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Whole-genome analysis identifies novel drivers and
high-risk double-hit events in relapsed/refractory
myeloma
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KEY PO INT S

•Using the largest WGS
data set, we show
biallelic and double-hit
events plus novel rare
drivers are enriched in
relapsed/refractory
myeloma.

• EZH2, PIGO, and
DUOX2 are novel,
nearly mutually
exclusive candidate
driver genes in relapse/
refractory myeloma.
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Large-scale analyses of genomic data from patients with newly diagnosed multiple
myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/
refractory MM (rrMM) has not been performed. We hypothesize that somatic variants
chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM
stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386
patients) derived from 6 rrMM clinical trials and compared them with WGS from 198
unrelated patients with ndMM in a population-based case-control fashion. We identified
significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53),
biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM),
copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3,
1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal
defective mismatch repair signature enriched in rrMM and highly active in high mutation
burden tumors, a likely feature of therapy-associated expanding subclones. Further
analysis focused on the association of genomic aberrations enriched at different stages of
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resistance to immunomodulatory agent (IMiD)–based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and
17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide
resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC trans-
locations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer
clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in
longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify
molecular subsets of rrMM for the development of targeted therapies.
Introduction
Despite tremendous advance in therapeutics, multiple myeloma
(MM) remains largely incurable, characterized by periods of
remission and relapse, with most patients eventually dying from
the disease. Currently, combinations of immunomodulatory
agents (IMiDs; eg, lenalidomide and pomalidomide), protea-
some inhibitors, steroids, anti-CD38 antibodies, and more
VOLUME 141, NUMBER 6
recently B-cell maturation antigen (BCMA)-targeted therapies are
standards of care in newly diagnosed MM (ndMM) and/or
relapsed/refractory MM (rrMM) settings. The complex array of
combinatorial therapeutic options creates selection pressure that
dictates the evolution of genomic resistance in patients through
the acquisition of novel and/or expansion of existing genetic
drivers. Owing to its higher resolution in accurately detecting
genomic events,1 whole-genome sequencing (WGS) analysis of a
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large cohort of rrMM genomes may uncover evidence regarding
the relationship between therapeutic exposure and the selective
pressure driving the evolution of therapy-exposed and resistant
subclones.

Previously, our ndMM analysis identified an array of genomic
aberrations as well as oncogenic dependencies indicating that
thegenomic landscape in ndMM is characterizedby primary events
followed by acquisition of additional genetic events.2 The WGS
landscapeof rrMMhasonly previously beendescribed in small data
setswith limited investigation into the effects of specific therapeutic
pressures on tumor genetics.3-5We recently demonstrated a highly
significant enrichment of genomic CRBN aberrations, and loss of
the 2q37 region, which houses COP9 signalosome members
following acquisition of lenalidomide or pomalidomide resistance
(designated as LENR and POMR, respectively).6,7 Gene expression
signatures have also been shown to transition to those that indicate
higher risk as disease progresses.8

Here, we present a genome-wide unsupervised analysis of
somatic mutations, copy number aberrations (CNAs), and
structural variants (SVs) along with mutational signatures in a set
of 418 rrMM WGS samples from 386 patients. Drug-specific
resistance-associated tumor genomic variants have previously
been described (eg, cereblon aberration associated with IMiD
resistance,7 proteasome subunit PSMB5 aberrations associated
with protease inhibitor resistance,9 and BCMA locus loss after
BCMA-directed therapy10), as well as immune cell abnormalities
associated with resistance to immunotherapies. However,
deciphering how drug-specific genomic evolution enhance the
acquisition or enrichment of “high-risk” genetic features during
sequential therapeutic exposures has not been explored sys-
tematically. By utilizing the latest stage-available samples from
rrMM patients, we compared them with ndMM WGS samples
from 198 unrelated patients11 to enable an in-depth popula-
tion-level case-control analysis of how the MM genomes evolve
in response to therapeutic exposures of lenalidomide- and
pomalidomide-based regimens (Figure 1). We identified
mutually exclusive rare driver genes (EZH2, DUOX2, and PIGO),
enrichment of existing high-risk features such as 1q Gain and
TP53/17p events (suggesting a transition to high-risk biology in
rrMM) and enrichment of a novel subclonal DNA mismatch
repair signature in high mutation burden tumors.
guest on 07 M
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Methods
Patient characteristics
This study is based on an analysis of a set of unrelated ndMM
and rrMM cases with WGS data (supplemental Methods and
Table 1 for details; available on the Blood website). For our
analysis, patients with rrMM were classified based on refractory
status LENR or POMR. Because most patients were from
pomalidomide trials, which required either exposure or refrac-
toriness to lenalidomide, the LENR cohort (n = 269/386
patients, 70%) is larger than the POMR cohort (n = 55/386
patients, 14%) (Table 1, supplemental Table 1). The ndMM data
set comprised WGS data from patients in IFM2009 (n = 198).11

