCT (Table 4).

Engraftment, chimerism, and posttransplant
complications
Five patients died before engraftment. Graft failure after the
first procedure occurred in 4 patients (7%), of whom 3 died. A
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second procedure was attempted in 2 individuals, but despite
engraftment in both cases, 1 patient died of infection. Full
chimerism (˃90% donor) was documented in 75% of patients
who engrafted. Sinusoidal obstructive syndrome, mostly mild,
occurred in 6 patients (10%) (Seattle grade 3 in 1 individual).
Acute and chronic GvHD were documented in 28 and 11
patients, respectively, with a 12-month cumulative risk of 35%
for grade II-IV aGvHD and 22% for cGVHD (Figure 4). Median
onset of aGvHD was 1 month (range 0-2.4 months) after HSCT;
it was mainly mild (grade ≤ 2), whereas grades 3 and 4 aGvHD
were documented in 5 and 2 patients, respectively. Median
onset of cGvHD was 4 months. Post-transplant infections, the
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16 FEBRUARY 2023 | VOLUME 141, NUMBER 7 717

1/7/713/2079707/blood_bld-2022-017667-m
ain.pdf by guest on 09 June 2024



Variable (n) HR [95% CI] p

infection prior to HSCT (47) 5.71 [0.76  - 43.01] .091

organ damage prior to HSCT (34) 4.58 [1.32 - 15.83] .016

year of HSCT (mean 2014) - 0.99 [0.88 - 1.11] .862

age at HSCT (mean 3.4) - 1.01 [0.97 - 1.05] .682

bone marrow (35) 0.44 [0.17 - 1.13] .089

cord blood (7) 0.37 [0.05 - 2.76] .33

peripheral blood stem cells (18) 3.42 [1.34 - 8.73] .01

mismatched family donor (MMFD) (11) 4.97 [1.91 - 12.90] .001

in vitro T-cell depletion (15) 6.79 [2.61 - 17.64] <.001

myeloablative conditioning (MAC) (19) 0.76 [0.27 - 2.14] .605

reduced intensity conditioning (RIC) (18) 0.92 [0.33 - 2.57] .867

reduced toxicity conditioning (RTC) (22) 1.1 [0.43 - 2.84] .843

serotherapy (49) 1.14 [0.33 - 3.96] .832

0.025 0.05 0.1 0.25 0.5 1

Hazard ratio (95% CI, log scale)
2 4.5 10 20 4.5

active autoimmunity and/or granuloma at HSCT (32) 1.12 [0.43 - 2.96] .812

autoimmunity and/or granuloma prior to HSCT (47) 2.28 [0.52 - 9.92] .272

autoimmunity prior to HSCT (43) 1.45 [0.48 - 4.40] .515

active infection at HSCT (17) 4.57 [1.77  - 11.79] .002

Figure 3. Forest plot for univariable Cox regression.
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main cause of death, occurred in 26 patients (43%), 20 of viral
and 12 of nonviral origin, some in combination. Post-HSCT
outcome of pre-existing autoimmunity, documented in 43
Table 3. OS - multivariable Cox regression

Determinant n (%)

Univariabl

HR (95%

Infection before HSCT 47 (78.3) 5.71 (0.76-43

Active infection at HSCT 17 (29.3) 4.57 (1.77-11

Organ damage 34 (56.7) 4.58 (1.32-15

MMFD 11 (18.3) 4.97 (1.91-12

T-cell depletion 15 (25.0) 6.79 (2.61-17

CI, confidence interval. Bold indicates significant determinants left following stepwise mutlivaria
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patients before HSCT, was available for 33 of them
(supplemental Table 3). Autoimmune cytopenias, including
pure red cell aplasia, resolved in all cases. Uveitis (n = 1)
e model Stepwise multivariable model

CI) P HR (95% CI) P

.01) .091

.79) .002

.83) .016 6.01 (1.72-21.00) .005

.90) .001

.64) <.001 8.46 (3.22-22.24) <.001

ble modelling for overall survival (or non-survival).
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recurred in the early post-HSCT period, but then resolved.
Myositis, evaluable in 1 patient, improved. Outcome of myas-
thenia gravis could be assessed in 1 long-term survivor in whom
Table 4. Determinants for organ damage before HSCT

Variable No

Autoimmunity and/or granuloma before HSCT

No 11 (42.3

Yes 15 (57.7

> 12 mo between birth and diagnosis

No 7 (30.4

Yes 16 (69.6

Infection before HSCT

No 10 (38.5

Yes 16 (61.5

Age at HSCT ≥ 3.5 y

No 19 (73.1

Yes 7 (26.9

*OR, odds ratio (95% CI).

