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Endothelial cell–leukemia interactions remodel drug
responses, uncovering T-ALL vulnerabilities
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•We identified active
compounds in a library
of 22 T-ALL PDX and
discovered public and
private vulnerabilities

• Interacting ECs and
T-ALL underwent
reciprocal transcriptomic
changes
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease.
To uncover therapeutic vulnerabilities, we first developed T-ALL patient–derived tumor
xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds
in vitro. We identified 39 broadly active drugs with antileukemia activity. Because
endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL
coculture system. We found that ECs provide protumorigenic signals and mitigate drug
responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most
models, for some drugs the rescue was restricted to individual PDXs, suggesting unique
crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL
cells and ECs underwent bidirectional transcriptomic changes at the single-cell level,
_bld-2022-015414-m
ain.pdf b
highlighting distinct “education signatures.” These changes were linked to bidirectional regulation of multiple path-
ways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo
splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and
shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a
T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and
therapeutic vulnerabilities.
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Introduction
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL)1 is
an aggressive hematological malignancy with high treatment
failure and poor overall survival (OS).2-4 Developments in
therapy and stem cell transplants have improved the event-free
survival rates of young patients (~80%). However, refractory/
relapsed pediatric (~20%) and adult patients with T-ALL (~40%)
often die of the disease.5,6

The original stratification of T-ALL (European Group for the
Immunological Classification of Leukemia [EGIL] scoring system)
highlights a class of early T-cell precursor acute lymphoblastic
leukemia: ETP-ALL, representing ~5% to 15% of T-ALL. Patients
with ETP-ALL have significantly worse survival,7,8 a course
improved via intensive asparaginase-based regimens.5 Within
T-ALL, the deregulated expression of multiple transcription
factors and CDKN2A/2B cell-cycle regulators, and hyperactive
NOTCH1 signaling, were initially described as key genomic
aberrations. Furthermore, defects affecting Janus kinase/signal
transducer and activator of transcription (JAK/STAT) signaling,
protein translation, and epigenetic control provide novel and
attractive targets for therapy.9-13 Of note, the implementation
of transcriptional signatures is providing actionable diagnostic
criteria and improved clinical management.14

The cancer microenvironment plays a critical role15-17 in
modulating cell growth and therapeutic responses.16-19 Within
the T-ALL niche, collective protumorigenic signals arise from
multiple cellular and noncellular components. Notably, tumor-
associated endothelial cells (TECs) are crucial in the patho-
genesis of solid and liquid malignancies,20-22 ultimately
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contributing to multiple protumorigenic phenotypes. In T-ALL,
TECs modulate leukemic extravasation23 and tumor aggres-
siveness via multiple and synergistic mechanisms, including
SDF1α/CXCR4, DLL4-JAG1-2/NOTCH, and IGFBP7/IGF1 pro-
survival pathways.18,24,25 However, it is unclear how these
individual compartments contribute to the education of
leukemic and microenvironment cells. Importantly, the micro-
environment can affect drug responses15,26 via dysregulated
chemokine signals,27 enhanced production of oxidative radicals
and exosomes,28 and hypoxia.29 As a result, therapies targeting
microenvironment cells are predicted to improve clinical
responses.30,31 However, the influence of endothelial-based
cultures on perturbing drug responses has not been fully
explored yet.

By taking advantage of endothelial cells (ECs) transduced with
E4ORF1 (E4-ECs),32,33 we developed an endothelial-leukemia
platform to explore the subverted role of tumor vascular
niches. This platform integrates T-ALL patient–derived tumor
xenografts (PDXs) and ECs with drug-screening libraries, ulti-
mately translating findings to in vivo preclinical trials. This
approach led to the generation of proof-of-concept transcrip-
tional signatures that are predictive of drug response, and the
selection of effective compounds/combinations in T-ALL. More
importantly, we show that T-ALL and ECs bidirectionally
modulate their transcriptomes and phenotypes, and ECs pro-
vide signals counteracting the efficacy of selected drugs.

We established an EC-based platform to unveil new
microenvironment-leukemia interactions and cancer vulnera-
bilities. We anticipate that this approach could foster the design
of precision medicine–based approaches to improve the treat-
ment of patients with T-ALL.
961/blood_bld-2022-015414-m
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Methods
Patient material
Pathological samples from bone marrow or peripheral blood
(blasts, >80%) were collected at the Hematology Center of
Sapienza University of Rome or Weill Cornell Medicine of New
York. Diagnoses were assigned based on the World Health
Organization classification. According to the Declaration of
Helsinki, deidentified patient samples were obtained with
informed consent. The institutional review boards of Sapienza
University of Rome and Weill Cornell Medicine approved
human studies.

PDX generation
PDX implantation and propagation were previously reported.34

Briefly, fresh or cryopreserved patient samples were implanted
into NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ (NSG B2m)
mice. Animals were euthanized when lymphoblastic cells rep-
resented at least 50% of the total circulating blood cells. Serial
passages were achieved by IV injection into NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ (NSG) mice. Animal studies were approved by
the Weill Cornell Medicine Animal Care and Use Committee
(2014-0024).

Flow cytometry
Flow cytometry was performed as described previously,35 using
dedicated instrumentations (BD LSR II, BD FACSCanto flow
504 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
cytometers and BD FACSCelesta with plate reader for high-
throughput screenings) and high-speed sorting (BD Aria).

