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NGS better discriminates true MRD positivity
for the risk stratification of childhood ALL treated
on an MRD-based protocol
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KEY PO INT S

•NGS MRD evaluation in
B-cell precursor acute
lymphoblastic leukemia
is highly concordant
with qPCR while being
providing more specific
results.

• Frontline NGS MRD
evaluation is a viable
alternative to qPCR
assays in future MRD-
based acute
lymphoblastic leukemia
treatment protocols.
-0170
We compared minimal/measurable residual disease (MRD) levels evaluated by routinely
used real-time quantitative polymerase chain reaction (qPCR) patient-specific assays and
by next-generation sequencing (NGS) approach in 780 immunoglobulin (IG) and T-cell
receptor (TR) markers in 432 children with B-cell precursor acute lymphoblastic leukemia
treated on the AIEOP-BFM ALL 2009 protocol. Our aim was to compare the MRD-based
risk stratification at the end of induction. The results were concordant in 639 of 780
(81.9%) of these markers; 37 of 780 (4.7%) markers were detected only by NGS. In 104 of
780 (13.3%) markers positive only by qPCR, a large fraction (23/104; 22.1%) was detected
also by NGS, however, owing to the presence of identical IG/TR rearrangements in
unrelated samples, we classified those as nonspecific/false-positive. Risk group stratifi-
cation based on the MRD results by qPCR and NGS at the end of induction was concor-
dant in 76% of the patients; 19% of the patients would be assigned to a lower risk group
by NGS, largely owing to the elimination of false-positive qPCR results, and 5% of
patients would be assigned to a higher risk group by NGS. NGS MRD is highly concordant
with qPCR while providing more specific results and can be an alternative in the front line
03-m
of MRD evaluation in forthcoming MRD-based protocols.
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Introduction
Together with multiparameter flow cytometry, quantitation of
clonal immunoglobulin (IG) and T-cell receptor (TR) gene rear-
rangements represent the current standard for the detection of
minimal/measurable residual disease (MRD) in treatment pro-
tocols for pediatric patients with acute lymphoblastic leukemia
(ALL). The increasing availability of next-generation sequencing
(NGS) has permitted its growing use for MRD detection in
lymphoid malignancies, and the methodology for NGS MRD
detection has been published by our group and others,
demonstrating its relevance in clinical use.1-8 However, one of
the main unresolved questions is the accuracy of MRD quanti-
fication and the correlation with patient-specific quantitative
polymerase chain reaction (qPCR), which is currently used for
risk stratification in most European ALL treatment protocols
for children and adults. Our goal was to determine whether
NGS can be used successfully for MRD-based risk stratification
in the same way as qPCR on day 33 (end of induction), as the
principal stratification time point, in a cohort of children with
B-cell precursor ALL treated on the AIEOP-BFM ALL 2009
protocol.

Study design
In total, 458 patients treated on the AIEOP-BFM ALL 2009
protocol diagnosed with B-cell precursor ALL in the Czech
Republic between 2010 and 2018 were included in this study.
We excluded 19 patients who either had no usable IG/TR MRD
marker identified at diagnosis with the required sensitivity of
10−4 detectable by qPCR or for whom DNA from day-33 bone
marrow aspirate was not available (Figure 1A). The study was
performed in accordance with the Declaration of Helsinki and
approved by the Institutional Review Board of the Second
Faculty of Medicine, Charles University, Prague, Czech
Republic.
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Figure 1. Schematic diagram of the study and classification of the MRD markers by qPCR and NGS. (A) Flow diagram of the study showing the exclusion criteria and the
number of patients and samples analyzed in the study. (B) Diagram of the IG/TR MRD marker selection process and analysis from the time of diagnosis to the MRD evaluation
at day 33 using both qPCR and NGS. (C) Results of IG/TR MRD marker analysis by qPCR and NGS. Markers positive only by qPCR (orange) or only by NGS (yellow) are broken
down into subcategories based on the results of the second MRD marker evaluated for the same patient and marked by the same colors or gray, if the second MRD marker
was not available. (D) Breakdown of all the evaluated MRD markers with their results based on the genetic locus of the IG/TR rearrangement and NGS library preparation
primer mix used. Owing to a small number of samples, the IGK-VJ-Kde and intron-Kde were merged together as were TRB-DJ and TRB-VJ rearrangements. cIT-QC, central in-
tube quality/quantification control; V(D)J, variable diversity joining.
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IG/TR MRD markers were identified according to the EuroMRD
guidelines as described previously,9-15 and ideally 2 inde-
pendent qPCR assays with the best sensitivity and quantitative
range (QR) were used for MRD evaluation. DNA samples iso-
lated from bone marrow aspirates taken at day 33 (Figure 1B)
were evaluated and MRD positivity below the QR was
assessed as positive nonquantifiable (PnQ).2,16 NGS libraries
were prepared according to the EuroClonality-NGS Working
Group protocols.17 From the total of 709 NGS libraries, 702
(99%) were successfully amplified and sequenced and only 7
had to be excluded owing to errors in NGS library preparation
(Figure 1A).

