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LYMPHOID NEOPLASIA
A MIR17HG-derived long noncoding RNA provides
an essential chromatin scaffold for protein interaction
and myeloma growth
D
ow

nloaded from
 http://ashpublications.net/blood/ar
Eugenio Morelli,1,2 Mariateresa Fulciniti,1,2 Mehmet K. Samur,1,2 Caroline F. Ribeiro,3 Leon Wert-Lamas,4 Jon E. Henninger,5
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•MIR17HG produces a
long noncoding RNA
that acts as a chromatin
scaffold for protein
interaction and tumor
cell growth.

• Targeting this long
noncoding RNA with
optimized antisense
oligonucleotides has
potent antimyeloma
activity in preclinical
models.
Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic
intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate
cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a
prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-
derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a
microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for
the functional interaction between c-MYC and WDR82, thus promoting the expression of
ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carbox-
ylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts
the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects
both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-
derived xenograft NSG mouse model. This study establishes a novel oncogenic function of
MIR17HG and provides potent inhibitors for translation to clinical trials.
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Introduction

Multiple myeloma (MM) is a genetically complex malignancy of
plasma cells that accounts for ~10% of hematologic cancers and
remains largely incurable.1 A growing body of evidence points
to a key role played by noncoding RNA (ncRNA) networks in
MM,2 suggesting that MM cells can become significantly
addicted to and therapeutically susceptible to the modulation
of oncogenic ncRNAs.3-8 In particular, long ncRNAs (lncRNAs)
outnumber protein-coding genes in humans and are suscepti-
ble to the same oncogenic pathogenetic events.9,10 These RNA
molecules, defined as transcripts greater than 200 nucleotides
(nt) with no protein-coding potential, have a diverse array of
functional roles, ranging from being precursor molecules for the
biogenesis of mature microRNAs (miRNAs) to direct interactions
with proteins and nucleic acids to regulate protein function and/
or stability.11-13 With the plethora of biological functions that
lncRNAs modulate to control cellular processes at multiple
levels, it is not surprising that their aberrant expression and
function have been implicated in the progressive gain of a
malignant phenotype by tumor cells.14 Indeed, the expression
of 14 lncRNAs in newly diagnosed MM patients is correlated
(or anticorrelated) with progression-free survival independent
of cytogenetic, international staging system, or minimal residual
disease status.15 Other lncRNAs, including SMILO, also inde-
pendently predict MM progression and response to therapy.16,17

To find lncRNAs that have a direct impact on MM proliferation
and survival, thus providing cell-growth dependency, we con-
ducted an lncRNA-targeted large-scale CRISPR interference
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(CRISPRi) viability screen. CRISPRi makes use of a catalytically
inactive Cas9 (dCas9)-KRAB fusion protein to repress the
expression of endogenous lncRNA genes.18,19 From this screen,
we identified MIR17HG as essential in MM, and we (1) charac-
terized its novel function as lncRNA mediating protein-protein
and protein-DNA interactions and (2) developed potent inhib-
itors for translation to clinical trials.
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Methods
Cells
Human cell lines and primary cells were grown at 37◦C, 5%
CO2. Detailed information is included in supplemental Methods,
available on the Blood website.

RNA sequencing, microarray-based gene
expression analysis, and miRNA profiling of MM
patients and cell lines
These analyses were performed in purified CD138+ cells.
Detailed information can be found in supplemental Methods.

CRISPRi viability screen and validation
Cell lines expressing the dCas9-KRAB fusion protein were
generated as previously described.19 Detailed information on
library design, guide RNA pool library production, titering of
virus, primary and secondary screenings, and validation study as
well as on data analysis can be found in supplemental Methods.

ASO, synthetic miRNA mimics and inhibitors,
siRNAs
Long noncoding locked nucleic acid gapmeRs were custom
designed and purchased from Exiqon (Vedbaek, Denmark).
Sequences can be found in supplemental Methods. Synthetic
miRNA mimics and inhibitors, as well as silencer select small
interfering RNAs (siRNAs), were purchased from Ambion. SiRNA
pool targeting WDR82 was purchased from Horizon Discovery.
Design of clinically applicable antisense oligonucleotides
(ASOs) is described in supplemental Table 8.

Gymnosis
Gymnotic experimentswereperformedaspreviouslydescribed.20

Transient and stable transfection of cells
Cell transfection and transduction were performed as previously
described.5 Detailed information can be found in supplemental
Methods.

Detection of cell proliferation and apoptosis
Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay
(Dojindo Molecular Technologies), according to the manu-
facturer’s instructions. Apoptosis was investigated by an
Annexin V/7-AAD flow cytometry assay using FACS CANTO II
(BD Biosciences).

RT and qRT-PCR
RNA extraction, reverse transcription (RT), and real-time quan-
titative reverse transcription polymerase chain reaction (qRT-
PCR) were performed as previously described.5 Detailed infor-
mation can be found in supplemental Methods.
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Western blot analysis
Protein extraction and Western blot analysis were performed as
previously described. Detailed information can be found in
supplemental Methods.

RNA fluorescence in situ hybridization and
coimmunofluorescence with RNA fluorescence in
situ hybridization
These experiments were conducted according to established
protocols.21,22 Detailed information can be found in supplemental
Methods.