WGS and genomic analyses
CD138+ plasma cells and matched germline controls (peripheral
bloodmononuclear cells) were stored in RLT buffer (Qiagen) and
NOVEL DRIVERS AND DOUBLE-HIT EVENTS IN rrMM
DNAwas extracted using theQiagenAllPrepDNAMini Kit.WGS
was performed on tumor/normal pairs at an average of 60×/30×
depth. All WGS raw data processing and analyses are described
in detail in the supplemental Methods. Briefly, FASTQ files were
aligned to the human genome assembly hg38 using BWA-mem.
Duplicate reads were removed using Picard MarkDuplicates and
base recalibration of alignments was performed using Base
Quality Score Recalibration according to Genome Analysis
Toolkit Best Practices. Somatic variants were called using
MuTect2 and annotated by ANNOVAR.12 Genome-wide copy
number aberration analysis was undertaken in the entire data set
by using Battenberg.13 In addition to calling clonal and subclonal
allele-specific CNAs, it was also used to estimate purity and
average ploidy of each tumor. To estimate clonality, we calcu-
lated the cancer cell fraction (CCF) of each variant by adjusting
the variant allele frequency (VAF) for copy number status at the
given locus, multiplicity of the variant, and tumor purity.14 To
assign somatic mutations as clonal or subclonal, the observed
VAF of eachmutation was modeled using a binomial distribution
to obtain its 95% confidence interval (CI) and CCF computed for
the 95% boundaries. Variants with an upper CCF boundary
above and below 1 were considered to be clonal and subclonal,
respectively. To identify candidate drivers of the relapse/refrac-
tory stage of MM, we used cDriver.15 Assignment of identified
drivers into tumor suppressor gene (TSG) and oncogene (ONC)
categories was undertaken using the 20/20 principle.16 We
analyzed all drivers for gene essentiality as reported in Dep-
Map.17 De novo extraction of single-base substitution (SBS)
signatures was independently implemented using SigProfiler-
Extractor18 and signeR,19 and assigned to COSMIC signatures18

by computing cosine similarities. To fit the mutational spectrum
of each tumor with the identified COSMIC signatures, we used
mmsig.20 This was implemented to not only minimize mutational
signature bleeding across samples21 but to also accurately esti-
mate the relative contribution of each signature. SVs fromwhole-
genome data were detected using MANTA.22 All statistical
analyses were implemented in R.23

Results
The demographics and patient characteristic of total, LENR, and
POMR cohorts are described in Table 1. Most LENR/POMR
patients were also refractory to bortezomib (83% in LENR; 70%
in POMR) and nearly all patients had received dexamethasone;
therefore, whereas they are classified by their refractory status
to LEN or POM in this analysis, these patients were also
exposed or refractory to proteasome inhibitors, and/or a corti-
costeroid. In addition, 66% of the rrMM population received a
stem cell transplant, which exposed them to high-dose
melphalan. Only a small number of patients exposed (n = 38)
or refractory (n = 21) to daratumumab were present. This data
set was generated from trials of IMiDs, thus data from patients
that were non-IMiD treated are not represented.

We classified the rrMM and ndMM genomes into MM sub-
groups based on canonical immunoglobulin heavy-chain
translocations and hyperdiploidy (HRD, ≥3 copy number gain
of odd-number chromosomes). To address the aim of this study
and given that no significant difference in the distribution of
MM subtypes was observed between ndMM and rrMM, we
focused on subgrouping patients based on IMiD resistance
(LENR and POMR, Figure 1). Because of sample size limitations,
9 FEBRUARY 2023 | VOLUME 141, NUMBER 6 621
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for a number of differential analyses we first compared the
rrMM and ndMM patient data sets, and then sought differential
enrichment in LENR and POMR subgroups.

