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Single-cell analysis has emerged over the past decade
as a transformative technology informative for the
systematic analysis of complex cell populations such as
in cancers and the tumor immune microenvironment.
The methodologic and analytical advancements in this
realm have evolved rapidly, scaling from but a few cells
at its outset to the current capabilities of processing
and analyzing hundreds of thousands of individual cells
at a time. The types of profiling attainable at individual
cell resolution now range from genetic and tran-
scriptomic characterization and extend to epigenomic
and spatial analysis. Additionally, the increasing ability
to achieve multiomic integration of these data layers
now yields ever richer insights into diverse molecular
disease subtypes and the patterns of cellular circuitry
on a per-cancer basis. Over the years, chronic
lymphocytic leukemia (CLL) consistently has been at
the forefront of genomic investigation, given the ready
accessibility of pure leukemia cells and immune cells
from circulating blood of patients with this disease.
Herein, we review the recent forays into the applica-
tion of single-cell analysis to CLL, which are already
revealing a new understanding of the natural pro-
gression of CLL, the impact of novel therapies, and the
interactions with coevolving nonmalignant immune cell
populations. As we emerge from the end of the
beginning of this technologic revolution, CLL stands
poised to reap the benefits of single-cell analysis from
the standpoints of uncovering fresh fundamental bio-
logical knowledge and of providing a path to devising
regimens of personalized diagnosis, treatment, and
monitoring.
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Introduction
In 2013, single-cell sequencing was selected as Method of
the Year by Nature Methods,1 on the heels of growing
technical innovations that would enable the broad accessi-
bility of robust protocols for the sequencing of DNA2-5 and
RNA6-17 of single cells (Figure 1). It was recognized that the
widespread adoption of such approaches would transform
vastly our understanding of cellular identity and heteroge-
neity and would impact our understanding of the plasticity
and regulation of both normal and diseased cells. In the
ensuing years, we have witnessed the dramatically rapid pace
at which this technology has evolved. In less than a decade,
the implementation of innovative approaches and commer-
cial support have enabled the broad dissemination of high-
throughput sequencing capabilities, such that it is now
feasible to profile hundreds of thousands of individual cells
and thereby gain a comprehensive bird’s-eye view of the
composition of diverse tissue types.4,5,10-17 Moreover, the
diversity of single-cell profiling approaches has proliferated,
ranging from methods to evaluate a single data layer to
growing approaches to measure simultaneously the genome,
transcriptome, epigenome, and proteome at single-cell
resolution18-23; indeed, single-cell multiomics was lauded as
the Method of the Year in 2019.24

It has been well-recognized that single-cell approaches are
most richly able to provide insight in settings of cellular
complexity and heterogeneity, such as cancer and analysis of
tissue immune microenvironments, where analysis of bulk
populations otherwise would obscure the distinct biological
contributions of rarer cellular subpopulations. Altogether, the
field of cancer research (and other fields of biology as well)
has benefited from this transformative technology, such that
we have accelerated our understanding of intratumoral
cellular heterogeneity, therapeutic resistance, and mecha-
nisms of tumor and immune cell cross talk of individual can-
cers25-31 as well as across multiple cancers,32,33 and the
analysis of tumor-infiltrating lymphocytes.34,35 For chronic
lymphocytic leukemia (CLL), which is marked by clonal
expansions of mature B lymphocytes in the blood, marrow,
and lymph nodes, the concept of single-cell analysis has been
a long-valued component of clinical care. Indeed, the char-
acterization and quantitation of individual cells by approaches
such as karyotyping,36 fluorescence in situ hybridization,37

and flow cytometry long have been in place as clinical
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Figure 1. Timeline of single-cell sequencing technology development and its applications to CLL research. (top) Major discoveries in CLL through single-cell sequencing.
(bottom) Milestones in single-cell sequencing and as applied to cancer biology and tumor immunology. TIL, tumor-infiltrating lymphocytes.
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assays used for diagnosis and prognostication for this