HSCT FOR HYPOMORPHIC RAG DEFICIENCY
anticholinesterase treatment was slowly tapered and stopped 4
years later without a recurrence of symptoms, despite persis-
tence of autoantibodies. Alopecia areata resolved in all
Organ damage before HSCT, n (%)

Yes OR (univariable)*

) 2 (5.9) —

) 32 (94.1) 11.73 (2.73-82.27, P = .003)

) 2 (6.2) —

) 30 (93.8) 6.56 (1.40-47.67, P = .029)

) 3 (8.8) —

) 31 (91.2) 6.46 (1.70-31.95, P = .010)

) 12 (35.3) —

) 22 (64.7) 4.98 (1.69-16.04, P = .005)
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evaluable patients; vitiligo had variable outcomes with resolu-
tion or improvement in 3 of 5 evaluable patients. Granuloma
resolved in all survivors. In addition, 9 new-onset autoimmune
manifestations occurred in 7 patients at a median of 4 months
after HSCT (range, 1-6) (Figure 4). These were autoimmune
hemolytic anemia (n = 3), autoimmune hyperthyroidism (n = 2),
and myositis, myasthenia gravis, sclerosing cholangitis, and
coeliac disease (in 1 patient each). None of the patients with
new-onset autoimmune manifestations had cGvHD, and only 1
of them had mixed donor chimerism.

Immune reconstitution
The probability of CD3+ T cell counts reaching >1000/μL within
the first 12 months after HSCT was 55%, increasing to 79% at 4
years. CD8+ T cells >300/μL were reached in 60% of patients
within 12 months after HSCT and in 90% at 4 years. The
probability of CD4+ T cells reaching the age-adjusted reference
ranges was 40% after 12 months and 80% within 4 years.
Immune reconstitution defined by naïve CD4+ T cell counts
above an age-adjusted threshold was seen in 18% at 12 months
after HSCT and rose to 42% of all patients at 4 years.

When analyzing immune reconstitution in this cohort, naïve
CD4+ T-cell recovery was significantly different in patients
younger or older than the median age of 3.5 years at HSCT.
CD4+CD45RA+ T cell count rose faster in patients undergoing
HSCT before age 3.5 years (P = .017). The probability of naïve
CD4+ T cells reaching the age-adjusted reference range was
60% for the group transplanted <3.5 years, but only 20% in
those ≥3.5 y/o at HSCT. Over the follow-up period, CD3+ and
CD8+ T cell counts were lower in the older HSCT group (P = .01
and P = .03, respectively), whereas CD4+ T cells were not
different (P = .081, Figure 5A-B).

The influence of the following variables on CD4+ T cells and
CD4+CD45RA+ naïve T cell reconstitution were analyzed: pre-
transplant infections, autoimmunity and organ damage; condi-
tioning (MAC, RT, RIC, supplemental Figure 2), donor type,
T-cell depletion of grafts, GvHD, and new-onset or relapsed
autoimmunity after HSCT. For CD4+ T cells, infections and
autoimmunity before HSCT showed a significant adverse influ-
ence on immune reconstitution (Figure 5C-D). In patients
without infections, autoimmunity, or organ damage before
HSCT, immune reconstitution as measured by CD4+CD45RA+

T-cell numbers was faster and more robust (Figure 5E-G).

Finally, more than 80% of the patients had achieved indepen-
dence from immunoglobulin replacement therapy by 5 years
after HSCT (supplemental Figure 3). The type of CR and age at
HSCT had no significant impact on the reconstitution of
humoral immunity (supplemental Table 7).