Luciferase reporter assay
Promoter reporter clones for human ACACA (NM_198834),
ANO6 (NM_001025356), CCDC91 (NM_018318), EPT1
(NM_033505), EXT1 (NM_000127), FER (NM_001308028), and
ZYG11A (NM_001004339) were cloned into the GLuc-ON
Promoter Reporter Vector (GeneCopoeia, Rockville, MD). A
luciferase reporter assay was performed according to the
manufacturer’s instructions.

ChIRP
Lnc-17-92 and LacZ antisense DNA probes were designed
using the online probe designer at singlemoleculefish.com.
Oligonucleotides were biotinylated at the 3’ end with an
18-carbon spacer arm. AMO1 cells were collected and sub-
jected to chromatin isolation by RNA precipitation (ChIRP) using
the EZ-Magna ChIRP RNA Interactome Kit (Millipore Sigma,
Bedford, MA), according to the manufacturer’s instructions and
established protocols.23

De novo lipogenesis assay
These experiments were conducted as previously described.24

Detailed information can be found in supplemental Methods.

Chromatin immunoprecipitation quantitative
polymerase chain reaction
Chromatin immunoprecipitation quantitative polymerase chain
reaction was performed as previously described.25 Detailed
information can be found in supplemental Methods.

RNA-protein pull-down
Lnc-17-92 transcripts and truncated versions were cloned into a
pBlueScript vector and sequence verified. In vitro transcription
and biotinylation were performed using AmpliScribe T7-Flash
Biotin-RNA Transcription Kit (Lucigen, catalog no. ASB71110),
according to the manufacturer’s instructions. Cell nuclear
lysates (from 1 × 107 AMO1 cells) were incubated with bio-
tinylated RNA and streptavidin beads for RNA pull-down incu-
bation, using Pierce Magnetic RNA-Protein Pull-Down Kit
(Thermo Fisher Scientific, catalog no. 20164), according to the
manufacturer’s instructions. RNA-associated proteins were eluted
and analyzed by Western blotting.

RNA yeast 3 hybrid
These experiments were conducted according to established
protocols.21,22 Detailed information can be found in supplemental
Methods.
MORELLI et al
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RIP quantitative polymerase chain reaction
RNA immunoprecipitation (RIP) experiments were performed
using the Magna RIP RNA-binding Protein Immunoprecipitation
Kit (Millipore Sigma, catalog no. 17-701), according to the
manufacturer’s instructions. The anti-MYC antibody used for RIP
was purchased from Abcam (ab32072). Normal rabbit immu-
noglobulin G was purchased from Cell Signaling Technology
(catalog no. 2729). The primers used for detecting lnc-17-92 are
listed in supplemental Methods.

Co-IP
Protein lysates were obtained from 1 × 107 cells (AMO1, H929,
and U266MYC+, with corresponding treatments). Coimmuno-
precipitation (Co-IP) was performed using the Pierce Co-
Immunoprecipitation Kit (Thermo Fisher Scientific, catalog
no. 26149), according to the manufacturer’s instructions. IP
antibodies are listed in supplemental Methods.

BioID
Proximity-dependent biotin identification (BioID) was per-
formed as described by Kalkat et al.26 Detailed information can
be found in supplemental Methods.

Mass spectrometry
Mass spectrometry analysis of Co-IP and BioID samples was
performed at the Taplin Mass Spectrometry Facility (Harvard
Medical School, Boston, MA).

Animal study
Six-week-old female immunodeficient NOD.CB17-Prkdcscid/
NCrCrl (NOD/SCID) mice (Charles River) or NSG mice (Jackson
Laboratory) were housed in our animal facility at the Dana-
Farber Cancer Institute (DFCI). All experiments were per-
formed after approval by the Animal Ethics Committee of the
DFCI and performed using institutional guidelines. Detailed
information can be found in supplemental Methods.

Statistical analysis
All in vitro experiments were repeated at least 3 times and
performed in triplicate. Statistical significances of differences
were determined using the Student t test (unless otherwise
specified), with the minimal level of significance specified as P <
.05. Kaplan-Meier survival curves were compared by log-rank
test. Statistical analyses were determined using GraphPad
software (http://www.graphpad.com). Graphs were obtained
using GraphPad software (unless otherwise specified).
24
Results
CRISPRi viability screens identify MIR17HG as a
leading cell-growth dependency in MM
We analyzed RNA sequencing (RNA-seq) data from 360 newly
diagnosed MM patients and identified 913 lncRNA transcripts
expressed in primary MM cells (Figure 1Ai.) and in a panel of 70
MM cell lines (data not shown). To systematically interrogate the
role of these lncRNAs in MM cell growth, we transduced 3 MM
cell lines (H929, KMS-11, and KMS-12-BM) engineered to
express a dCas9-KRAB fusion protein with a pooled library
consisting of 7 single guide RNAs (sgRNAs) against each of the
913 transcription start sites (TSS) of the identified lncRNAs and
A LONG NONCODING RNA SUPPORTING MYELOMA
576 negative control sgRNAs (Figure 1Aii; supplemental
Table 1). After 3 weeks, we tested for sgRNAs that were rela-
tively depleted or enriched in the MM cell population using
deep sequencing and the Model-based Analysis of Genome-
wide CRISPR-Cas9 Knockout RRA algorithm.27

The most enriched or depleted sgRNAs were further tested in
secondary screens using a pooled library targeting the TSS of
224 lncRNAs, the TSS of known protein-coding oncogenes
(MYC, IRF4),28,29 or tumor suppressors (TP53)30 as positive
controls and 2245 nontargeting sgRNAs as negative controls
(Figure 1Aiii; supplemental Table 2). In the secondary screens,
4 MM cell lines (H929, KMS11, KMS12BM, and AMO1) were
used to detect and rank significantly depleted or enriched
sgRNAs. As expected, sgRNAs targeting IRF4 and MYC were
significantly depleted in 3 (MYC) or all (IRF4) cell lines, whereas
sgRNAs targeting TP53 were significantly enriched in both TP53
wild-type (WT) cell lines (AMO1 and H929).31