malignancy.38,39

Over the past decade, much progress in the molecular under-
standing of CLL has been gained through large-scale bulk
analyses of CLL through profiling by next-generation
sequencing. Altogether, these studies of increasingly larger
sample numbers (most recently up to >1000 patients)40 have
enabled the unraveling of the genetic41-47 and epigenetic48-
50 heterogeneity of CLL and the integrative analysis of
genetic, transcriptional, and epigenetic information. Alto-
gether, these studies have defined the distinct molecular
features of CLL disease subtypes and their relationship to
370 26 JANUARY 2023 | VOLUME 141, NUMBER 4
clinical outcomes. More recently, the architecture and
evolutionary trajectories of Richter’s syndrome (RS), arising in
the subset of patients with CLL who have undergone high-
grade transformation to diffuse large B-cell lymphoma (and
less commonly Hodgkin lymphoma), also have been profiled
increasingly by bulk sequencing methods, leading to
improved understanding of the genetic pathways underlying
this biological process.51-53

CLL is now poised to take advantage of the considerable
foundation of innovation that has been established from single-
cell analysis technologies. As reviewed herein, studies have
already started to harness single-cell technology to investigate
NAGLER and WU
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the CLL-intrinsic properties driving disease initiation and pro-
gression,54,55 with analysis of the clonally evolved cell pop-
ulations at baseline and after therapy.56,57 Furthermore, new
studies also have been undertaken to gain understanding of the
CLL immune microenvironment58,59 and its role in response and
resistance to therapy.60,61 We assert that with the many
maturing developments in single-cell technologies, we are
now at the end of the beginning of single-cell research for
CLL. That stated, much more remains to be explored, espe-
cially as platforms for increasingly multidimensional analysis
of individual cells continue to develop. We review key
developments and innovations and the challenges con-
fronted by the CLL research community in the current single-
cell genomics era. We highlight how these new approaches
are impacting our understanding of the pathophysiologic
features and clinical behavior of CLL and how they may serve
to guide the selection of optimal therapeutics and help to
improve patient outcomes.

Single-cell technologies to dissect native CLL
heterogeneity
The protracted clinical course and varied natural history of
CLL and the ready accessibility of pure populations of
CLL cells simply by venipuncture (Figure 2A) have enabled
the consistent presence of CLL at the forefront of large-
scale genomic characterization. Studies of whole-exome
sequencing of hundreds of CLL samples previously identi-
fied a broad spectrum of recurrently mutated genes (eg,
TP53, ATM, SF3B1, IKZF3, NOTCH1, MYD88, and others),
including recurrent mutations in noncoding regions,41,43-47

as well as delineated the presence of extensive genetic
and epigenetic heterogeneity45-47,49,62 that forms the basis
of clonal evolution in this disease. The definition of clonal
and subclonal events in CLL using bulk sequencing platforms
has relied on innovations in computational inference to
identify cell subpopulations, to calculate their distinct
kinetics that contribute to varied disease trajectories,63 and
to infer the link between molecular features and phenotypic
properties.

With single-cell characterization, the core property of clonal
heterogeneity at both DNA and RNA levels has been delin-
eated more reliably with far greater resolution than ever before.
Characterizations of single cells from collections of individual
CLL samples have revealed interpatient transcriptome and
methylome heterogeneity.54,64-66 Single cells derived from the
same patient consistently have been found to cluster quite
distinctly from those of other patients,66,67 and these distinct
phenotypes per each CLL seem to be stable across time
because they are maintained in the transition from early pre-
leukemic B-cell expansions (monoclonal B-cell lymphocytosis
[MBL]) to CLL (Figure 2B).66 By contrast, nonmalignant immune
cells across patients have been found to be transcriptionally
similar.56,66 Interpatient CLL heterogeneity likewise has been
demonstrated at the level of the methylome66 and chromatin
accessibility56 through the detection of mitochondrial DNA
(mtDNA) mutations using the assay for transposase-accessible
chromatin sequencing.68