Cell culture, stimulating factors, and drug
screening
PDX-derived T-ALL cells were cultured in RPMI with 10%
fetal calf serum (FCS) or StemSpan (SS; StemCell Technolo-
gies) supplemented with 10% knockout serum replacement
(KSR; Life Technologies) and a cocktail of antibiotics and
interleukins (see supplemental Data, available on the Blood
website). Human umbilical vein endothelial cells transduced
with a lentiviral gene transfer vector expressing the E4-ORF1
gene (VeraVec ECs; Angiocrine Bioscience), namely E4-ECs.
Monolayers of E4-ECs were cultured in ex vivo medium
supplemented with 10% FCS (Lonza) and maintained at 37◦C
in a humidified 5% CO2 atmosphere. Compounds for the
drug screenings were purchased from Selleckchem and
tested for 72 hours (at least in duplicate) at a concentration
of 1.0 μM or in dose-response dilutions where specified. The
433-drug screenings were executed in 384-well plates under
either RPMI (plus 10% FCS) or SS (plus 10% KSR) conditions,
and the viability was assessed using the CellTiter-Glo assay
(Promega). The EC/T-ALL coculture screenings were per-
formed in 96-well plates, and data were collected using the
high-throughput screening flow cytometer. The gating
strategy was based on appropriately compensated settings
for multicolor flow cytometry (propidium iodide for cell
death, CFSE for EC labeling, and cell tracer violet for T-ALL
cells). To provide uniform measures of drug effects and to
estimate EC rescue, we computed specific cell death by
normalizing viability on drug exposure with the viability of
matched DMSO controls [formula: (death under drug x) –

(death of control)/(100 – death of control) × 100]. Drugs
were defined as active when able to kill more than 50% of
leukemic cells compared with controls.

Total RNA and single-cell RNA sequencing
Refer to the supplemental Methods for details.

In vivo treatment
Mice underwent IV injection (1 × 106 T-ALL cells), and
engraftment was assessed by flow cytometric analysis of
peripheral blood cells. When human T cells reached 5% of the
total, mice were randomized into untreated (vehicle) and
treated arms. Numbers, age, and sex of the mice were equally
distributed among arms. Compounds were administered as
described in the figure legends and in the supplemental
Methods. Tumor burden was monitored by flow cytometric
analysis of peripheral blood or spleen size, using total body
magnetic resonance imaging (MRI) or measurements post-
autopsy. Body weight was used as a surrogate for drug toxicity.

Statistics
The appropriate statistical methods were applied as indicated
in the related figure legends. Continuous variables were
analyzed on the basis of normal distribution and homogeneity
of variance. The Kaplan-Meier method and log-rank test were
used to assess survival.

Tests were performed with Prism version 9.0 (GraphPad,
San Diego, CA), MATLAB version 9.0 (MathWorks, Natick, MA),
CAPPELLI et al
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Figure 1. High-throughput screening of T-ALL patient–derived tumor xenografts (PDXs) defines therapeutic responses ex vivo. (A) Principal component analysis of 39
T-ALL primary samples separated into 2 major subgroups corresponding to ETP and canonical T-ALL. A third group with an intermediate phenotype could also be identified.
(B) Unsupervised hierarchical clustering of RNA expression profiles among 10 T-ALL PDXs sequenced over multiple passages, including primary (PR) and serial (T) samples. (C)
Principal component analysis of 10 T-ALL PDXs sequenced over multiple passages, including PR and serial passages. (D) Scheme illustrating the drug screening of T-ALL PDXs
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Figure 1 (continued) exposed to 433 drugs with in silico processing and analysis. (E) Dot plot showing drug responses as a function of media for 2 consecutive in vivo
passages (RPMI with 10% FCS vs StemSpan [SS] with 10% KSR and interleukins) for a representative PDX (3053 T-ALL model). (F) Heat map showing the overall responses
assessed using an ATP-Glo assay (Promega) of 6 different PDXs (14 samples corresponding to multiple passages) across 433 drugs screened in SS for 72 hours in duplicate
(red, hits—low viability; white, viabilities greater than or equal to vehicle control). Dendrograms (left and bottom) show the unsupervised hierarchical clustering of drugs and
PDX samples along the axis of maximum variation (Ward) of the Euclidean distances. The bar plot (top) shows the pan-drug viabilities per sample across all 433 drugs, with
error bars highlighting the standard deviation. Bar plot (right) shows the pan-sample viability per drug, with the gray trend line highlighting the magnitude of the coefficient of
variance. The orange inset highlights a subset of the 39 most active drugs across all PDX models, listed on the right panel with average viabilities shown as a bar plot and error
bars showing the standard deviation. (G) PCA of 14 PDX samples based on the responses to all 433 drugs in the screening library (left). Dendrogram for the same samples
shows unsupervised clustering based on the responses of the drug screening library (right). Two components (C1 and C2) were identified, corresponding to increased
resistance of T-ALL cells with passaging over time in mice. (H) Volcano plot showing differential viability vs the inverse deviation score, highlighting differentially active drugs in
RO5/RO6 vs 3119/3053 T-ALL PDX models. Green dots (left) indicate drugs more active in R05/RO6; magenta dots (right) denote drugs that are more active in 3119/3053 T-ALL
models; gray dots indicate equally active drugs. (I) Heat map and unsupervised clustering depicting gene expression within the PI3K/AKT signaling pathway, targeted by
HSP90 inhibitor ganetespib. Genes were selected on the basis of a significant correlation between their expression across samples and the viability of the treated sample. The
viability values are indicated in the color bar (right). HSP90, heat shock protein90; PI3K/AKT, phosphatidylinositol-3-kinase/protein kinase B.
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or R version 4.0 (released in 2020; R Foundation for Statistical
Computing).