Focusing on depleted sgRNAs, we identified lncRNA depen-
dencies in MM cells that were either cell-line specific (54%) or
shared (46%) (supplemental Figure 1A; supplemental Table 3).
A ranked analysis of sgRNA depletion identified MIR17HG as
the leading dependency, with RRA scores equal or superior to
those obtained by targeting MYC or IRF4 in all cell lines tested
(Figure 1B). To validate this data further, we next transduced
MM cell lines expressing dCas9-KRAB fusion protein with the
top 4 sgRNAs targeting MIR17HG under the regulation of a
tetracycline-inducible promoter and observed reduced cell
growth compared with cells infected with nontargeting sgRNAs
after continued exposure to doxycycline (Figure 1C; supplemental
Figure 1B). Moreover, we used 2 different locked nucleic acid
gapmeR ASOs (simply referred to as ASO), which target the
MIR17HG nascent RNA (pre-RNA) for ribonuclease (RNase)
H–mediated degradation,32,33 to transfect 11 MM cell lines
including those resistant to conventional anti-MM agents
(AMO1-ABZB resistant to bortezomib; AMO1-ACFZ resistant to
carfilzomib; MM.1R resistant to dexamethasone) and confirmed a
significant impact on MM cell viability independent of the genetic
and molecular background (Figure 1D; supplemental Figure 1C).
MIR17HG-derived lnc-17-92 mediates cell-growth
dependency in an miRNA- and DROSHA-
independent manner
MIR17HG is the locus of the miRNA cluster miR-17-92 and an
lncRNA,34,35 named here lnc-17-92. Lnc-17-92 has 2 isoforms,
1 that is ~5000 nt long (lnc-17-92TV1) and 1 that is ~900 nt (lnc-
17-92TV2),34,35 and both have yet to be functionally explored
(Figure 2A). In MM cells, both RNA-seq (supplemental
Figure 2A) and qRT-PCR (supplemental Figure 2B) indicated
preferential expression of lnc-17-92TV1, which is the isoform
further investigated in this study and hereafter referred to as
lnc-17-92. Using RNA-seq, we confirmed its expression in
CD138+ cells from an additional large cohort of MM patients
(MMRF/CoMMpass, n = 720) and in MM cell lines (n =60)
(supplemental Figure 2C-D). In MM cell lines, we also demon-
strated nuclear enrichment of lnc-17-92 using single molecule
RNA fluorescence in situ hybridization (FISH) (Figure 2B) and
subcellular qRT-PCR (supplemental Figure 2E). We observed
that lnc-17-92 expression was higher during disease progres-
sion in 2 independent data sets from MM patients analyzed at
26 JANUARY 2023 | VOLUME 141, NUMBER 4 393

http://www.graphpad.com


Screening
candidates

0

0

2

4

6

8

10

12

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

i.
RNA-seq analysis

A
ii.

CRISPRi
primary screening

H929

KMS11
KMS12BM

AMO1

KMS11

H929

KMS12BM
3 weeks cell growth
NGS of gRNAs
MAGeGK analysis

3 weeks cell growth
NGS of gRNAs
MAGeGK analysisDepleted

sgRNAs

Depleted
sgRNAs

Enriched
sgRNAs

1st CRISPRi
library

2nd CRISPRi
library

iii.
CRISPRi

secondary screening

LncRNAs Rank
(highest to lowest)

M
ed

ia
n 

ex
pr

es
sio

n

B

0

0

10

20

30

-lo
g1

0 
(R

RA
 n

eg
at

ive
 sc

or
e)

40

50 IRF4

MYC

ALL CELL LINES

MIR17HG AMO1 HP29 KMS11 KMS12BM

50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0

2

4

6

8 MIR17HG
MIR17HG

0
1
2
3
4
5
6

MIR17HG

0

2

4

6

8

MIR17HG

0

2

4

6

8

Negative selection gene ranking

D

Ce
ll 

gr
ow

th
(%

 o
f N

C)

Days after transfection

AMO1

ABZB

ACFZ

H929

MM.1S

MM.1R

U266

LR7

R8226

KMS-11

KMS-12-BM

0
0

20

40

60

80

100

2

ASO1

4

0
0

20

40

60

80

100

2

ASO2

4

*

*

C

0
0

20

40

Ce
ll 

gr
ow

th
(%

 o
f n

or
m

al
ize

d 
em

pt
y v

ec
to

r)

60

80

100

120

3 6

Days

AMO1

9 0
0

20

40

60

80

100

120

3 6

Days

H929

NC

gRNAs:

MIR17HG#1

MIR17HG#2

MIR17HG#3

MIR17HG#4

9

*
*

Days after induction

0
0

20

40

60

80

100

120

3 6

Days

KMS11

9 0
0

20

40

60

80

100

120

3 6

Days

KMS12BM

9

*

*

Figure 1. CRISPRi viability screens identify MIR17HG as a leading cell growth dependency in MM. (A) Schematic ofCRISPRi viability screens. (B) Robust rank algorithm (RRA)-
based ranked analysis of lncRNA dependencies in the secondary screen, considering 4 MM cell lines either together or individually. The top lncRNA dependency,MIR17HG, is high-
lighted, along with the protein-coding genes IRF4 and MYC used as positive controls. (C) CCK-8 proliferation assay of MM cell lines (AMO1, H929, KMS11, and KMS12BM) stably
expressing KRAB-dCAS9 fusion protein and transduced with lentivectors to conditionally express anti-MIR17HG sgRNAs. CCK-8 assay was performed at indicated time points after
exposure to doxycycline (0.5 μg/mL). Cell proliferation is calculated compared with parental cells infected with the empty sgRNA vector and exposed to doxycycline under the same
conditions. (D) CCK-8 proliferation assay of MM cell lines (n = 11) transfected with 2 different ASOs targeting theMIR17HG pre-RNA or a nontargeting ASO (NC). ASOs were used at a
concentrationof 25nM.Cell viabilitywasmeasured2and4days after electroporation, and it is representedas%viability comparedwithcells transfectedwithNC-ASO.Data from1outof
3 independent experiments are shown in panel D. Data present mean ± standard deviation in panel D. *P < .05 by Student t test.
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Figure 2. MIR17HG-derived lnc-17-92 mediates cell growth dependency in an miRNA- and DROSHA-independent manner. (A) Overview of MIR17HG locus, including
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diagnosis and/or relapse (supplemental Figures 2F-G) and that
higher expression of lnc-17-92 was associated with shorter
event-free survival and overall survival in 3 large cohorts of
newly diagnosed MM patients (Figure 2C). Expression of lnc-17-
92 did not significantly correlate with the expression of miR-17-
92 miRNAs in CD138+ MM cells from 140 patients (average
Spearman r = 0.16), suggesting that lnc-17-92 and miR-17-92
A LONG NONCODING RNA SUPPORTING MYELOMA
are under independent regulatory control and function in
distinct molecular pathways mediating cell growth dependency
to MIR17HG (supplemental Figure 2H).

To test independent activity of lnc-17-92, we first established
2 MM cell lines overexpressing miR-17-92 via ectopic expression
of the primary precursor pri-mir-17-92 (supplemental Figure 3A).
26 JANUARY 2023 | VOLUME 141, NUMBER 4 395
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We specifically depleted lnc-17-92 in these cell lines with ASOs
targeting the 5’ end of MIR17HG pre-RNA, a region not covered
by pri-mir-17-92, and observed a significant inhibition of cell
growth that was not rescued by ectopic pri-mir-17-92 (Figure 2D).
Next, we established 2 DROSHA knockout (DR-KO) MM cell lines
(AMO1DR-KO and H929DR-KO), which are unable to enzymatically
digest pri-mir-17-92 and produce miR-17-92s (supplemental
Figure 3B),36 and still observed strong antiproliferative activity in
both DR-WT and DR-KO cell systems after lnc-17-92 depletion
using gymnotic treatment with ASO1 (Figure 2E) or after trans-
fection with 3 different ASOs (−1/−2/−3) (supplemental
Figure 3C). Importantly, exposure to gymnotic ASO1 (Figure 2E-
F) or transfection with ASO2 (supplemental Figure 3D) abrogated
the ability of AMO1DR-KO cells to establish tumors in nonobese
diabetic severe combined immunodeficiency (NOD SCID) mice,
resulting in prolonged animal survival. Next, using the easy-to-
transfect colorectal cancer cell line HCT-116, which is driven by
MIR17HG,34 we found that ectopic expression of lnc-17-92TV1

significantly rescued the antiproliferative activity of ASOs tar-
geting MIR17HG pre-RNA more effectively than ectopic lnc-17-
92TV2 or pri-mir-17-92 (supplemental Figure 3E-F). Finally, we
confirmed the independent activity of lnc-17-92 in the HCT-
116 and DLD-1 colorectal cancer cell lines carrying a mutant
Dicer, which confers a hypomorphic phenotype preventing the
cells from enzymatically processing mature miRNAs37

(supplemental Figure 3G).
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These results indicate that lnc-17-92TV1 is the main mediator of
MIR17HG cancer dependency, separate from the actions and
biogenesis pathway of miR-17-92.
Lnc-17-92 forms a transcriptional axis with ACACA
to promote MM cell growth
The nuclear enrichment of lnc-17-92 suggests a possible role
in the regulation of gene expression. We therefore depleted
lnc-17-92 in DR-WT (AMO1 and H929) and DR-KO (AMO1DR-

KO) MM cell lines using early exposure to gymnotic ASO1 to
avoid modulation of miR-17-92 (supplemental Figure 4A) and
miR-17-92’s canonical targets in DROSHA WT cells
(supplemental Figure 4B-C) and identified 7 genes rapidly
downregulated after depletion of lnc-17-92 in all the cell lines
tested (Figure 3A). We validated these findings in CD138+