Sequencing data were analyzed using an in-house data pro-
cessing pipeline and further evaluated using the ARResT/
Interrogate pipeline.18 NGS MRD results were normalized and
quantified based on the EuroClonality-NGS central in-tube
quality/quantification control19 and for the total DNA sample
input for each library. NGS MRD levels below the theoretical QR
were evaluated as PnQ. V(D)J junction nucleotide sequences
were extracted from the original Sanger sequencing data and
used for the identification of patient-specific IG/TR MRD
markers in the NGS libraries (Figure 1B). A minimum of 3 reads
with the corresponding sequence were required for any NGS
positivity.
(15
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NGS BETTER DISCRIMINATES TRUE MRD POSITIVITY
Results and discussion
We sequenced a total of 702 NGS libraries with a median
coverage of 1 629 389 reads and evaluated 780 unique IG/TR
MRD markers of 432 patients by both qPCR and NGS. Because
the sensitivity and specificity of the qPCR MRD assays are
strongly influenced by the characteristics of each selected
IG/TR marker and the complexity of its V(D)J junction, their
usability for MRD evaluation is determined by criteria based on
nonspecific amplification in a polyclonal nonmalignant back-
ground. To ascertain the specificity of all selected markers for
NGS MRD detection, we analyzed their junctional nucleotide
sequences and determined their specificity as described in the
supplemental Methods (available on the Blood website), and
identified 54 markers that did not meet the criteria of sufficient
specificity.

We obtained concordant results for 419 negative markers
(53.7%) and 220 positive markers (28.2%) by both methods.
Another 104 markers (13.3%) were positive only by qPCR, a vast
majority of them (97; 93.3%) were PnQ, with nonspecific ampli-
fication of the polyclonal controls used in the qPCR evaluation
observed with 55 of these markers (52.9%). More importantly,
although 23 out of these 104 markers (22.1%) were also detected
using the NGS approach, they were classified as nonspecific
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(as described above) and their poor specificity was further sup-
ported by nonspecific qPCR amplification of the polyclonal
controls, albeit with higher Ct values (not affecting qPCR MRD
positivity as per the EuroMRD guidelines) in 18 of them. Similarly,
23 out of the 37 markers (62%) positive only by NGS were PnQ,
and the mean NGS MRD value of the remaining 14 quantifiable
markers was 3.62 × 10−5 (Figure 1C-D).

The stratification of patients based on day-33 MRD results was
concordant in 76% of the patients by both qPCR and NGS, with
193 patients (44.7%) assigned to the standard risk (SR) group,
100 patients (23.1%) to the medium risk (MR) group, and 37
(8.6%) to the high risk (HR) group (Figure 2A). A change in
assignment to a higher risk group according to the NGS result
occurred in 19 patients (4.4%) and to a lower risk group in 82
patients (19%), mainly owing to the elimination of false-positive
results (Figure 2A). One patient was assigned to the SR group
by NGS, having only 1 T-cell receptor gamma (TRG) MRD marker
that was highly positive by qPCR and not detected in the NGS
data. However, a major clonal TRG rearrangement identified
upon NGS rescreening confirmed the HR stratification of this
patient (supplemental Results).

We also observed a significant correlation of the calculated
MRD values by both methods (R = 0.83, Figure 2B). Considering
the differences in MRD quantitation between qPCR and NGS, a
perfect numerical correlation of both methods cannot be
expected. In addition, NGS MRD also offers a much higher QR
than the traditionally used qPCR assays and is therefore more
informative.