Results
Drug screening of T-ALL PDX cells identifies
targetable vulnerabilities
We first characterized the transcriptomic profile of 39 T-ALL
patient samples (Figure 1A), from which we established a library
of PDX models (n = 22) (supplemental Table 1; supplemental
506 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
Figure 1A-C). These closely recapitulated the transcriptomic
profile and shared the identical T-cell receptor with those of
matched patients (Figure 1B-C; supplemental Figure 1D; sup-
plemental Table 1).

We then implemented a multistep approach, including (1)
optimizing T-ALL PDX cell culture conditions ex vivo, (2)
screening a broad library of drugs, (3) testing drug candidates in
an EC-based coculture system, and (4) confirming key candi-
dates in vivo using PDX models.
CAPPELLI et al
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Figure 3. T-ALL cells are modulated by E4-ECs in vitro. (A) UMAP plots and cell clustering of single-cell RNA-Seq of T-ALL cells and E4-ECs. Freshly isolated T-ALL PDX cells
were cultured alone or with E4-ECs. Single-cell RNA-Seq was performed on day 5. Top: Panels are color-coded by cluster identity. Bottom: Panels depict bar plots of sample
identity in each cluster. (B) Top: UMAP plots of single-cell RNA-Seq of T-ALL cells color-coded by cell cycle (G1, S, and G2M phase). Bottom: Bar plots showing the different
proportions of cells in G1/S/G2M phase based on cluster identity for both RO2 and 3119 T-ALL PDX models. (C) Heat map showing the differentially expressed genes from
single-cell RNA-Seq of RO2 and 3119 T-ALL model cultured either alone or with E4-ECs. The top 50 up- and downregulated genes are depicted for each model. (D) UMAP and
violin plots displaying T-ALL “education scores” calculated on the basis of differentially expressed genes from panel C. The scores are applied to each cluster to identify those
with an enrichment in “educated” T-ALL cells. (E) Heat map depicting the pathway activity levels determined using the PROGENy tool applied on single-cell RNA-Seq data of
RO2 and 3119 T-ALL cells cultured alone or in coculture with E4-ECs. (F) Dot plot displaying expression levels of a selected set of genes across different single-cell clusters
composed of RO2 and 3119 T-ALL PDX cells cultured alone or with E4-ECs. The size of the dot indicates the percentage of cells expressing each gene, color-coded by
expression level. Expression levels were measured using log-normalized counts. Green squares indicate clusters enriched for EC-cocultured T-ALL elements; red squares
indicate clusters mainly consisting of T-ALL cultured alone. (G) Dot plot depicting expression levels of a signature of genes involved in T-cell maturation and commitment
in T-ALL cells from RO2 or 3119 cultured with/without E4-ECs (from Park et al51 and Le et al52). The size of the dot indicates the percentage of cells expressing each gene,
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First, we tested various culture conditions and media, demon-
strating improved viability and increased cell number in sup-
plemented SS medium relative to supplemented RPMI medium
(supplemental Figure 1E).

Second, we challenged T-ALL PDX cells ex vivo with a drug
library of 433 compounds (1 μM), targeting ~634 proteins
(Figure 1D,F; supplemental Table 2). Prior to choosing the 1 μM
final concentration, we verified that the 50% inhibitory con-
centration (IC50) would be reached in most of the compounds
(400 of 433; 92%). In detail, 13 samples spanning different
passages of 6 T-ALL PDX models were tested. We observed
high reproducibility among biological and technical replicates
(supplemental Figure 1F-I). SS-cultured PDX cells showed that
most compounds (~89%) had little to no effect on T-ALL
viability. Meanwhile, only 11% of drugs reduced average cell
viabilities across the PDX models to less than 50%, corre-
sponding to a cluster of 39 drugs (Figure 1F). To further elab-
orate on the drug concentration (1 μM), we tested serial
dilutions of 10 of 39 broadly active compounds in 4 additional
PDX models, identifying unique IC50 values in individual models
(supplemental Figure 1P). In all cases, 1 μMwas compatible with
the efficacy range.

Using unsupervised hierarchical clustering and principal
component analysis (PCA), we identified 2 clusters of T-ALL
samples based on differential drug susceptibility (Figure 1G).
Specimens belonging to earlier passages populated cluster 1
(C1), whereas later passages were more often skewed toward
cluster 2 (C2), suggesting decreased therapeutic efficacy along
serial passages (supplemental Figure 1I). We confirmed this
reduced viability along serial passages using the 3053 T-ALL
PDX (supplemental Figure 1J), in which the enrichment of the
SMCHD1-JAK2 fusion overtime was observed (supplemental
Figure 1K-M). To describe the response heterogeneity among the
different T-ALL models, we combined the viability results of the
3119/3053 and R05/RO6 T-ALL PDXs based on the highest
response similarity scores (supplemental Figure 1N) identifying
differentially active drugs between the 2 groups (Figure 1H;
supplemental Figure 1O). Last, we associated gene expression
ENDOTHELIAL CELL–LEUKEMIA INTERACTIONS IN T-ALL
profiles with drug responses, to identify putative drug-related
biomarkers. Despite the limited number of samples, we
discovered several gene signatures linked with drug responses
(Figure 1I; supplemental Figure 1Q-R).
Endothelial cells provide prosurvival signals and
modulate drug response of T-ALL cells
Within the tumor microenvironment, endothelial cells (ECs)
by supplying angiocrine factors sustain hematopoietic and
neoplastic cells36,37 and enhance their survival under toxic
stress.17,18,25,38,39 We previously demonstrated that primary
nontransformed E4ORF1-transduced ECs32 (herein referred to as
E4-ECs) are an instructive serum-free/xenobiotic-free model to
study tumor-host interactions.25Here, we first showed that E4-ECs
sustained T-ALL cells under stress conditions such as starvation,
lymphokine depletion, and oxygen deprivation (supplemental
Figure 2A-E). We then developed a high-throughput flow
cytometry–based endothelial-leukemia coculture system. Violet
tracer–labeledT-ALL cells from10PDXmodelswere cultured inSS
medium supplemented with 10% KSR and challenged with the
most effective drugs (n = 39) from the initial screening (n = 433) in
the presence of CFSE-labeled E4-ECs (supplemental Figure 2F).