cells from 3 MM patients treated ex vivo with ASO1
(Figure 3B) and in the lymphoma cell lines Raji and Daudi
(supplemental Figure 4D). Conversely, the expression of
these genes was not affected by modulating individual
members of miR-17-92 using synthetic mimics or inhibitors
(supplemental Figure 4E-F). Moreover, we observed signifi-
cant positive correlation (Spearman r > 0.3; P < .001)
between lnc-17-92 and its target genes in at least 1 out of
2 large RNA-seq MM patient data sets (IFM/DFCI and
MMRF/CoMMpass) (Figure 3C).
MORELLI et al
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Using a luciferase reporter assay, performed in 293TDR-KO cells
in the presence or absence of lnc-17-92 depletion, we
demonstrated that the regulatory control of lnc-17-92 over
these genes, except ANO6, occurs at the promoter level
(Figure 3D). Consistently, we confirmed lnc-17-92 interaction at
the promoter region of the top target, ACACA, by a ChIRP
assay followed by qRT-PCR analysis (Figure 3E; supplemental
Figure 4G-H) and showed frequent localization of lnc-17-92 to
the ACACA locus by single-molecule dual RNA FISH analysis of
lnc-17-92 and ACACA pre-mRNA (<300 nm to nearest lnc-17-
92 spot in ~50% of ACACA pre-RNA spots analyzed [n = 60])
(Figure 3F). Proximal localization of lnc-17-92 to the ACACA
gene locus was significantly more frequent compared with
random spots (Figure 3F).

Among the identified lnc-17-92 targets, ACACA had the
largest impact on the proliferation and survival of MM cells
(Figure 3G). ACACA encodes the rate-limiting enzyme for
the de novo lipogenesis pathway ACC1, which supports
tumorigenesis in different cancer contexts.38 To confirm that
lnc-17-92’s control over ACACA expression has a functional
effect, we depleted lnc-17-92 and found that the incorpora-
tion of C14-radiolabeled glucose into the lipid pool was
significantly reduced, indicating a reduced amount of de
novo lipogenesis,24 both in MM cell lines and CD138+ MM
patient cells (supplemental Figure 4I). This was not observed
after transfection of MM cells with synthetic inhibitors of miR-
17-92s (supplemental Figure 4J). Moreover, supplementing
palmitate, which is the main downstream product of ACC1
activity, significantly rescued the antiproliferative and pro-
apoptotic effects of lnc-17-92 depletion in MM cells
(supplemental Figure 4K-L).

Altogether, these data indicate lnc-17-92 is a chromatin-
interacting lncRNA with transcriptional regulatory functions.
We next sought to determine how it can promote transcription
by searching for its protein-binding partners.
22-016892-m
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Lnc-17-92 directly interacts with c-MYC and
promotes its occupancy at the ACACA promoter
The targeting of MIR17HG primarily kills c-MYC–positive
(MYC+) tumor cells, including in MM.5,34,39,40 Intriguingly, MYC
is known to reactivate ACACA expression and de novo lipo-
genesis in tumor cells,41 with MYC+ tumor cells becoming
addicted to this metabolic pathway, findings that we validated
in MM cells (supplemental Figure 5A-D). Therefore, we hypo-
thesized that lnc-17-92 mediates the functional interplay
between MYC and MIR17HG by directly interacting with MYC
protein to promote gene expression.

We performed an RNA protein pull-down (RPPD) experiment
and found that MYC forms a complex with lnc-17-92TV1

(Figure 4A). RIP assay with MYC antibody confirmed the
enrichment of lnc-17-92TV1 (Figure 4B). Moreover, an RNA
yeast-3-hybrid (Y3H) assay confirmed the lnc-17-92TV1–MYC
interaction in an in vivo cellular model,42 as shown by yeast
colony growth (Figure 4C). An analysis using truncated versions
of lnc-17-92TV1 further indicated the 3’-end regions, which do
not include miR-17-92, as particularly relevant for the interac-
tion with MYC in MM cells (supplemental Figure 5E).
A LONG NONCODING RNA SUPPORTING MYELOMA
Next, we evaluated whether MYC and lnc-17-92 cooperate
to promote ACACA expression in MM cells. Depletion of lnc-
17-92 in MM cells indeed abrogated MYC occupancy at
the ACACA promoter while not affecting MYC expression
(Figure 4D) and reduced the expression of ACACA in the con-
ditional MYC Tet-Off cell line P493-643 only in presence of high
MYC levels (Figure 4E). Moreover, by coupling RNA FISH
analysis of lnc-17-92TV1 and ACACA pre-RNA with immunoflu-
orescence analysis of MYC protein, we captured the colocali-
zation of lnc-17-92TV1 and MYC at the ACACA gene locus
(supplemental Figure 5F).

These data demonstrate that lnc-17-92TV1 forms an RNA-
protein complex with the transcription factor MYC to promote
its chromatin occupancy and transcriptional activity at the
ACACA promoter.
Lnc-17-92 mediates the assembly of an MYC-
WDR82 transcriptional complex, leading to
transcriptional and epigenetic activation of
ACACA
MYC transcriptional activity is modulated through the inter-
action with transcriptional and epigenetic coregulators.41 To
determine whether lnc-17-92 affects these protein-protein
interactions, we integrated the results of a proximity-
dependent BioID analysis (supplemental Figure 6A) with a
Co-IP/MS in 3 MM cell lines (AMO1, H929, and U266MYC+), in
the presence and absence of depletion of lnc-17-92.
This analysis highlighted WDR82 as a very high-confidence
lnc-17-92–dependent MYC interactor (Figure 5A and
supplemental Tables 4-7). A direct RNA-protein interaction
between lnc-17-92TV1 and WDR82 was further confirmed by
both RPPD (Figure 5B) and RNA Y3H (Figure 5C) assays.
Analysis using the truncated versions of lnc-17-92TV1 indi-
cated that this interaction may involve different domains
across lnc-17-92 (supplemental Figure 6B).