Identification of enriched and novel mutational
drivers in rrMM tumors
We initially sought ndMM-specific drivers (Walker et al2;
N = 1273) in the rrMM data set and detected 34 (out of 63) of
these drivers (recurrence ≥2%). Mutational driver analysis on
622 9 FEBRUARY 2023 | VOLUME 141, NUMBER 6
the rrMM data set also detected an additional 10 previously
unreported promising candidate driver genes (recurrence ≥2%;
false discovery rate [FDR] < 0.05), including a COSMIC cancer
gene (https://cancer.sanger.ac.uk/census), EZH2. Analysis of
clonality of drivers based on their CCF14,24 distribution showed
that novel driver genes were generally subclonal (Figure 2A).
Analysis of the distribution of nonsilent mutations showed
distinct variant types in TDG and MAML3 where the predicted
functional consequence of most mutations was splicing defect
ANSARI-POUR et al

https://cancer.sanger.ac.uk/census


Table 1. Demographics of the patients with ndMM or rrMM

ndMM

rrMM

Total LENR POMR

Number of patients (number of samples) 198 (198) 386 (418) 269 (273) 55 (83)

Mean study entry age, y (95% CI) 57.2 (56.3-58.2) 66.8 (66-67.5) 66.9 (66-67.8) 63.5 (61.4-65.6)

Mean time since diagnosis, y (95% CI) - 5.9 (5.6-6.2) 5.8 (5.5-6.1) 6.8 (6.1-7.5)

Sex

Male/total patients with data (%) 93/149 (62.4) 213/386 (55.2) 147/269 (54.6) 31/55 (56.4)

Female/total patients with data (%) 56/149 (37.6) 173/386 (44.8) 122/269 (45.4) 24/55 (43.6)

ISS

I/total patients with data (%) 55/156 (35.3) 97/315 (30.8) 77/226 (34.1) 9/46 (19.6)

II/total patients with data (%) 66/156 (42.3) 113/315 (35.9) 82/226 (36.3) 24/46 (52.2)

III/total patients with data (%) 35/156 (22.4) 105/315 (33.3) 67/226 (29.6) 13/46 (28.3)

Number of patients that received stem cell transplants (%) 87/187 (46.5) 232/352 (65.9) 165/253 (65.2) 43/55 (78.2)

BORT

Exposed/total patients with data (%) - 320/320 (100) 239/239 (100) 54/54 (100)

Refractory/total patients with data (%) - 231/310 (74.5) 195/236 (82.6) 33/47 (70.2)

DAR

Exposed/total patients with data (%) - 38/38 (12.2) 14/14 (100) 23/23 (100)

Refractory/total patients with data (%) - 21/38 (55.3) 4/14 (28.6) 17/23 (73.9)

Translocation

t(4;14) (%) 24 (12.1) 45 (11.7) 37 (13.8) 5 (9.1)

t(8;14) (%) 12 (6.1) 25 (6.5) 18 (6.7) 3 (5.5)

t(11;14) (%) 41 (20.7) 80 (20.7) 52 (19.3) 14 (25.5)

t(14;16) (%) 5 (2.5) 6 (1.6) 5 (1.9) 1 (1.8)

t(14;20) (%) 0 (0) 0 (0) 0 (0) 0 (0)

t(6;14) (%) 5 (2.5) 6 (1.6) 2 (0.7) 2 (3.6)

t(8;22) (%) 11 (5.5) 12 (3.1) 9 (3.3) 2 (3.6)

Patients are classified by disease setting (ndMM vs rrMM) and among patients with rrMM, cohorts are designated by refractory status to lenalidomide or pomalidomide. Translocation
prevalence is derived from genomics data. BORT, bortezomib; DAR, daratumumab; ISS, International Staging System.

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/6/620/2075106/blood_bld-2022-017010-m

ain.pdf by guest on 07 M
ay 2024
and frameshift, respectively (Figure 2B, supplemental Table 2).
All 44 drivers were examined to see whether they could be
classified as TSG or ONC based on their mutation spectrum
(Figure 2C). Among the novel genes, MAML3, TDG, and PIGO
showed the strongest TSG signals, whereas NBPF15 showed a
strong ONC signal similar to BRAF and NRAS/KRAS. We also
analyzed all drivers for gene essentiality using DepMap.17

Novel drivers categorized as TSG such as DUOX2, PIGO,
MAML3, and TDG showed overlapping distributions to well-
known TSGs such as RB1, SETD2, and TRAF3. In addition, we
saw a strong CRISPR effect score signal (median = −1.46) for
LILRA6, a driver categorized as an ONC, similar to well-known
ONCs such as IRF4 and SF3B1 (Figure 2D). Overall, when
comparing ONC and TSG genes, we saw a highly significant
elevated CRISPR effect score in ONC genes (mean of −0.63 vs
mean of −0.18; P = 3.3 × 10−17).