Sensitivity data showed a high concordance among T-ALL cells
isolated from separate compartments (spleen and bone
marrow) from the same PDX mouse (supplemental Figure 2G),
from sibling mice implanted with the same tumor seeds (sup-
plemental Figure 2H), and from mice belonging to 2 consecu-
tive passages (supplemental Figure 2I). In addition, the
percentage of viable E4-EC cells cultured alone and/or with
T-ALL cells was similar across all compounds (supplemental
Table 5). These findings suggested that T-ALL responses likely
were not linked to suboptimal drug concentrations (supple-
mental Figure 2J).

Overall, E4-ECs significantly improved the T-ALL survival of
individual PDX models against selected compounds after
72 hours of ex vivo treatment (Figure 2A-D; supplemental
Figure 2K). A compound was defined as “rescued” when there
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was a decrease of at least 20% in specific cell death compared
with the no-EC condition. By PCA, the vectorized EC rescue
showed converging directions in all models, suggesting
conserved rescue mechanisms (Figure 2A-B; supplemental
Figure 2K). Of note, some compounds were reproducibly
rescued across multiple PDX models (including oligomycin,
JQ1, NSC319726, SN38, belinostat, CEP-18870, KPT-185,
SC144, TSA, and YM155). Others were poorly effective in
specific models, underlying potential “private” rescue mecha-
nisms (Figure 2C-D; supplemental Figure 2L-M). Further, we
tested 12 additional drugs on 7 of 10 PDX models screened,
including conventional chemotherapeutics for T-ALL and novel
compounds in clinical trials (supplemental Figure 2N). We
identified commonly rescued drugs: asparaginase, dexameth-
asone, vincristine, ponatinib, dasatinib, and YKL-5-124 (CDK7
inhibitor) in 4 models. Overall, rescued compounds were active
on molecules belonging to interconnected pathways, such
as PI3K/AKT, p53, FoxO, JAK/STAT, NOD-like receptor, and
HIF-1 (supplemental Figure 2M). Next, we computed a modi-
fied Shannon entropy for each PDX model (see “Methods”)
(Figure 2E), showing an overall tendency toward increased
response heterogeneity and plasticity in the presence of
E4-ECs. We then focused on the different response profiles of
the 10 PDX models challenged in the presence of E4-ECs.
Among the most effective drugs across all models, some are of
particular interest because of their potential clinical applica-
bility: proteasome inhibitors (bortezomib, CEP18870, and
MLN2238; average specific cell death [SCD]: 83%, 79%, and
78%, respectively), histone deacetylase (HDAC) inhibitors
(panobinostat, belinostat, and CHIR124; average SCD: 75%,
69%, and 51%, respectively), heat shock protein (HSP)-90
inhibitor (ganetespib; average SCD, 49%), and BCL2 inhibitors
(venetoclax and navitoclax; average SCD: 27% and 66%,
respectively). Notably, other drugs displayed unique efficacy in
selected models and against different T-ALL phenotypes, with
ETP-ALL samples showing increased resistance to several
compounds (Figure 2F; supplemental Figure 2O-R): YM155
(survivin inhibitor; Δ SCD [ETP – non-ETP] = 39.9%; P < .0001),
SNS032 (CDK2/9 inhibitor; Δ SCD = 34.7%; P = .01), ouabain
(ATP1A1 inhibitor; Δ SCD = 31%; P = .02), STF118804 (nicotin-
amide phosphoribosyltransferase [NAMPT] inhibitor; Δ SCD =
20.9%), and KPT-185 (exportin 1 [XPO1] inhibitor; Δ SCD =
17.2%; P < .0001).

Finally, we used our dual T-ALL-EC platform to test targets
based on the genetic background of individual T-ALL PDXs. We
treated the 3119 PDX cells (carrying a NUP14/ABL trans-
location) with dasatinib, and RO2 PDX cells (mutant JAK1-JAK3-
STAT5B) and RO6 PDX cells (mutant STAT5) (supplemental
Table 1) with Jak inhibitors (ruxolitinib and tofacitinib, alone or
in combination), in the presence or absence of E4-ECs
Figure 4 (continued) PROGENy tool applied to single-cell RNA-Seq data of E4-ECs cu
expression levels for a set of genes of interest (DLL1, JAG1, CD34, ETS1, ETS2, IGFBP4, IG
with RO2 and 3119 T-ALL elements. The dot size encodes the percentage of cells expres
Expression levels were measured using the log-normalized counts. (D) Circos plot of ligan
model, based on the relative expression level measured by single-cell RNA-Seq. Only th
EC side) are depicted. (E) List of a set of genes commonly upregulated by tumor endothel
alone) (see panel F). The list of processes and functions involving each gene was der
comparison of genes upregulated in TECs vs normal E4-ECs (green circle) and in educated
List of a set of genes up- or downregulated by E4-ECs and T-ALL cocultured vs cultured al
The direction of the differences is color-coded (blue, downregulated; red, upregulated).
Biological Network Repository. IL-2, IL-6, interleukins 2 and 6.