WDR82 is a regulatory component of the SET1 methyltransferase
complex, which catalyzes histone H3 Lys-4 (H3K4) methylation
(mono-, di-, tri-) at the transcriptional start sites of active loci,44,45

a prerequisite for MYC binding to chromatin and trans-
activation.46 We confirmed a global effect of silencing of WDR82
on H3K4 methylation in MM cells (supplemental Figure 6C).
Consistently, depletion of WDR82 reduced the occupancy of
H3K4me3 (Figure 5D and supplemental Figure 6D) and MYC
(Figure 5E and supplemental Figure 6E) at the ACACA promoter
and decreased ACACA mRNA expression (Figure 5F and
supplemental Figure 6F) in MM cells. Furthermore, using MM
cells expressing an ectopic WDR82-GFP fusion protein
(supplemental Figure 6G), we demonstrated that lnc-17-92
expression is essential for WDR82 occupancy at the ACACA
promoter (Figure 5G). Additionally, lnc-17-92 depletion resulted
in reduced levels of H3K4me3 at the ACACA promoter
(Figure 5H), without globally impacting the H3K4 methylation
status (Figure 5I).

These findings suggest lnc-17-92TV1 is a chromatin scaffold
mediating the assembly of the MYC-WDR82 multiprotein tran-
scriptional complex to control the expression of ACACA and
likely other genes.
26 JANUARY 2023 | VOLUME 141, NUMBER 4 397
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Figure 3. Lnc-17-92 forms a transcriptional axis with ACACA to promote proliferation and survival of MM cells. (A) Transcriptomic analysis after lnc-17-92 depletion in
MM cell lines that have either DROSHA WT (AMO1, H929) or KO (AMO1DR-KO). Venn diagram of commonly downregulated genes (adjusted P < .05; log2FC < −1). Cells were
exposed to ASO1 for 24 hours. (B) qRT-PCR analysis of lnc-17-92 targets in CD138+ cells from 3 MM patients exposed to ASO1 for 24 hours. The results shown are average
mRNA expression levels after normalization with GAPDH and ΔΔCt calculations. RNA level in cells exposed to NC (vehicle) were set as an internal reference. (C) Correlation
analysis between lnc-17-92 targets (mRNA) and lnc-17-92 in CD138+ MM patient cells from 2 large RNA-seq cohorts (DFCI/IFM, n = 360; MMRF/CoMMpass, n = 720).
Spearman r obtained in DFCI/IFM (x-axis) and MMRF/CoMMpass (y-axis) data sets. Dotted red lines indicate r = 0.3. Individual correlation plots (below). (D) GLuc/SEAP dual
reporter assay showing reduced activity of ACACA, ANO6, CCDC91, EPT1, EXT1, FER, and KIAA1109 promoter activity after lnc-17-92 knockdown using ASO1. The reporter
vectors were cotransfected into 293T cells with either ASO1 or control ASO. Cells were harvested for the luciferase activity assay 48 hour after transfection. Results are shown as
% of normalized GLuc activity in ASO1-transfected cells compared with control. (E) ChIRP-qPCR analysis showing effective amplification of ACACA promoter in chromatin
purified using 2 lnc-17-92 antisense probe sets (ps1 and ps2), compared with chromatin purified using LacZ antisense probes (negative control). (F) (left) Snapshot obtained by
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Therapeutic inhibitors of MIR17HG exert potent
antitumor activity in vitro and in vivo in animal
models of human MM
We next explored MIR17HG as a therapeutic target, which
includes both the lncRNA and miRNA factors. To develop
clinically applicable inhibitors, we screened >80 fully phos-
phorothioated, 2’-O-methoxyethyl–modified, lipid-conjugated
ASOs that could either trigger RNase H–mediated degradation
of MIR17HG pre-RNA (gapmeRs) or exert function via an
RNase H–independent mechanism (blockmeRs)47 (supplemental
Figure 7A-B). This procedure identified an 18-mer tocopherol
(T)-conjugated gapmeRG2-15b-T (“G”) and an 18-mer tocopherol
(T)-conjugated steric blocker SB9-19-T (“B”) as both having strong
antiproliferative effects (cell growth inhibition >50%) in a large
panel of MM cell lines as well as CD138+ primary MM cells, while
sparing (cell growth inhibition <50%) nonmalignant cell lines
(THLE-2, HK-2, HS-5, and 293T) and peripheral blood mono-
nuclear cells from 3 healthy donors (supplemental Figure 7C).
Figure 3 (continued) dual RNA-FISH analysis of ACACA pre-mRNA (green) and lnc-17-92
ACACA pre-RNA spots to the nearest lnc-17-92 spots (n = 57) or to the nearest random sp
assay in 5 MM cells lines after transfection with siRNAs against lnc-17-92 targets. Two siRN
was measured at the indicated time point, represented as % of NC-transfected cells. *P <
F. Pt, patient.