Interestingly, a total of 46 LENR/POMR tumors (14.2%;
Figure 2B) were negative for all mutational drivers. No signifi-
cant difference was observed between LENR and POMR for the
prevalence of these tumors (P = .2). These tumors were further
NOVEL DRIVERS AND DOUBLE-HIT EVENTS IN rrMM
assessed for translocations and CNA. In total, 40 tumors (87%)
had at least 1 such major event in their genome (supplemental
Figure 1), however, the rest were devoid of any known genomic
drivers.

To identify which drivers are unique or enriched in rrMM and
thus relevant to therapy-driven evolution, we compared their
recurrence and clonality between the rrMM and ndMM data
sets. Interestingly, although novel candidate drivers (except
PIGO) were not rrMM-specific, when compared with ndMM, the
most extreme changes in CCF and recurrence were observed in
these drivers (Figure 3A). Specifically, DUOX2, EZH2, and PIGO
had the highest enrichment (fold-change > 4.5). Interestingly,
these 3 drivers were virtually mutually exclusive, suggesting
alternate trajectories of therapeutic resistance (Figure 3B). To
ensure robustness of these findings, we included the MMRF
CoMMpass25 whole-exome sequencing data set (N = 1001),
making a combined ndMM data set (N = 1001 + 198 = 1199).
We showed that the frequency of almost all drivers is over-
estimated in the WGS ndMM data set (supplemental Figure 2A)
and, in turn, most enrichment fold-changes are higher when the
9 FEBRUARY 2023 | VOLUME 141, NUMBER 6 623
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combined ndMM is used. Interestingly, in addition to the top-
enriched novel drivers remaining highly enriched (log2FC ≥ 2;
PIGO, DUOX2, and EZH2),MAML3 also became more enriched
in rrMM (log2FC = 2.9, supplemental Figure 2B).

We then sought to identify driver genes enriched across IMiD
therapy stages (ie, ndMM to LENR to POMR). A positive trend in
624 9 FEBRUARY 2023 | VOLUME 141, NUMBER 6
prevalence was observed for 16 driver genes (Figure 3C), among
which TSGs were enriched (5.5-fold vs oncogenes). TP53 showed a
statistically significant increase (proportion trend test, P = .016).
Although thesignificanceofDUOX2and IRF4wasborderlineowing
to lower recurrence (P< .1), both were enriched at the POMR stage
when compared with ndMM (7.3- and 2.9-fold increase, respec-
tively). Interestingly, although there was no difference between
ANSARI-POUR et al
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ndMM and LENR inMAML3 frequency, POMR showed a 2.75-fold
higher recurrence of this driver gene (Figure 3C).

To gain more insight into the biology of rrMM and to increase
statistical power, we also analyzed the prevalence of nonsilent
mutations in 10 canonical cancer pathways26 across IMiD therapy
stages. Of 3 pathways related to cell cycle, MYC and TP53
showed an overall positive trend (Figure 3D), however, only TP53
showed a statistically significant increase (proportion trend test,
P = .049). Overall, rrMM genomes showed acquisition of novel
TSG drivers such as EZH2, PIGO, and DUOX2 or enrichment of
high-risk recurrent drivers such as TP5327 and DIS3.28 Further-
more, we undertook network and pathway enrichment analysis
based on the 44 drivers to investigate possible mechanisms of
disease progression potentially driven by the novel candidate
drivers. First, we generated a functional interaction network
among all driver genes using STRING version 11.5.29 Of the 10
promising candidate drivers, TDG, MAML3, and EZH2 had 2, 3,
and 5 interactions, respectively, with known MM drivers
(supplemental Figure 3A), suggesting potential functional asso-
ciation. All 3 also clustered within the same subnetwork with
known driver genes such as RB1, CCND1, and CREBBP
(supplemental Figure 3B). Next, we used Enrichr30 to identify
enriched pathways unique to promising candidate drivers.
Among the enriched pathways (supplemental Table 3), base
excision repair (TDG), notch signaling pathway (MAML3), and
B-cell receptor signaling pathway (LILRA6) were notable.

TP53 and other biallelic events increase in rrMM
tumors
At the individual tumor level, we sought to assess the extent of
biallelic events given their association with relapse in MM.31 We
observed biallelic inactivation of 15 driver genes (Figure 3E), of
which one (CDKN2A) was solely inactivated by homozygous
deletion (HD) events (supplemental Figure 4). We showed that
biallelic CDKN2A and CREBBP are unique to rrMM. This is
consistent with that reported previously for ndMM where both
were observed at only 0.1% and 0.2%, respectively (N = 1074).2

TP53 was not only the most frequent biallelic event in rrMM
(9.3%) but it was also enriched compared with ndMM (1.8 fold).
Among the novel drivers, notably, TDG showed enriched biallelic
inactivation (2.6 fold) at 1.3% prevalence in rrMM. Given its high
TSG signal (Figure 2B) and recent evidence supporting its tumor
suppressive role,32 this observation further corroborates that TDG
acts as a TSG in MM.