The coexistence of clonal and subclonal CLL populations
implies a temporal ordering of genomic events over its natural
SINGLE-CELL SEQUENCING OF CLL
history. Somatic single nucleotide variants provide natural
molecular “barcodes” to define the clonal relationships
among cancer cells. Some of the earliest studies used to
establish cancer phylogeny in CLL used targeted single-cell
reverse transcription polymerase chain reaction analysis to
detect robustly the presence of somatic mutations among
hundreds of CLL cells. These studies largely have validated
methods of computational inference for phylogeny54 and also
have demonstrated the phenotypic consequence of somatic
mutations. For example, this technique demonstrated that the
same individual cells expressing mutation in the key spliceo-
some component SF3B1 were the same ones definitively
expressing those altered splice transcripts previously associ-
ated with this mutated driver.54,55 Higher throughput
approaches to link genotyping with single-cell transcriptomes
have been developed since, such as genotyping of tran-
scriptomes69 and others.70,71 Moreover, the use of epi-
genomic data to construct CLL lineage trees based on
stochastic DNA methylation changes65 and naturally occurring
mtDNA mutations have been demonstrated to mark and track
subclone populations. Potential limitations using this tech-
nique may arise from horizontal transfer of mitochondria
between cells, although the extent of this process seems to be
rather limited.72 In a study applying this approach to bone
marrow-derived mononuclear cells, mtDNA mutations detec-
ted in CLL cells also could be tracked back to early progenitor
cells possessing capacity for multilineage differentiation.73

These studies support the notion that although CLL is recog-
nized as a malignancy of mature B cells, its cell of origin may
be far earlier in the hematopoietic lineage tree, as suggested
in previous reports.74,75 Likewise, mtDNA mutations have
been demonstrated to enable the tracing of transformation of
a CLL subclone into RS.56 Single-cell analyses enable the
characterization of intratumor heterogeneity at greater reso-
lution. However, the current challenge is the linking of this
high-resolution information to cell fate and clonal origin to
gain understanding of therapeutic response. This has led
to the development of lineage tracing approaches,57,76,77

providing the opportunity to deepen our understanding
regarding clonal evolution in CLL.

Defining the impact of therapy on CLL cells
The last few years have witnessed a major sea change in the
therapeutic offerings available to patients with CLL. Whereas
chemotherapy-based regimens such as fludarabine, cyclo-
phosphamide, and rituximab until recently were considered
standard-of-care first-line therapies,78 the introduction of
targeted inhibitors of the B-cell receptor (BCR) and B-cell
lymphoma 2 signaling pathways (eg, ibrutinib and venetoclax,
respectively)79,80 has changed the treatment landscape of
CLL dramatically in the last few years. Notwithstanding
the availability of these targeted agents, allogeneic hemato-
poietic stem cell transplantation (HSCT) has remained
an important therapeutic method for younger and fitter
patients with multiple relapsed or refractory or poor-risk CLL
(Figure 2C).81-83

In surveying the impact of these various therapies, in which
the trajectories of individual CLL subclones were tracked over
time using mtDNA mutations and chromatin accessibility
signatures, the extent of clonal evolution was most striking in
26 JANUARY 2023 | VOLUME 141, NUMBER 4 371
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Figure 2. Insights into CLL afforded by single-cell analysis. (A) Schematic of a typical CLL disease course and conceptualization of the coevolution with host immunity. Thus
far, single-cell analysis has been applied to evaluate the molecular features intrinsic to CLL cells at baseline (B) as well as after therapy (C). Likewise, single-cell analysis has
been applied to evaluate the native state of the CLL immune microenvironment (D) as well as the dynamic changes in immune cell populations after immune therapies (E).
WBC, white blood cell.
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the setting of intensive therapeutic bottlenecks, such as
during chemoimmunotherapy or after allogeneic HSCT,
compared with continuous therapies such as targeted inhibi-
tors (eg, ibrutinib).56 The changes in mtDNA mutations after
372 26 JANUARY 2023 | VOLUME 141, NUMBER 4
chemotherapy were paralleled by the acquisition of additional
copy number variants and chromatin alterations and were
associated with profound shifts in transcriptional state. In a
separate study of clonal diversification and adaptation to CLL
NAGLER and WU