A LONG NONCODING RNA SUPPORTING MYELOMA
To assess the in vivo antitumor activity of both compounds, we
first used an AMO1-based plasmacytoma xenograft model in
immunocompromised NOD SCID mice. Here, we observed a
significant reduction of tumor growth after a treatment cycle
with either G2-15b-T (tumor growth inhibition [TGI] = 76%) or
B9-19-T (TGI = 69%) (Figure 6A). Analysis of tumors retrieved
from mice following this treatment confirmed reduced expres-
sion of lnc-17-92 (Figure 6B) and miR-17-92s (supplemental
Figure 7D), as well as modulation of lnc-17-92’s targets
(ACACA, EPT1, EXT1, CCDC91, ANO6, FER, and ZYG11A)
(Figure 6C) and miR-17-92’s target BIM (also known as
BCL2L11) (supplemental Figure 7E). We also observed reduced
levels of tripalmitin (supplemental Figure 7F), a surrogate for the
de novo lipogenesis product palmitate48 This demonstrates
efficient uptake of G2-15b-T and B9-19-T by tumor cells in vivo.
We observed no overt toxicity in the mice after treatment, as
shown by blood cell count, clinical biochemistry (supplemental
Tables 9-10), and body weight analysis (not shown).
(purple) in a representative AMO1 cell; (right) box plot showing the distance (nm) of
ots (160); 300 nm was used as a cut-off determining proximity. (G) CCK-8 proliferation
As were used for each target, plus a scramble siRNA (NC) as a control. Cell viability
.05 after Student t test in panels B, D, and G or after Fisher exact test in panels E and
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We next confirmed the significant anti-MM activity of G2-15b-T
and B9-19-T in an aggressive model of diffused myeloma, in
which tumor growth of MOLP8-luc+ MM cells is assessed by BLI.
In this model, tumor growth was significantly antagonized after
a treatment cycle with either G2-15b-T (TGI = 84%) or B9-19-T
(TGI = 52%). Treatment with G2-15b-T resulted in tumor
clearance in 2 out of 8 mice (25%) (Figure 6D). Importantly, both
inhibitors significantly prolonged animal survival (Figure 6E).

Finally, we established a clinically relevant PDX-NSG mouse
model by tail-vein injection of CD138+ MM cells obtained from
an advanced-stage patient (PDX-NSG). In this model, tumor
growth was monitored in serum samples using human κ light
chain as a surrogate. Remarkably, we observed a regression of
tumor growth after a treatment cycle with G2-15b-T, whose
effects were comparable to bortezomib (a positive control)
(Figure 6F).
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Discussion
MIR17HG is often amplified and/or overexpressed in human
cancer and has a driver role.34,39,49 One of its transcriptional
products, pri-mir-17-92, is enzymatically digested by DROSHA
into 6 precursor transcripts (pre-mir-17/−18a/−19a/−20a/
−19b1/−92a) that are further processed by DICER to generate
the miR-17-92 mature miRNAs (miR-17/−18a/−19a/−20a/
−19b1/−92a). These miRNAs posttranscriptionally repress
relevant tumor-suppressive mRNAs,34,39,40,49 such as the pro-
apoptotic factor BIM.50 Their impact on tumorigenesis is
particularly relevant when coexpressed with MYC,34,39 as there
is a well-documented interplay between miR-17-92, especially
miR-19b,51,52 and MYC transcriptional targets in maintaining
cancer cell homeostasis.5,39,40 We have previously demon-
strated that these miRNAs play a relevant role in MM by forming
homeostatic feed-forward loops with MYC and BIM.5 Interest-
ingly, our previous work also showed that depletion of mature
miRNAs does not phenocopy the inhibition of MIR17HG pre-
RNA, suggesting other tumor-promoting functions for this
transcript.5 An alternative mechanism to explain the oncogenic
role of MIR17HG has been recently identified and involves the
overload of DROSHA by an overexpressed pri-mir-17-92 in
B-cell lymphomas.53 Our description in this study of the miRNA-
, DROSHA-, and DICER-independent function of MIR17HG, via
lnc-17-92, establishes this gene as having both short (miR-17-
92) and long (lnc-17-92) noncoding RNA activities, with the
latter mediating tumor-promoting activity in MM and likely
other cancer contexts (eg, colorectal cancer).

We described lnc-17-92 as a specific regulator of gene
expression via chromatin occupancy and interaction with MYC
and WDR82. Lnc-17-92 directly reduces the expression of a
small subset of genes and prevents the accumulation of
H3K4me3 at the ACACA promoter. These effects are in contrast
to what is observed by depleting c-MYC (ie, global effect on
Figure 5 (continued) represented as % of input chromatin. (E) ChIP-qPCR analysis of MYC
4) (24-hour time point). Data are represented as % of input chromatin. (F) qRT-PCR analy
point). Raw Ct values were normalized to GAPDHmRNA and expressed as ΔΔCt values ca
cells transfected with NC were set as an internal reference. (G) ChIP-qPCR analysis of W
gymnotic ASO1. Data are represented as % of input chromatin. Western blot analysis of W
(H) ChIP-qPCR analysis of H3K4me3 occupancy at the ACACA promoter in AMO1 and H
chromatin. (I) Western blot analysis of H3, H3H3K4me1, H3H3K4me2, and H3H3K4me3 in A
protein loading controls (nuclear lysates). *P < .05, Student t test.
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gene expression) or WDR82 (ie, global effect on methylation of
H3K4) in cancer cells, as reported in this and other studies.44,54

Our data support the emerging paradigm whereby chromatin
occupancy by transcription factors like MYC may be determined
through interacting with specific lncRNAs,55 in addition to
protein partners.26 In a broader perspective, our observations
on lnc-17-92 suggest lncRNAs are key mediators of the
epigenetic and transcriptional reprogramming of MM cells. In
this molecular scenario, whereas proteins act as catalytic
effectors, the intrinsic structural flexibility of lncRNAs makes
them good modular scaffolds able to mediate both protein-
protein and protein-DNA interactions at specific chromatin
regions.