Discussion
This is the largest retrospective study of outcomes of HSCT in
patients with hypomorphic RAG1/RAG2 deficiencies. Only
sporadic cases or small series have been published
Figure 5. T-helper and naive T-cell reconstitution. (A) CD4+ T-cell reconstitution by age
reconstitution by the presence of infections. (D) CD4+ T-cell reconstitution by the prese
infections. (F) CD4+CD45RA+ T-cell reconstitution by the presence of autoimmunity. (G)

HSCT FOR HYPOMORPHIC RAG DEFICIENCY
previously.14,15 Our study highlights the deleterious impact of
pretransplant infections, autoimmunity, and organ damage on
both survival and immune reconstitution post-HSCT. The
cumulative disease burden pre-HSCT in individuals with hypo-
morphic RAG deficiencies observed beyond early childhood
supports early diagnosis and intervention by HSCT.

The pretransplant characteristics of the cohort recapitulate the
large spectrum of complications recognized in patients with
hypomorphic RAG variants,16-18 including infection suscepti-
bility, high rates of autoimmunity, and granulomatous inflam-
mation predisposing to organ damage. Symptoms often
manifested beyond infancy or early childhood up to 15 years of
age, but molecular diagnosis was delayed with a surprisingly
wide range up to midadulthood. This delay may both be related
to the nonspecific nature of disease manifestations of hypo-
morphic RAG deficiency and to the retrospective nature of the
study (including patients born in 1976-2017). In fact, the age of
diagnosis was significantly lower in patients born from 2010
onwards, perhaps owing to the introduction of NBS but maybe
also owing to better recognition of the disease and improved
access to next-generation sequencing.

OS at 1 and 4 years after transplantation was comparable to
previously published data for typical SCID because of RAG1/2
defects,19-21 and for primary immune regulatory disorders.22

The presence of active infection at HSCT was predictive of an
unfavorable outcome in univariable analysis, as repeatedly
shown for typical SCID in both the large North American and
the European patient series.19,23 Organ damage at HSCT was a
strong predictor of dismal outcome both in univariable and
multivariable analyses, similar to the available large series of
HSCT outcomes for other inborn errors of immunity (IEI).6,24

History of infection, autoimmunity, and granuloma that typi-
cally occurred early in the course of hypomorphic RAG defi-
ciency were all predictive of organ damage. Young age at
transplant has been correlated with favorable outcome in
various IEIs6,24,25; however, median age at HSCT in this present
cohort was not associated with OS. Interestingly, in the small
group of 8 patients diagnosed very early by newborn screening
(NBS) or owing to a positive family history, all were successfully
transplanted before any symptoms from either MUD, MMFD, or
MMUD. NBS by T-cell receptor excision circle measurement has
been set up in several countries worldwide and offers the
potential to identify patients with typical SCID early in life,
permitting prompt definitive diagnosis and treatment if
possible before the onset of symptoms.26 The ability of NBS to
reliably identify patients with hypomorphic RAG deficiency
needs to be verified.

In this series, HSCT performed following ex vivo T-cell deple-
tion of the graft, including from a MMFD, had a significantly
poorer outcome. HSCT from MMFD in SCID has commonly
been associated with inferior OS and event-free survival.16,21,27

Large series of patients with CIDs also highlighted the inferior
outcome with MMFD mainly following CD34+ selection of the
graft, eg in CD40L or major histocompatibility complex class II
at HSCT. (B) CD4+CD45RA+ T-cell reconstitution by age at HSCT. (C) CD4+ T-cell
nce of autoimmunity. (E) CD4+CD45RA+ T-cell reconstitution by the presence of
CD4+CD45RA+ T-cell reconstitution by the presence of organ damage.
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deficiencies (24,28), the reasons for dismal outcome being mostly
infections. Recent studies with new strategies of ex vivo
depletion of the graft such as TCRαβ+/CD19+ depletion showed
improved outcome in IEIs29 provided patients had not suffered
from active infection at transplant.30,31 CD45RA+ depletion of
the graft might be an alternative that could allow an early
antiviral response with a limited risk of GvHD.32 Strategies using
post-transplant cyclophosphamide as GvHD prophylaxis have
also shown promising results.33,34 In our present series, various
ex vivo manipulations of the graft were performed in 15
patients, not only in HLA-mismatched transplants but also in 5
MUD and 1 MSD, most likely to avoid the risk of GvHD in a
nonmalignant setting. The outcome for T-cell depleted grafts in
this cohort, however, was very poor, especially after CD34+

selection (0/5 survival) and TCRαβ+/CD19+ depletion (1/6 sur-
vival). Infections were the main cause of death documented in 9
of 11 patients who died, including 6 cases with active infections
at the time of HSCT. These numbers are too small to draw firm
conclusions, but they suggest that strategies allowing early
immune reconstitution should be adopted when possible.