ENDOTHELIAL CELL–LEUKEMIA INTERACTIONS IN T-ALL
(supplemental Figure 2S). E4-ECs partially rescued T-ALL cells
from single-agent treatments. However, in combination, rux-
olitinib and tofacitinib were significantly more effective in both
RO2 and RO6 PDXs.

These results highlighted the utility of the T-ALL-EC platform to
assess (1) drugs that are effectively rescued by ECs, (2) pathways
collectively or privately involved in EC rescue, (3) differential
T-ALL response profiles based on intrinsic tumor features, and
(4) unique targetable T-ALL vulnerabilities.
T-ALL cells and ECs reciprocally modulate their
transcriptomes
Aiming to elucidate the relationships between ECs and T-ALL
cells, we investigated the transcriptomic profiles of cocultured
E4-ECs and T-ALL cells from 3119 and RO2 PDX models, using
single-cell RNA sequencing (scRNA-Seq). After quality control
filtering (supplemental Figure 3A), we clustered all cells on the
basis of the most variable genes (Figure 3A; supplemental
Figure 3B-D), and analyzed the 3119 and RO2 T-ALL PDX
models separately, given their divergent genetic profiles (sup-
plemental Table 1). Notably, proliferating T-ALL cells were most
frequently included in clusters enriched in EC-cocultured T-ALL
cells in both models (Figure 3B; supplemental Figure 3E). We
found that T-ALL cocultured with E4-ECs underwent profound
transcriptional changes (Figure 3C; supplemental Table 6).
Furthermore, the differentially expressed genes defined an
“EC-mediated T-ALL education signature” for each model, with
significant overlap between the 2 models and a high concor-
dance with bulk RNA-Seq data from cells cultured under the
same conditions (Figure 3D; supplemental Figure 3F-G). In
addition, we detected enhanced single-cell entropy in T-ALL
cocultured with E4-ECs (supplemental Figure 3H), accounting for
increased plasticity.40,41

Then, we compared differential pathway activation between the
2 conditions. Both EC-cocultured RO2 and 3119 T-ALL cells
upregulated JAK/STAT, mitogen-activated protein kinase
(MAPK), transforming growth factor-β (TGFB), and epidermal
growth factor receptor (EGFR) pathways, with downregulation
of the p53 signaling pathway (Figure 3E). Gene set enrichment
analysis (GSEA) showed enrichment of the c-Myc pathway in
cocultured elements (supplemental Figure 3I), along with
increased expression of genes belonging to the NOTCH
pathway (NOTCH3, HES1, HES4)42,43 (Figure 3F). Notably,
insulin-like growth factor 1 receptor (IGF1R) was also commonly
upregulated in cocultured T-ALL cells in both models
(Figure 3F; supplemental Figure 3J). Other commonly upregu-
lated genes included ribosomal genes RPS6 (highly expressed
in several solid cancers44 and in immature leukemic blasts),45
ltured alone or in coculture with 3119 and RO2 T-ALL cells. (C) Dot plot displaying
FBP7, CD63, CD9, and S100A10) in E4-ECs that were cultured alone or in coculture

sing each gene, and the color encodes the average expression level across all cells.
d-receptor interaction obtained through the CellPhoneDB package on the RO2 PDX
e significant associations between ligands and receptors (on either the T-ALL or the
ial cells (TECs) (vs normal ECs) and by E4-ECs cocultured with T-ALL cells (vs cultured
ived from the NDEx Biological Network Repository. (F) Venn diagram showing a
vs naive E4-ECs (blue circle). P value was calculated using a hypergeometric test. (G)

one in common between the 2 PDX models (RO2 and 3119) (supplemental Figure 4I).
The list of processes and functions involving each gene was derived from the NDEx
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RPL11 (whose activating mutations have been described in
T-ALL),46 and HMGB2, a known poor prognostic factor in
several cancers.47,48 In both models, MALAT1 (known to control
the crosstalk between ECs and tumor cells49) was identified
as one of the most downregulated genes in E4-EC-cocultured
T-ALL. Similarly, RHOH50 (Figure 3C,F), normally expressed in
hematopoietic cells where it functions as a negative regulator of
cell growth and survival, was also downregulated. Importantly,
these differences were maintained at single-cell resolution,
allowing us to define model-specific clusters with enrichment
of educated cells (RO2, cluster 5; 3119, clusters 0 and 4)
(Figure 3F). Finally, to investigate whether E4-ECs could
contribute to preserving a more immature/stemlike phenotype,
we evaluated the differential expression of genes linked to
T-cell commitment and maturation.51,52 In both models,
EC-cocultured T-ALL cells expressed higher levels of genes
related to early double-negative (DN) or double-positive
proliferating (DP-P) thymocytes. In contrast, T-ALL cells
cultured alone were shifted more toward DP-quiescent (Q) or
mature T-cell phenotypes (Figure 3G).