D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/4/369/2074955/blood_bld-2021-014669-c-m

ain.pdf by guest on 07 M
ay 2024
chemotherapy, a novel system for functionalized lineage
tracing that integrates DNA barcoding with single-cell RNA
sequencing and clonal isolation (ClonMapper) was intro-
duced into chemotherapy-treated CLL cell lines.57 Single-cell
analysis of samples collected at serial time points revealed
the distinct trajectories of extinction and expansion of
particular subclones in relationship to treatment exposure, as
well as the overall profound genomic diversification of the
CLL population after chemotherapeutic treatment. High
survivorship subpopulations exhibited unique transcriptomic
signatures associated with the upregulation of CXCR4, Wnt,
and Notch signaling.57 Single-cell‒based deconvolution of
high- vs low-survivorship subpopulations further revealed
distinct clonal dynamics and evidence of interactions among
distinct CLL subclones, impacting the overall CLL growth
dynamics.

A number of studies have evaluated the impact of targeted
inhibitors on CLL response and resistance. One study inte-
grated single-cell and long-read RNA sequencing and revealed
myeloid leukemia cell differentiation protein as a direct tran-
scription target of NF-κB and that myeloid leukemia cell dif-
ferentiation protein upregulation led to venetoclax resistance in
a relapse cohort of patients with CLL.71 A separate study
combined single-cell immunophenotypic, transcriptomic, and
chromatin mapping of the molecular and cellular dynamics of
CLL and immune cells on ibrutinib treatment using longitudinal
peripheral blood samples. The analysis of the CLL cells revealed
reduced NF-κB binding signatures as well as reduction of
lineage-defining transcription factors (EBF1, FOXM1, IRF4,
PAX5, and PU.1) on ibrutinib exposure. Ibrutinib treatment led
both the CLL and peripheral blood T cells to exhibit a shared,
quiescence-like gene signature (containing CXCR4 and
ZFP36L2), whereas monocytes and macrophages displayed
upregulation of inflammatory genes associated with chromatin
accessibility changes.67 Regarding resistance mechanisms, the
use of targeted mutation detection revealed early clonal shifts
associated with disease progression after ibrutinib treatment,
with detection of subclonal mutations in BTK, PLCG2, and
ITPKB at the time of relapse.84 More extensive analyses have
revealed disease progression after venetoclax and Bruton
tyrosine kinase inhibitors frequently to be oligoclonal, charac-
terized by multiple coexisting subclones each harboring a
distinct resistance mutation.85

The therapeutic basis of allogeneic HSCT relies on the recog-
nition and eradication by donor-derived immune cells of
recipient leukemic cells (graft versus leukemia [GvL] effect), but
relapse remains a major source of treatment failure.86,87 A
recent single-cell transcriptome-based analysis of CLL dynamics
during the course of allogeneic HSCT relapse revealed the
genetic and epigenetic trajectories underlying the distinct
kinetics of disease relapse.60 Although early relapsed CLL
(within months of HSCT) was genetically and transcriptionally
stable and was characterized by a pre-existing stem-like tran-
scriptional state driving the resistance to GvL, late relapse
(approximately 2 years from HSCT, and hence defined as
acquired resistance to GvL) displayed neoantigen depletion
and diverging genetics and an epigenetic state compared
with pretreatment disease. Of note, the extent of methylome
SINGLE-CELL SEQUENCING OF CLL
remodeling was far greater after such exposure to immuno-
logic selective pressure compared with a comparator cohort
relapsing after combination chemotherapy. Thus, the mech-
anisms of clonal escape in CLL can be distinguished based on
exposure to distinct treatment methods.
Interrogating the role of the immune
microenvironment on natural CLL progression
Increasing lines of evidence have highlighted the role of the
immune microenvironment on the behavior of tumor cells
and of the molecular interplay between tumor and immune
cells.88-90 CLL long has been considered a prototypic tumor
with high dependence and extensive cross talk with diverse
immune cell subtypes in its tumor microenvironment (TME;
previously reviewed extensively).91 In particular, nurse-like
cells, which are tumor-associated macrophages that exhibit
an M2-like phenotype, promote CLL survival through secretion
of CLL-supportive chemokines and ligands such as B-cell
activating factor and a proliferation-inducing ligand.92,93