Noncoding mutational hotspot analysis identifies
10 additional bona fide drivers in rrMM
Leveraging the WGS breadth of our rrMM and ndMM data
sets, we sought to identify novel rrMM drivers by detecting
Figure 3 (continued) with rrMM (with no difference in prevalence between LENR and P
Therapy stage subgroup analysis showed significant enrichment of TP53 from newly di
proportion trend test (P < .05; red asterisk). Driver genes are ordered based on significanc
Per-pathway analysis shows depletion and enrichment of mutations in canonical cancer p
stages. The RTKRAS and TP53 pathway showed significant negative and positive cline b
and ndMM. Biallelic is defined as LOH (ie, copy loss) along with a nonsilent mutation or h
difference between rrMM and ndMM in ascending order. (E) Manhattan plot for a genome
genome was divided into nonoverlapping bins of 100 kb and the rate of somatic mutatio
exact test, and the –log10 of the corresponding P value was plotted. The dotted horizo
showed significant enrichment of noncoding somatic variants in rrMM. Each significant sig
denotes statistically significant enrichment (P < .05). LOH, loss of heterozygosity.
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differentially enriched somatic noncoding mutational hotspots
flanking protein-coding genes (refer to Ansari-Pour et al33). For
this analysis, we used a construct similar to that of a genome-
wide association study and looked for regions with a higher
somatic mutation recurrence in the rrMM data set. A total of 10
genome-wide signals (FDR < 0.05) were identified (Figure 3F).
Of note, TP53BP1, which is a haploinsufficient TSG,34 has been
previously shown to be involved in double-strand DNA break
repair in MM35 and its loss has also been reported to induce
chemoresistance in colorectal cancer.36 Given that these
mutations are noncoding, we hypothesize that, in the context of
DNA damaging drugs, acquiring such variants may lead to the
dysregulation of genes such as TP53BP1, which may, in turn,
confer resistance to tumors that harbor them.

Translocation landscape of rrMM tumors
SV analysis was undertaken to specifically detect translocations
with a focus on those that involved the IGH, IGL, and MYC loci
in the rrMM data set. IGH events (canonical or otherwise) were
found in 42% of tumors (Table 1), similar to the ndMM data set
(44%) and to that previously reported (41%),37 with the most
common IGH events being t(11;14), t(4;14), and t(8;14), whereas
t(6;14) and t(14;16) were present in a few cases (Figure 4A). As
expected, the first 2 were found to be early events in MM
(ie, clonal), however t(8;14) was found to be at subclonal levels
across the data set (Figure 4A). IGL- and MYC-centric trans-
locations were present in 11% and 29.5% of tumors, respec-
tively, and were mainly subclonal (Figure 4B-C), consistent with
these events being secondary genomic aberrations.38,39 The
prevalence of these secondary translocations was then exam-
ined across clinical settings. MYC translocations showed an
increase in prevalence from LENR to POMR (27% to 44%, odds
ration [OR], 2.1; P = .023) but no difference was observed in
VAF distribution after adjusting for purity (P = .157). A signifi-
cant increase in prevalence was also observed for IGL events
from LENR to POMR (10% to 22%, OR, 2.5; P = .021) but with
no change in clonality (P = .68). This increase in IGL prevalence
is consistent with a recent study showing that no significant
survival benefit was provided by IMiD-containing regimens for
patients with IGL translocations.37