ECs in contact with T-ALL acquire maladapted
TEC-like features
We then focused on the transcriptomes of E4-ECs cultured
alone or with T-ALL cells of the 3119 and RO2 PDX models.
Overall, we distinguished different clusters corresponding to T-
ALL-cocultured ECs (educated E4-ECs) or E4-ECs cultured
alone (Figure 4A; supplemental Figure 4A). These populations
were transcriptionally distinct, leading to the construction of
T-ALL-mediated “EC education signatures” (Figure 4A; sup-
plemental Table 7). Globally, cocultured E4-ECs upregulated
interferon-γ and -α response hallmark pathways (supplemental
Figure 4B) and increased the activity of multiple pathways,
including JAK/STAT, nuclear factor-κB (NF-κB), tumor necrosis
factor-α (TNF-α), and vascular endothelial growth factor A
(VEGF-A) (Figure 4B), with a concurrent increase in entropy
reflecting in higher differentiation potency and plasticity (sup-
plemental Figure 4C).40,41 At the gene level, cocultured E4-ECs
displayed enrichment in Notch signaling, angiogenesis (DLL1,53

JAG1,54 and CD34), cell migration, and survival (ETS1, ETS2,
and IGFBP4) genes (Figure 4C). Conversely, IGFBP7, a known
IGF1R decoy with tumor suppression features in different can-
cer types;55 CD63/TIMP-1 (involved in endothelial migration);
CD9; and S100A10 (regulating cell-cell interaction) were
downregulated in cocultured E4-ECs (Figure 4C).

We then performed a ligand-receptor analysis in the 3119 and
RO2 PDX models to investigate the bidirectional crosstalk
between T-ALL and E4-ECs (Figure 4D). This approach led to
the identification of heterogeneous interactions, mainly cosh-
ared by the 2 models (Figure 4D; supplemental Figure 4D).
Among them, the IGF1-IGF1R axis was significantly enriched
Figure 5 (continued) of the education signature derived from the in vitro experiment w
displayed similar enrichment across all clusters. (F) Dot plot displaying expression levels
(Figure 4G, T-ALL genes) in ex vivo splenic T-ALL cells compared with in vitro T-ALL elem
similar in splenic and E4-EC-cocultured T-ALL cells compared with T-ALL cultured alone,
harvested ex vivo. The dot size encodes the percentage of cells expressing each gene, a
were measured using the log-normalized counts. (G) Heat map of the genes from the 3
enough cells from all 3 compartments (in vitro T-ALL cultured alone vs with E4-ECs and e
from the spleen are clustered together with EC-cocultured T-ALL cells, based on the ex
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(outlined in red in Figure 4D). Because cocultured T-ALL
upregulated IGF1R, and conversely E4-ECs downregulated
IGFBP7 (see above), we attempted to functionally verify
whether the selective abrogation of the IGF1 pathway could
impact the EC-mediated drug rescue. We tested the 39 pan-
effective drugs (Figure 2C) with or without the recombinant
IGFBP7 (500 ng/mL) in the 3119 and 3053 PDXs. Of note,
IGFBP7 abrogated the E4-EC-mediated rescue of enzastaurin
(PKC-β inhibitor) and SC144 (GP130 inhibitor) in T-ALL PDX
3119 and 3053 models, and CHIR124 (Chk1 inhibitor) and
YM155 (survivin inhibitor) in T-ALL PDX 3119 (supplemental
Figure 4E). As these drugs regulate the activity of IGF1R or its
downstream effectors56-58 (supplemental Figure 4F), we postu-
late that the EC-mediated rescue is in part mediated by the
engagement of IGF1R of T-ALL cells.

To further explore the changes in T-ALL-cocultured E4-ECs,
we correlated their transcriptomics profiles with tumor ECs
(TECs—directly sorted from tumor masses) and naive normal/
E4-ECs (supplemental Table 8). These analyses demonstrated
that in vitro educated E4-ECs and TECs share a set of differen-
tially expressed genes, relative to normal E4-ECs (Figure 4E-F;
supplemental Figure 4G-H). These genes have been implicated
in orchestrating invasion and metastasis (ie, GSK3B, BRAF,
STAT3, MET), genome instability (ie, PTEN, BRAF, KEF1, ATM),
angiogenesis (ie, FOXO3, CREBBP, HIF1A), and enabling
immortality (ie, CDK6, SPEN, TNKS).

Last, we looked for genes coshared by both RO2 and 3119 PDX
models whose expression contributed to the education signa-
tures in both compartments (EC and T-ALL) (Figure 4G; sup-
plemental Figure 4I; supplemental Table 9). As expected,
genes linked to the EC and T-ALL compartments were distinct
and displayed different functional modules (Figure 4G). There-
fore, the T-ALL-EC model is an informative and useful tool to
probe EC-tumor interactions.