Follicular dendritic cells present unprocessed antigen to B
cells via complement receptors 1 and 2, activating BCR
signaling and promoting CLL survival. In the past, CLL cells
often are thought to exhibit low immunogenicity because of
acquired T-cell dysfunction that progresses throughout the
disease course. However, in recent years, T-cell‒mediated
anti-CLL immune responses have been demonstrated in
various settings, both within the Eμ-TCL1 model94 and in the
context of response to ibrutinib,95 allogeneic HSCT,96 and
whole CLL cell vaccination,97 and possibly among the rare
cases of spontaneous CLL regression, emphasizing the multi-
dimensional role of T cells in the CLL TME.98,99

Most past studies to dissect the CLL TME have focused on the
characterization of only a few of the many immune cell subtypes
present in patients, whereas single-cell analysis is well equip-
ped to provide a bird’s-eye systems-level assessment of the
disease state (Figure 2D). A recent study of single-cell tran-
scriptomes compared circulating non-CLL immune cells from
healthy donors (HDs), individuals with MBL, and patients with
CLL at baseline. The proportion of CD8+ effector memory
T cells was found to be higher in patients with CLL than in HDs,
with a corresponding decrease in CD4+ central memory T cells.
Additionally, interactome analysis revealed an increased
number of immune inhibitory signals between CLL and the
increased myeloid population in peripheral blood mononuclear
cells of patients with CLL. Moreover, these changes already
were present in preleukemic MBL samples, emphasizing that
such immune disruptions already are manifest early in the nat-
ural history of CLL.59

A functionally active compartment harboring CLL cells is the lymph
node, a specialized microenvironment in which BCR and NF-ĸB
signaling are active in driving CLL proliferation.100 Conversely, CLL
cells are known to modulate their surroundings by secreting che-
mokines to attract tumor-supporting immune cells, which in turn
promote tumor survival.101 Such tumor-immune cross talk within
the CLL lymph node microenvironment recently was investigated
at the single-cell level. An expression signature of cellular prolif-
eration in CLL cells was associated with the presence of M2
26 JANUARY 2023 | VOLUME 141, NUMBER 4 373



macrophages and CD4+ memory T-cell populations, suggesting
their role in sustaining aggressive CLL disease.102 A potential lim-
itation of this study is the high proportion of CLL cells within these
lymph node samples (median, 77.9%). Given the importance of
lymph node biological features in CLL and yet the limited number
of studies of the CLL lymph node microenvironment, phenotypic
characterization of this population is a rich area for future
investigation.
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Defining the shifts in the CLL immune
microenvironment after therapy
The mechanisms underlying therapeutic resistance mediated by
the immune microenvironment are becoming clearer with the
use of single-cell analysis, providing insights into the effects of
selective therapeutic pressure and identifying candidate bio-
markers of response.

One study applied single-cell transcriptome profiling to define
the mechanisms of resistance to ibrutinib and identified
LGALS1 (galectin 1) and LAG3 (lymphocyte-activating gene 3)
as candidate genes associated with resistance. Ibrutinib-
sensitive cells displayed less interactions with monocytes, nat-
ural killer, T, and dendritic cells compared with ibrutinib-
resistant cells, suggesting that the resistant CLL cells collabo-
rate with other immune cell populations to form a CLL-
protective niche.103 Consistent with this finding, a separate
study identified a decrement in the number of immune inhibi-
tory signals (eg, CTLA4, LGALS9, and TIM3) between CLL and
various immune cell subtypes after ibrutinib exposure, sup-
porting the notion that ibrutinib sensitivity is mediated by
immune microenvironmental cross talk.59 After ibrutinib treat-
ment, T cells of patients with CLL have been found to exhibit a
quiescence-like gene signature, whereas monocytes and mac-
rophages display upregulation of inflammatory genes, both
associated with distinct changes in chromatin accessibility and
thought to be mediated by the off-target inhibition of kinases
other than BTK.67