Multiple CNA events are enriched at later
therapy stages
We compared the rrMM landscape of CNA events against those
in ndMM (Figure 4D) and identified the differentially enriched
CNAs. We observed significant overrepresentation of 1q Gain,
6q LOH, and 17p LOH (FDR < 0.01; Figure 4E). To trace CNA
enrichment across therapy stages, significantly enriched copy
number regions (supplemental Methods) were identified in
the rrMM data set across the genome and their recurrence
OMR), suggesting alternative evolutionary trajectories to therapeutic resistance. (C)
agnosed to lenalidomide resistant to pomalidomide resistant stages based on the
e of the proportion trend test with most significant trends on the right-hand side. (D)
athways from newly diagnosed to lenalidomide resistant to pomalidomide resistant
ased on the proportion trend test. (D) Frequency barplot of biallelic drivers in rrMM
omozygous deletion. Driver genes are ordered left to right based on the frequency
-wide scan of mutational drivers based on noncoding somatic variant clustering. The
n in each was compared between the rrMM and ndMM cohorts based on a Fisher
ntal line represents the genome-wide significance threshold (FDR < 0.05). Ten bins
nal is annotated with the name of the most likely gene targeted in each bin. Asterisk
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frequency was compared (Figure 4F). Notably, we observed a
significant positive cline of 1q Gain and 17p LOH recurrence
from ndMM to LENR to POMR (proportion trend test, P < .05).
We also observed a positive cline of recurrence of LOH events
at 1p and 14q but they did not reach statistical significance.
The higher prevalence of these events with later therapy stage
is consistent with these events being associated with disease
progression and poor prognosis.2,40,41 Although the rrMM
patient population is extremely complex with concurrent
layers of genomic, immune, clinical, and treatment heteroge-
neity, we nonetheless examined the prognostic effect of 1q
Gain and 17p LOH events per trial. We only observed a sig-
nificant prognostic effect in the MM-010 trial for 1q Gain
based on progression-free survival (P = .031; supplemental
Figure 5).
Figure 4 (continued) zoomed-in proportionally for better visualization of such events. Fo
pairs denote the mean VAF and the prevalence of the TL in this cohort, respectively. Acco
(D) Genome-wide landscape of CNA in the form of gain and LOH in the ndMM cohort. T
chromosomal location. LOH is shown in the opposite direction to the gain events for bet
and LOH in the rrMM compared with the ndMM. The y-axis represents the enriched fract
the gain events and depleted events in rrMM are not shown for better visualization. Aster
and dendrogram of enriched CNA at ndMM, LENR, and POMR stages. The rows are th
significant positive cline from ndMM to LENR to POMR based on the proportion trend

628 9 FEBRUARY 2023 | VOLUME 141, NUMBER 6
Somatic interaction analysis identifies significant
enrichment of Amp1q-ISS3 and 1qGain-17pLOH
in rrMM
The associations among all mutational drivers, enriched CNAs,
WGD, and recurrent translocations (TLs) were analyzed together
to identify novel patterns of somatic interaction in the form of
significant cooccurrence and mutual exclusivity in the rrMM
data set. Genomic events with at least 1 significant pairwise
association (FDR < 0.1) were identified (Figure 5A). The most
significant interactions were the cooccurrence of TP53-LOH17p
and mutual exclusivity of HRD-WGD, of which the latter has not
been previously reported. When compared with ndMM
(supplemental Figure 6), we observed a significant association
between IRF4 and t(11:14) only in the rrMM data set (OR,10.4;
P = 8 × 10−6).
r panels A to C, the color and thickness of the lines connecting the 2 TL breakpoint
rdingly, thick red lines represent early (ie, high VAF) and frequent TL events in rrMM.
he y-axis represents the fraction of samples harboring a particular event at any given
ter visualization. (E) Genome-wide differential landscape of CNA in the form of gain
ion of samples in rrMM harboring a CNA. LOH is shown in the opposite direction to
isks denote statistically significant enrichment of common CNA events. (F) Heatmap
e enriched CNA events and columns are the therapeutic stages. Asterisks denote
test (FDR < 0.05).
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We also sought to identify interactions in the form of double-hit
events (ie, 2 independent events occurring at 2 different loci in
the same genome at the patient level. Double-hit events were
identified in 171 (44.3%) patients with rrMM (supplemental
Figure 7). The rate of double-hit events was markedly lower in
the ndMM cohort (30.8%), thus showing a significant enrich-
ment in rrMM (OR, 1.8; P = 1.7 × 10−3). We calculated the
frequency of each double-hit event in rrMM (Figure 5B) and
ndMM (supplemental Figure 8). We observed 2 double-hit
events enriched significantly in rrMM (FDR < 0.05; Figure 5C),
namely Amp1q-ISS3 (12.4 fold) and 1qGain-17pLOH (3.7 fold),
of which the latter was the most frequent double-hit event in
rrMM (11%; Figure 5B). Interestingly, Amp1q-ISS3, which shows
the highest enrichment, has been previously shown to be a
high-risk subgroup in ndMM.42 In addition, 1qGain-17pLOH is
the cooccurrence of the 2 most frequent enriched CNA in rrMM
(Figure 4E). Across clinical settings, the overall rate of double-
hit events was not significantly different between POMR and
LENR (P = .17), and the same was true for each individual event
(supplemental Figure 9).