Even though the focus on high sensitivity of MRD detection is
often emphasized in commercially available assays, the true
sensitivity of any MRD assay is determined by the number of
evaluated cells20 and the desired sensitivity is not reached for a
large number of samples evaluated in MRD studies (eg, 40% of
samples reported by Wood et al).6 It is equally important to
maintain a very high specificity and implement sufficient checks
to avoid false-positive results that would lead to therapy
intensification and may be the cause of serious treatment-
related toxicity, especially in pediatric patients. We analyzed
the V(D)J junction segmentation of all 54 nonspecific IG/TR
markers with the majority belonging to the immunoglobulin
kappa (IGK), T-cell receptor delta (TRD), and TRG gene loci and
found that the N regions of their junctions are significantly
shorter (supplemental Results), thus, challenging their prioriti-
zation during the selection process for patient-specific qPCR
system design.21

Because of its higher specificity compared with the qPCR
assays, thus, eliminating the falsely positive qPCR results with
high confidence, NGS improves the correct risk stratification of
patients with undetectable MRD into the SR group in the setting
of an MRD-based clinical protocol. These patients can then be
safely considered for reduction of treatment. In contrast, even
very low MRD levels detected specifically by NGS must be
considered unambiguously as a true value and the patients
should be treated with according intensity.7,8 Frontline NGS
532 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
MRD evaluation as developed by the EuroClonality-NGS
Working Group can be used as an alternative to traditional
qPCR-based MRD quantitation in future MRD-based treatment
protocols. Moreover, this method can be immediately imple-
mented in off-protocol treatment monitoring and independent
evaluation of PnQ results of qPCR, typically after stem cell
transplant.
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8. Kotrová M, Koopmann J, Trautmann H, et al.
Prognostic value of low-level MRD in adult
acute lymphoblastic leukemia detected by
low- and high-throughput methods. Blood
Adv. 2022;6(10):3006-3010.

9. Pongers-Willemse M, Seriu T, Stolz F, et al.
Primers and protocols for standardized
NGS BETTER DISCRIMINATES TRUE MRD POSITIVITY
detection of minimal residual disease in acute
lymphoblastic leukemia using
immunoglobulin and T cell receptor gene
rearrangements and TAL1 deletions as PCR
targets: report of the BIOMED-1
CONCERTED ACTION: investigation of
minimal residual disease in acute leukemia.
Leukemia. 1999;13(1):110-118.

10. van Dongen JJM, Langerak AW,
Brüggemann M, et al. Design and
standardization of PCR primers and protocols
for detection of clonal immunoglobulin and
T-cell receptor gene recombinations in
suspect lymphoproliferations: report of the
BIOMED-2 Concerted Action BMH4-CT98-
3936. Leukemia. 2003;17(12):2257-2317.

11. Pongers-Willemse M, Verhagen O, Tibbe G,
et al. Real-time quantitative PCR for the
detection of minimal residual disease in acute
lymphoblastic leukemia using junctional
region specific TaqMan probes. Leukemia.
1998;12(12):2006-2014.

12. Langerak AW, Wolvers-Tettero ILM, van
Gastel-Mol EJ, Oud MECM, van
Dongen JJM. Basic helix-loop-helix proteins
E2A and HEB induce immature T-cell
receptor rearrangements in nonlymphoid
cells. Blood. 2001;98(8):2456-2465.

13. van der Velden V, Wijkhuijs J, Jacobs D, van
Wering E, van Dongen J. T cell receptor
gamma gene rearrangements as targets for
detection of minimal residual disease in acute
lymphoblastic leukemia by real-time
quantitative PCR analysis. Leukemia. 2002;
16(7):1372-1380.

14. van der Velden V, Willemse M, van der
Schoot C, et al. Immunoglobulin kappa
deleting element rearrangements in
precursor-B acute lymphoblastic leukemia are
stable targets for detection of
minimal residual disease by real-time
quantitative PCR. Leukemia. 2002;16(5):
928-936.

15. Verhagen O, Willemse M, Breunis W, et al.
Application of germline IGH probes in real-
time quantitative PCR for the detection of
2 F
minimal residual disease in acute
lymphoblastic leukemia. Leukemia. 2000;
14(8):1426-1435.

16. van der Velden VHJ, Cazzaniga G,
Schrauder A, et al. Analysis of minimal
residual disease by Ig/TCR gene
rearrangements: guidelines for interpretation
of real-time quantitative PCR data. Leukemia.
2007;21(4):604-611.

17. Brüggemann M, Kotrová M, Knecht H, et al.
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