Defining the changes in reconstituting immune cell populations
such as T cells after allogeneic HSCT for CLL has the potential
to reveal mechanisms underpinning immune-mediated anti-
tumor control. In a study in which mtDNA mutations were used
as natural barcodes in longitudinal samples collected from
patients with CLL, including those treated with allogeneic
HSCT, these molecular markers were found to mark expanded
donor-derived CD8+ effector memory T cells.56 Such charac-
terizations demonstrate the potential of single-cell mtDNA
mutation detection to track donor and recipient interactions
among diverse reconstituting immune cell populations and
highlight immune microenvironment function during the course
of CLL therapy.56 In a separate study focused on the large-scale
analysis of marrow-infiltrating immune cell populations before
and after donor lymphocyte infusion, an established adoptive
cellular therapy for treatment of relapsed disease after HSCT,
the clonal dynamics of diverse T-cell populations from patients
with relapsed chronic myelogenous leukemia and CLL were
evaluated.58 Donor lymphocyte infusion (DLI) responders were
found to have higher proportions of terminally exhausted T cells
at baseline compared with DLI nonresponders. This cell
374 26 JANUARY 2023 | VOLUME 141, NUMBER 4
population has been described as possessing relatively greater
cytotoxicity but a shorter life span compared with precursor
exhausted T cells, which were found to be expanded after DLI
in responders (Figure 2E).

Analysis of exceptional responders to immunotherapy, for
instance patients with CLL showing a durable response to
CD19-targeting chimeric antigen receptor (CAR) T-cell infu-
sions, has the potential to provide insight into the determi-
nants of effective anti-CLL immunity.104,105 For instance, a
recent longitudinal analysis of peripheral blood mononuclear
cells by single-cell sequencing from 2 exceptional responders
across more than 10 years after initial CAR T-cell infusion
revealed 2 distinct phases of anti-CLL immune response: an
initial response phase mediated by CD8+ or γδ CAR-T cells,
followed by a subsequent phase mediated by a highly acti-
vated CD4+ CAR T-cell population exhibiting cytotoxic
characteristics such as the upregulation of perforin 1, gran-
zyme K, and granzyme A, along with increased functional
proliferation, metabolic activity, and cytokine expression.
In vitro response to CD19 expressing cells suggested that
these long-persisting CD4+ CAR T cells remained functionally
active, providing a long-term antileukemic response. CAR
T-cell characterization in this study thus reveals important
immune cellular properties associated with long-term CLL
control.106

Despite advances in CLL treatment, the transformation of CLL
to aggressive B-cell lymphoma (RS) has remained a formidable
clinical challenge, with poor responses to standard chemo-
therapy. Remarkably, recent clinical studies demonstrated that
44% to 65% of patients with RS respond to PD-1 checkpoint
blockade.107,108 To define the immune-mediated basis of this
response, a recent study used single-cell RNA sequencing on
marrow-infiltrating T cells of patients with RS who responded to
and did not respond to anti-PD1 therapy. The RS marrow
microenvironment was found to be enriched for cytotoxic
populations, including both CD8+ effector/effector memory
and cytotoxic CD4+ T cells, and expressed multiple exhaustion
markers including PDCD1, LAG3, and TIGIT when compared
with that of HDs. Of note, the CD8+ effector/effector memory
T cells of patients with RS who did not respond showed
increased expression of TOX, a master regulator of T-cell
exhaustion, whereas the responders showed upregulation of
the costimulatory gene CD226.109
New frontiers for single-cell analysis in CLL
The recent forays into single-cell analysis, as reviewed above,
already have expanded our knowledge regarding the mech-
anisms of CLL disease progression and its cross talk with the
immune microenvironment. These studies certainly have
whetted our appetite for further extending investigations into
numerous crucial areas for future study, as delineated in
Figure 3.