rrMM tumors show subclonal enrichment of
defective mismatch repair signature
Finally, we analyzed the mutational signatures to detect an
etiological basis for exogenous and endogenous factors asso-
ciated with relapse/refractory status. De novo extraction of
mutational signatures detected 8 SBS COSMIC signatures18

(supplemental Figure 10A). All signatures, except SBS12, had
been previously observed in ndMM11,43 and rrMM43 tumors.
When fitting the identified COSMIC signatures to each tumor,
we also included SBS-MM15,24,43 to see whether its inclusion
better reconstructs the observed mutational spectrum. We
observed an increase in both prevalence and activity of SBS2,
SBS13, SBS12, and SBS-MM1 (Figure 6A), all of which, except
SBS-MM1, are either associated with APOBEC (SBS2/SBS13) or
defective mismatch repair (DMR; SBS12). SBS-MM1 is a rela-
tively flat signature that has been associated with melphalan
treatment and generally with rrMM.43 Our analysis suggests that
SBS-MM1 is likely to be associated with rrMM owing to higher
prevalence and activity. However, we should note that the
highly significant co-occurrence of SBS-MM1 with SBS8
(Figure 6B) is elusive and suggests that fine-tuned functional
experiments are required to establish the underlying etiology of
SBS-MM1 and how it may relate or differ from SBS8. Analysis of
signature activity against mutation burden showed strong
positive correlations with APOBEC and DMR signatures
(Figure 6C). The activity of mutational signatures was also
analyzed at clonal and subclonal stages of evolution. Of note,
SBS12 (DMR) showed the strongest increase in activity among
all signatures at the subclonal level (Figure 6D, supplemental
Figure 10B). We therefore examined whether mutations in
DMR-related genes led to the increase in DMR signature
activity. We curated a list of 6 well-known mismatch repair
genes (MSH2, MLH1, PMS2, MSH3, MSH6, and MLH3) and
identified tumors with nonsilent mutations in them. We
Figure 6 (continued) each pair and shades of red and blue colors represents statistica
respectively, after multiple-testing correction (FDR < 0.05). Gray color indicates nonsigni
values between the activity of each SBS signature and mutation burden in rrMM tumor
represents the log10 of the FDR-adjusted P value of the correlation (larger circles indicate
(D) Shift in mutational signature activity between clonal and subclonal mutations for signa
and SBS9 (hypermutation signature) for comparison. SBS12 shows a strong signal of sub
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observed a slight enrichment (OR, 1.7) of DMR-related genes in
tumors with increased DMR activity but owing to the small
sample size of mutant tumors (N = 13), this was not statistically
significant (P = .42). We further explored the DMR signature to
see whether more genomic aberrations are present in tumors
with increased DMR activity. We computed 2 genome-wide
metrics, namely (a) proportion of genome altered (PGA) and
(b) mutation burden. We observed no significant increase in
PGA (mean of 35.1% in increased DMR vs mean of 32.7% in
other tumors, P = .48). However, interestingly, a highly signifi-
cant increase in mutation burden was observed in increased
DMR tumors (mean of 35 286 vs mean of 17 998, 2-fold,
P = 7.8 × 10−8), which was driven by a 2.2-fold increase in
single nucleotide variants (mean of 31 884 vs mean of 14 409,
P = 4.8 × 10-9). This suggests that DMR may, in part, be an
endogenous factor associated with expanding subclones under
therapeutic selection pressure.
Discussion
Recent studies characterizing the genomic features of rrMM
have either analyzed small numbers of samples3,5,44 or lacked
the breadth of WGS.45 In combination with deep WGS ndMM
data,11 we performed an unsupervised analysis of the largest
deep WGS rrMM data set to date (total N = 616), thus
providing, to the best of our knowledge, the most compre-
hensive analysis of the rrMM genomic landscape to date. We
identified novel rrMM driver genes through coding and non-
coding variation in the genome. Interestingly, all 10 coding-
variant drivers showed either a significant clonal expansion or
strong enrichment in recurrence in rrMM compared with ndMM.
This observation suggests that these driver genes are associ-
ated with therapeutic resistance, either already present before
therapeutic exposure but providing clonal advantage upon
exposure to therapy or arising de novo and enriching at the
rrMM stage at the time of acquisition of resistance. Functional
analysis of these promising candidate drivers is nonetheless
required to corroborate these findings and provide insight into
the exact role of these novel drivers in therapeutic resistance.
There is a possibility that we may have not detected these
driver genes at the ndMM stage owing to their very low CCF
(ie, tiny subclones). However, this is unlikely, given that the
average sequencing coverage of the ndMM cohort was higher
than that in the rrMM cohort (94× vs 83×; Kolmogorov-Smirnov
test, P = 7 × 10−14). In addition to the enrichment of TP53
(and TP53-17pLOH biallelic events, along with its pathway in
general) and IRF4, we also observed a positive cline in the
prevalence of a novel highly enriched driver (DUOX2) from
ndMM to LENR to POMR, which is associated with multiple
cancers and involved in the regulation of the AKT pathway.46