We further showed that the lnc-17-92–MYC–WDR82 complex
impacts tumor cell metabolism by activating the de novo lipo-
genesis pathway via regulation of ACACA. This anabolic
pathway is primarily restricted to liver and adipose tissue in
normal adults but is reactivated in cancer cells via mechanisms
yet to be fully described.38,56 Notably, MYC has been impli-
cated in the reprogramming of tumor-cell metabolism by acti-
vating that pathway via ACACA and other genes.57 In turn,
lipogenesis has emerged as an essential pathway for the onset
and progression of MYC-driven cancers, which are susceptible
to pharmacologic inhibition of ACC1.41 This seems particularly
relevant in MM, in which tumor cells need to adapt their
metabolic pathways to meet the high bioenergetic and
biosynthetic demand posed by the malignant cell growth
coupled with unceasing production of monoclonal immuno-
globulin.58,59 Nevertheless, we acknowledge that the oncogenic
roles of lnc-17-92 are likely not limited to the transcriptional
axis with ACACA and will require further investigation to be
comprehensively elucidated.

Deletion of MIR17HG is tolerated in adult mice,60 and its
haploinsufficiency is compatible with life in humans.61 The
physiological role of MIR17HG seems particularly relevant
only for the hematopoietic stem cell compartment,60 which
continuously renews. These observations support the develop-
ment of MIR17HG as a target. Thus, for translational purposes,
we developed 2 therapeutic ASOs that target the MIR17HG
pre-RNA via different mechanisms of action (ie, RNase H–
dependent or –independent). With the recent advances in RNA
medicine,62-64 the use of ASOs to therapeutically antagonize
disease-driver genes is becoming increasing possible,47,65

including in MM therapy.5,66 Our optimization of design and
chemistry has helped to overcome the major obstacles to
the clinical use of ASOs, such as poor bioavailability,65 while
limiting off-target toxicity. The inhibitors described here
bear state-of-the-art chemical modifications (2’MOE,
phosphorothioated-backbone, lipid conjugation) and have suffi-
cient nucleotide length (18 mer) to ensure high specificity for
MIR17HG. Inhibitors of this kind have already been tested within
clinical trials, and a few are already approved by the US Food and
occupancy at the ACACA promoter after silencing of WDR82 with a siRNA pool (n-
sis of ACACA mRNA after silencing of WDR82 with a siRNA pool (n-4) (48-hour time
lculated using the comparative cross threshold method. ACACA expression levels in
DR82-GFP occupancy at the ACACA promoter in AMO1 exposed for 24 hours to
DR82-GFP from paired samples. α-Tubulin was used as the protein loading control.
929 exposed for 24 hours to gymnotic ASO1. Data are represented as % of input
MO1 and H929 exposed for 24 hours to gymnotic ASO1. Lamin A/C was used as the
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Figure 6. Therapeutic inhibitors of MIR17HG exert potent antitumor activity in vitro and in vivo in animal models of human MM. (A) Subcutaneous in vivo tumor growth
of AMO1 cells in NOD SCID mice, 21 days after treatment with G2-15b*-TO (G; n = 5), B9-19-TO (B; n = 5), or vehicle (NC; n = 5). (B-C) qRT-PCR analysis of lnc-17-92 (C) and
lnc-17-92 targets (D) in AMO1 xenografts, retrieved from animals treated with G2-15b*-TO (G; n = 1), B9-19-TO (B; n = 1), or vehicle (NC; n = 1) as a control. Raw Ct values were
normalized to ACTBmRNA and expressed as ΔΔCt values calculated using the comparative cross threshold method. Expression levels in NC were set as an internal reference.
(D) Bioluminescent imaging–based (BLI-based) measurement of in vivo tumor growth of MOLP8-luc+ in NSG mice, after treatment with G2-15b*-TO (G; n = 8), B9-19-TO
(B; n = 6), or vehicle (NC; n = 11). On the top, a scatter plot shows the analysis of bioluminescence intensity. Red bars indicate median value. Bioluminescence was
measured at the end of the treatment cycle (day 15). Image acquisition (below). Mice removed from the study owing to failed IV injection of tumor cells are covered by a black
rectangle. (E) Survival analysis from experiment in panel E. (F) Human κ light chain enzyme-linked immunosorbent assay–based measurement of in vivo tumor growth of MM
patient cells in NSG mice (PDX-NSG), after treatment with G2-15b*-TO (G; n = 2), bortezomib (BTZ; n = 2), or vehicle (NC; n = 3). Black arrows indicate treatments. *P < .05;
**P < .01; ***P < .001. Max, maximum; Min, minimum; ns, not significant.
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Drug Administration for use in different human diseases.65 Our
optimized ASOs targeting MIR17HG with demonstrated activity
in 3 different murine models of human MM provide the rationale
to now consider clinical application in MM.
402 26 JANUARY 2023 | VOLUME 141, NUMBER 4
Different questions remain open about the dual nature of
MIR17HG and its therapeutic targeting. Important future
directions will be to uncover how the splicing of MIR17HG is
alternatively regulated to produce lnc-17-92 or miR-17-92 and
MORELLI et al



D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/4/391/2074987/blood_bld-2022-016892-m

ain.pdf by guest on 06 M
ay 2024
to address the relative contribution of lnc-17-92 and miR-17-92
to the oncogenic activity of MIR17HG in other cancer models.
Whether the host genes of the 2 paralogs of miR-17-92, miR-
106a-363 and miR-25-106b, also retain miRNA-independent
function will be an important line of investigation.

Overall, this study establishes MIR17HG with a unique lncRNA
function of facilitating protein-protein and protein-DNA inter-
actions, mediating tumor-promoting activity with therapeutic
implications.
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