First, the enormous amount of molecular information that one
can gain from current single-cell technologies makes it feasible
to investigate cellular populations with limited tissue biopsies,
including from the lymph node and bone marrow, which are
NAGLER and WU



Blood

A
Tissue

compartment

B
Studying natural

progression and early
disease events

C
Multiome profiling

D
Spatial analysis

E
Early disease detection

HSC

DNA

Tissue
Blood

or
Biopsy

Normal tissue

Tumor T cells

Mutation
detection
reagents

Tumor
subclones

Transcripts

Epigenome

MBL

CLL

Lymph
node

Bone
marrow

Oil

Time

# c
el

ls 
wi

th
m

ut
at

io
n

Figure 3. Future directions for single-cell technology in CLL. Sampling from various compartments such as the blood, lymph nodes, and bone marrow (A) and sampling
from early stages of the CLL disease (B) can increase our understanding of CLL development and may aid with earlier diagnosis and treatment optimization. Additionally, using
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common sites of disease in CLL (Figure 3A). Analysis of bulk
gene expression microarrays100 already has supported the
notion that the behavior of CLL and non-CLL immune cells
residing in these compartments is different from that in
peripheral blood. Yet to date, the vast majority of CLL studies,
both bulk and single-cell analyses, have focused on circulating
CLL and non-CLL immune cells because of the relative ease of
obtaining blood as compared with bone marrow and lymph
node specimens. Further exploration of CLL-intrinsic and
immune microenvironmental features in these other disease
compartments and comparison of these features with other B-
cell malignancies will be certain to yield insights into the unique
disease pathogenesis and clinical heterogeneity of CLL. More-
over, these discovery efforts may yield new disease biomarkers
that then could become informative even when sampled from
peripheral blood.

Second, defining the cellular origins of disease remains an area
of high priority in the study of CLL. Single-cell analysis is
uniquely capable of profiling rare cells (Figure 3B). Already,
genetic and epigenetic characterizations of MBL have increased
our understanding of CLL evolution with potential to facilitate
earlier diagnosis,59,66 but extant questions include the order of
molecular events that define this natural trajectory, as well as
the precise cell of origin of CLL. Additionally, the mechanism
underlying CLL progression to high-grade lymphoma remains
undercharacterized. Single-cell studies of RS undoubtedly will
provide mechanistic insight into the basis of CLL transformation
and will facilitate in the identification of novel therapeutic tar-
gets for RS.

Third, we can envisage future studies incorporating the mul-
tilayering of genomic, transcriptomic, and epigenomic data at
SINGLE-CELL SEQUENCING OF CLL
the single-cell level to decipher CLL heterogeneity and evo-
lution further (Figure 3C). The integration of these comple-
mentary methods remains in developmental stages; however,
the various combinations that have been tested so far each
have proved to provide a better understanding of tumor
progression, as well as response and resistance to therapy in
CLL.58,65,67

Fourth, an exciting area of rapid development is the emergence
of high-dimension spatial analysis to enable direct interrogation
of the intercellular interactions and architectural organization
between malignant cells and the immune microenvironment
(Figure 3D). Rapid advances in these technologies have
spawned diverse DNA-, RNA-, and protein-based approaches
such as multiplexed error-robust fluorescence in situ hybridi-
zation,110 high-dimensional protein detection methods,111-113

and spatial barcoding.114-116 Application of these approaches
will be especially relevant to the analysis of CLL samples from
the bone marrow and lymph node compartments. However, a
potential challenge to these studies may be the difficulties in
procuring adequate tissue biopsies from patients for such
studies.

Finally, we anticipate that single-cell approaches can find
future clinical translation to aid CLL prognostication, thera-
peutic stratification, and optimization and to delineate strate-
gies through which immunity can be harnessed for effective
therapies (Figure 3E). For example, single-cell monitoring
could allow early detection of rare cells bearing distinctive
molecular features of the malignant clone as a harbinger of
early relapse. Moreover, the profiling of the functional states
of CLL cells and those of the immune microenvironment could
help to select the best therapeutic combination targeting
26 JANUARY 2023 | VOLUME 141, NUMBER 4 375
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the unique tumor-intrinsic and immune microenvironmental
dependencies. Certainly, as we approach the end of the
beginning for the current age of single-cell technologies, we
can look forward to incorporating ever more single-cell anal-
ysis in our discovery efforts into the mechanistic and thera-
peutic basis of CLL. Single-cell technologies also have
enormous translational potential in the realm of clinical diag-
nostics, enabling more precise disease detection and moni-
toring of CLL in the future.
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