Furthermore, by detecting enrichment of somatic variants in
noncoding hotspots,33 a total of 10 previously unreported
drivers in MM such as TP53BP1 and BLM were identified, which
need to be examined at the transcriptomic level to assess
whether they dysregulate these bona fide drivers.
lly significant cooccurrence (OR > 1) and mutual exclusivity (0 < OR < 1) patterns,
ficant association regardless of OR value. (C) Lollipop plot of correlation coefficient
s. The length of the bars represents the Pearson R value and the size of the circles
higher significance). Colors of the signatures match those in supplemental Figure 10.
tures displaying strong positive correlation with mutation burden in the rrMM cohort
clonal increase, whereas SBS9 shows decrease across most tumors.
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When comparing CNA enrichment patterns, 1q Gain and 17p
LOH were not only enriched in the rrMM data set, their occur-
rence as double-hits was also enriched. In addition, they had a
significant increasing trend from LENR to POMR. We also
observed an increase, albeit statistically nonsignificant, in the
prevalence of LOH events at 1p and 14q with rrMM therapy
stages. The nonsignificance of the increase may be because of
the relatively small sample size of the POMR cohort (N = 55) in
this study. Although we found 3 genomic features that distin-
guished POMR from LENR tumors (MAML3 driver gene and
IGL/tMYC translocations), a larger POMR cohort would be
beneficial to examining more robustly whether LEN and POM
select subclones with distinct genomic drivers or POM generally
selects the same subclones already expanding in LENR tumors.
For instance, we identified 2 driver genes (NF1 and ADGRL3),
which increased in prevalence from ndMM (0.015 and 0.02) to
LENR (0.048 and 0.037) but were completely absent from
POMR. It is not possible to determine whether their absence is
because of favorable response to POM or simply not observed
owing to the small size of this subgroup. To evaluate the latter
possibility further, we calculated the expected upper limit
frequency for an unobserved event47 in POMR (q = 0.053).
Because this frequency is above that observed in LENR, the
absence of those 2 drivers may be owing to low statistical power.

Mutational signature analysis identified a novel enriched sub-
clonal signature at rrMM (SBS12) with its etiology likely to be
DMR. DMR tumors accumulate high levels of mutations
(consistent with our findings; Figure 6C), a feature linked to
acquisition of drug resistance,48 including in myeloma.49

Alternative therapies such as those based on synthetic lethal
approaches50,51 that could exploit DMR in mismatch repair–
deficient rrMM tumors may be fruitful.

Our analysis provides insight into the nature of the evolution of
myeloma genome under therapeutic pressure. Although in rrMM,
therapeutic clonal selection might be expected to reduce the
intratumoral heterogeneity, we instead find that ongoing clonal
evolutionprovidesgenomeswithhighly diverse enrichmentof LOH
events, mutational signatures, genetic aberrations, and subclonal
complexity. It is therefore likely that ongoing acquisition of novel
features is occurringalongsideenrichmentof thosealreadypresent.
The increase in high-risk changes associatedwith shortened survival
(such as the double-hit events described) alongside direct selection
of therapeutic resistance markers are thus unsurprising. However,
this reconstructionof the rrMMgenome,whichblendsacquisitionof
the functional high-risk myeloma state with drug-specific resistance
features (such as CRBN loss) pose significant challenges in
designing new therapies. Specifically, there must be an even
greater imperative to consider clonal evolution inpinpointingwhich
events are connected to disease relapse (ie, present in the
most recent common ancestor of the expanding subclone[s]).
A limitation of our study was the unrelatedness of the ndMM and
rrMM cohorts. We6 and others5,52,53 have shown that sequential
sampling is the ideal approach for analyzing clonal dynamics.
Detection of subclones that predict relapse might enable
NOVEL DRIVERS AND DOUBLE-HIT EVENTS IN rrMM
investigation of change of therapy and thus their appearance or
expansion must be carefully considered as we plan the trials and
therapeutic approaches of the future.
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