In vitro EC-educated T-ALL cells mirror in vivo
T-ALL cells
To validate the data generated using the in vitro coculture
platform, we performed scRNA-Seq on T-ALL cells from the
3119 PDX spleen (ex vivo splenic T-ALL cells). We identified
4 clusters representative of the intratumor heterogeneity based
on the differential expression of genes related to: cell cycle,
MYC, PI3K/AKT signaling, and epithelial-mesenchymal transi-
tion (supplemental Figure 5A-C). Then, we enriched our analysis
by including cells from the same source cultured for 5 days
ex vivo in SS medium either with E4-ECs (in vitro EC-educated
T-ALL) or without E4-ECs (T-ALL alone) (Figure 5A). Overall, 7
T-ALL cell clusters were identified (Figure 5B-C). Clusters 0 and
4 were enriched with T-ALL elements cultured without ECs;
clusters 1, 5, and 6 with T-ALL cultured with ECs; and clusters 2
ith the 3119 PDX model (Figure 3D). In vitro EC-cocultured and splenic T-ALL cells
for a set of genes in common between RO2 and 3119 T-ALL “educated” elements
ents (E4-ECs cocultured and cultured alone). The expression of these genes was very
demonstrating that in vitro EC-educated elements are more similar to those freshly
nd the color encodes the average expression level across all cells. Expression levels
119 “education signature” (Figure 3D) applied to cluster 0 from panel B containing
x vivo splenic T-ALL). Cell proportions in cluster 0 are found in panel D. T-ALL cells
pression of the education signature. DEG, differentially expressed genes.
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depicting overall survival of 8 different T-ALL PDX models (6467, 14741, 7072, 7155, 13002, 13356, 10512, and 5384) treated with vehicle or HDAC inhibitor panobinostat (n = 2
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and 3 with T-ALL cultured from spleen. Of note, clusters 2, 3, 5,
and 6 showed a great abundance of E4-EC-educated T-ALL or
spleen T-ALL cells (Figure 5D), pointing to the closer similarity
of these 2 compartments compared with cultured alone T-ALL
cells. Notably, clusters 2 and 3 were highly enriched for
proliferating cells (supplemental Figure 5D). Then, we applied
the T-ALL education signature defined in the previous in vitro
experiment within each cluster (Figure 5E). Remarkably, in vivo
splenic T-ALL were globally more similar to in vitro EC-
educated T-ALL than T-ALL alone. This was more evident in
clusters 0 and 4, containing enough cells belonging to all
different entities (Figure 5F-G; supplemental Figure 5E). Ulti-
mately, splenic T-ALL cells recapitulated the different
expressions of genes contributing to the education signatures
of both 3119 and RO2 PDX models (Figure 5F-G; supple-
mental Figure 5E). These data demonstrated the reliability of
the EC/T-ALL coculture platform in recapitulating in vivo
conditions.

Positive hits selected in vitro are effective in
preclinical trials
To validate our stepwise drug screening platform in vivo, we
selected 5 compounds shown to be effective on T-ALL cells in
the presence of E4-ECs (Figure 2A-C; supplemental Figure 2O-P),
effective in preclinical settings, and/or effective in targeting
underlying PDX T-ALL vulnerabilities. Panobinostat (HDAC
inhibitor), ruxolitinib (JAK1/2 inhibitor), tofacitinib (JAK1/2/3,
TYK2 inhibitor), bortezomib (20S proteasome inhibitor), and iri-
notecan (topoisomerase I inhibitor) were tested in 11 PDX
models, accounting for anoverall numberof111mice (Figure6A-B).
Overall, treated mice had a better prognosis than mice
receiving vehicles (Figure 6B). First, R02 and R06 T-ALL PDX
mice were challenged with ruxolitinib alone or in combination
with bortezomib (RO2) or tofacitinib (RO6) (supplemental
Figure 6A). Treatments were well tolerated, with no signs of
toxicity (data not shown). In comparing treated and control
mice, spleen size and percentage of leukemic circulating cells
were significantly reduced (Figure 6C-D; supplemental
Figure 6B-C). Among the 3 single agents tested, ruxolitinib
was least effective in reducing circulating disease in both
models, whereas both combinations allowed for better disease
control, more pronounced reduction in spleen volumes, and
improved overall survival (Figure 6C-E; supplemental
Figure 6B-E). Based on the ex vivo coculture drug screening,
we identified SN38 (the active metabolite of irinotecan) as
active in all models, despite an insufficient partial rescue by E4-
ECs (death rate of T-ALL cells, >50% compared with controls in
all cases [mean SCD, 68%; range, 54%-83%]; Figures 1F and 2C).
Accordingly, we randomized the 3053 and 3119 T-ALL PDX
mice to receive either vehicle or irinotecan (20 mg/kg per day for
2 weeks) (supplemental Figure 6F). Total body MRI documented
a normalized spleen size by day 15 in treated mice (Figure 6F).
Figure 6 (continued) mice per arm, n = 32 mice total) (5 mg/kg per day). Mice belongi
calculated using a log-rank test. (J) Bar plot depicting the circulating T-ALL cells (differe
models treated with vehicle or panobinostat. A single partially refractory model was identi
depicting the percentage of circulating T-ALL cells in 4 PDX models (10512, 6467, 13002,
(50 mg/kg per day), or combination (n = 2 mice per arm, n = 32 mice total). Mice treated
with the other arms. P value was calculated by t test. *P < .05. (L) Kaplan-Meier plot depic
vehicle, daunorubicin, linsitinib, or combination. Mice treated with daunorubicin plus linsit
test.

ENDOTHELIAL CELL–LEUKEMIA INTERACTIONS IN T-ALL
We also detected a reduced blood leukemia burden in treated
mice up to 40 days and improved overall survival (Figure 6G-H)
(median OS, 103 vs 52 days; P = .0002). No signs of overt
toxicity were documented (supplemental Figure 6G).

Epigenetic targeting using the HDAC inhibitor panobinostat
has been suggested as a potential therapy against T-ALL,59

and this strategy was supported by our in vitro drug
screening (Figures 1F and 2C). Thus, we executed a single-
drug preclinical trial with panobinostat, in 8 different T-ALL
PDX models (Figure 6I; supplemental Figure 6H). This treat-
ment significantly improved OS (median OS, 117 vs 68;
P = .03) (Figure 6I) and decreased circulating T-ALL blasts
(Figure 6J). Last, based on the finding that the IGF1-IGF1R axis
is upregulated in EC-cocultured T-ALL cells (Figures 3F and
4D; supplemental Figure 3J) and that its inhibition down-
regulated EC-mediated rescue (supplemental Figure 4E), we
evaluated a selective IGF1R inhibitor (linsitinib) in vivo in
4 different PDX models (Figure 6K-L; supplemental Figure 6I).
As a debulking agent, we used daunorubicin, an identified
pan-active compound in our drug screening in vitro
(Figures 1F and 2C). The combination of daunorubicin plus
linsitinib controlled disease more effectively and improved OS
(median, 84 days) compared with single agents (median:
daunorubicin, 68 days; linsitinib, 63 days) or controls (median,
42 days) (P < .0001) (Figure 6K-L), suggesting that the IGF1-
IGF1R inhibition counteracted leukemia progression in com-
bination with standard chemotherapy.