The burden of infection before and after HSCT results in sig-
nificant morbidity and mortality, with infections being the
leading cause of death after HSCT, frequently but not exclu-
sively documented in patients who received T-cell depleted
grafts. The high frequency of neutralizing anti–type I interferon
antibodies in pretransplant patients with hypomorphic RAG1/2
deficiencies35 could contribute to this peritransplant risk factor,
a hypothesis that could not be tested in this retrospective
series.

Autoimmunity is one of the most frequent manifestations pre-
HSCT in patients with hypomorphic RAG deficiencies. The
pathophysiology is related to the loss of central and peripheral
tolerance at various stages of development.36-39 Previous
studies have shown that expression of AIRE, a transcriptional
activator that allows expression of tissue-restricted antigens in
the thymus enabling deletion of self-reactive T cells,40 is
markedly reduced in the thymi of patients with RAG deficiency
with Omenn syndrome and late-onset CID.3-5 In addition, a
deficiency of FOXP3+ regulatory T cells was also documented in
these conditions.5 Consistent with this, peripheral T cells from
patients with hypomorphic RAG mutations have been shown to
display molecular signatures of a self-reactive T-cell reper-
toire,41 indicating impaired purging of autoreactive T cells in
the thymus. Furthermore, it has been demonstrated that
patients with hypomorphic RAG mutations carry numerical and
functional abnormalities of the Treg compartment,37 suggest-
ing that defects of peripheral tolerance may also contribute to
the immune dysregulation of this condition. New-onset auto-
immunity was also observed early after transplant in 7 patients
of our cohort at a median of 4 months. These were autoimmune
cytopenias and autoimmune thyroiditis, which are not rare
events after HSCT.42,43 However, unusual de novo immune
dysregulation, such as myasthenia gravis, myositis, and scle-
rosing cholangitis, also occurred after HSCT. The critical role of
thymic medulla regeneration early after HSCT to restore toler-
ance and prevent autoimmunity was demonstrated in experi-
mental mouse models.44 One can speculate that pretransplant
damage of the thymic medulla interferes with efficient recon-
stitution and may predispose to autoimmunity. Alternatively, it
is possible that delayed or incomplete reconstitution of the
722 16 FEBRUARY 2023 | VOLUME 141, NUMBER 7
Treg compartment may also contribute to the increased rate of
posttransplant autoimmunity observed in this cohort. These
hypotheses will need to be evaluated in future studies.

The goal of HSCT in patients with IEI is to achieve a rapid and
durable restoration of immune function while avoiding GvHD
and limiting toxicities. In this cohort, our analysis of immune
reconstitution focused on CD4+ and naïve CD4+ T cell counts.
In particular, the number of CD4+ CD45RA+ cells post-HSCT
has been shown to represent a valid surrogate marker of
thymic output45 and a biomarker predictive of long-term
immune reconstitution.21 Our data showed that T-cell recon-
stitution was slower and incomplete in patients with
pretransplant organ damage and in those ≥3.5 years of
age. As the thymus is the central organ where T-cell recon-
stitution occurs, it is not surprising that thymic damage
through pre-HSCT autoimmunity, inflammation and infections
may hamper immunological reconstitution, especially when
patients are diagnosed late and transplanted beyond infancy.
In this series, with the exception of a single patient who
received unconditioned HSCT, all other patients received a
variety of CRs (RIC, RTC, and MAC), but no significant effects
of these different regimens on either T-cell or B-cell recon-
stitution were observed (supplemental Figure 2; supplemental
Table 7).

Conclusions
Poor pre-HSCT clinical status predicted an unfavorable HSCT
outcome and slower naïve T-cell recovery. These findings
advocate for early detection and early definitive treatment of
patients with hypomorphic RAG1/RAG2 deficiencies. The
completeness of ascertainment via NBS to identify these
patients is currently unknown, but NBS may facilitate earlier
diagnosis and improve outcome. OS of patients transplanted
with ex vivo manipulation of the graft and from MMFD was
poor, mainly because of infections. In addition, unusual de novo
autoimmunity observed in this series might be related to thymic
damage pre/during HSCT and persistent defects in central and/
or peripheral tolerance early after HSCT.
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