These data demonstrated the predictive utility of our screening
platform as a drug discovery process to identify active com-
pounds and T-ALL dependencies.
Discussion
Our study presents a novel customized vascular niche/cancer
platform to define targetable vulnerabilities and identify effec-
tive drugs against T-ALL cells, potentially applicable to other
cancers. Although the treatment of patients with T-ALL has
considerably improved, relapsed T-ALL often remains incur-
able.5,6 Preclinical studies have provided encouraging
approaches;60-62 however, therapeutic response does not
always depend on pathogenetic mutations,10,63 and preclinical
trials are costly and require specialized units. We envisioned a
multistep approach that integrates readouts from large drug
screenings on PDX cells ex vivo, followed by “ad hoc” in vivo
cross-validation (Figure 6A). We first identified a group of
broadly active compounds across all models tested and
observed that increased drug resistance might arise along serial
PDX propagations. This should be further exploited to improve
our understanding of therapeutic failures. Of interest, we could
find a correlation between responses and a priori transcriptional
ng to 3 of the 8 models (5384, 7155, and 6467) died without leukemia. P value was
nce between day 30 and day 0; day 0: first T-ALL detection in the blood) in 8 PDX
fied (1 of 8, 7072 PDX T-ALL). P value was calculated by t test. **P < .001. (K) Bar plots
and 13356) treated with vehicle, daunorubicin (1.2 mg/kg for 3 days/week), linsitinib
with daunorubicin plus linsitinib displayed delayed leukemia progression compared
ting overall survival of 10512, 6467, 13002, and 13356 T-ALL PDX models treated with
inib survived until 3 months from enrollment. P value was calculated using a log-rank
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profiles for selected agents, a strategy that can provide new
avenues to discover biomarkers predictive of responses.

It is well known that the tumor microenvironment can modulate
drug responses in acute leukemia, a scenario epitomized by
the contribution of mesenchymal and endothelial cells.15-19

Specifically, ECs have been seldom used in broad drug dis-
covery programs.64 Nevertheless, their role in the maintenance/
regulation of HSCs36,37 is established, fostering ALL survival via
a multitude of signaling pathways (ie, Notch,65 SDF-1,66 and
CXCL1267). Accordingly, we generated a coculture system
using E4ORF1-transduced ECs, which have been proven to
sustain T-ALL cells in vitro and can be propagated for at least
5 to 10 passages in vitro. This system demonstrated that the
T-ALL drug susceptibility was often downmodulated by ECs.
Single-cell analysis revealed that a multitude of ligand-receptor
interactions and downstream pathways are involved in this
process (eg, IGF1/IGF1R, NOTCH-DLL, and JAK/STAT), sug-
gesting that the EC-mediated prosurvival effect may require a
multitargeted approach to be fully counteracted. Toward this
end, adding recombinant IGFBP7 in vitro partially abrogated
EC rescue for selected compounds, suggesting reliance on the
IGF1-IGF1R pathway in specific cases.

On the other hand, several compounds were effective in the
presence of ECs across multiple models. These included drugs
with clinical interest (proteasome, HDAC, HSP-90, and BCL2
inhibitors). We also observed a degree of heterogeneity which
may be partially linked to unique T-ALL subgroups, with ETP-
ALL being overall more resistant, specifically on exposure to
drugs targeting PI3K/AKT and JAK/STAT pathways. A selection
of 5 compounds was ultimately shown to be effective in vivo
either alone or in combination. This was exemplified by irino-
tecan, a drug currently approved for treating many solid tumors,
suggesting its potential repositioning in the context of T-ALL,
and panobinostat, an HDAC inhibitor whose effect in T-ALL has
not been fully unraveled. Similarly, the efficacy of JAK/STAT
inhibitors has been documented in models carrying activating
mutations.10,13,68 Moreover, the data generated in vitro
with recombinant IGFBP7 and the improved survival of
daunorubicin-treated T-ALL PDX in combination with IGF1R
inhibitor linsinitib (although limited on 4 models) further support
the role of IGF1-IGF1R signaling in the leukemia-EC crosstalk.

Mechanistically, we show that ECs and T-ALL cells undergo
bilateral transcriptional changes modulating critical signaling
pathways at single-cell resolution. On the T-ALL side, these genes
were mostly linked to stemness, T-cell commitment, and matu-
ration, emphasizing the heterogeneity and plasticity of leukemic
elements. Remarkably, T-ALL cocultured with E4-ECs were more
similar to ex vivo splenic T-ALL cells freshly harvested from PDX
mice compared with T-ALL cells cultured alone, proving the
reliability of our coculture system. On the EC side, a significant set
of differentially expressed genes was expressed in common with
in vivo TECs. These bidirectional changes are reflected in
increased transcriptomic and pharmacological entropy, further
pointing toward the dynamicity of this dual-culture system
compared with conventional static single cell suspension cultures.

Hence, the EC/T-ALL coculture system partially recapitulates
in vivo conditions, representing a robust platform to study
leukemia-host interactions and drug sensitivities. We envision
516 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
that this integrated stepwise approach might overcome the
liabilities of current drug screenings and propel the entry of new
agents and combinations in clinical trials.
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