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The era of genomic medicine has allowed acute myeloid
leukemia (AML) researchers to improve disease char-
acterization, optimize risk-stratification systems, and
develop new treatments. Although there has been
significant progress, AML remains a lethal cancer
because of its remarkably complex and plastic cellular
architecture. This degree of heterogeneity continues to
pose a major challenge, because it limits the ability to
identify and therefore eradicate the cells responsible
for leukemogenesis and treatment failure. In recent
years, the field of single-cell genomics has led to
unprecedented strides in the ability to characterize
cellular heterogeneity, and it holds promise for the
study of AML. In this review, we highlight advance-
ments in single-cell technologies, outline important
shortcomings in our understanding of AML biology and
clinical management, and discuss how single-cell geno-
mics can address these shortcomings as well as provide
unique opportunities in basic and translational AML
research.
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Introduction
Acute myeloid leukemia (AML), an aggressive blood and bone
marrow cancer, was first described as an acute leukemia in the
1850s. The disease was initially categorized as myeloid or
lymphoid in the early 1900s1 and for many decades was pre-
dominantly classified morphologically.2,3 This paradigm has
failed to accurately capture the underlying complexity of AML,4,5

which has in turn limited the ability to design effective therapies.
It was not until the 1970s that viable treatment options were
identified, which included cytotoxic chemotherapies6 and allo-
geneic hematopoietic cell transplantation (alloHCT).7 For >40
years, the standard treatment has subsequently been induction
chemotherapy followed by either consolidation chemotherapy or
alloHCT. Using this approach, patients often achieve complete
remission, defined as normalization of peripheral blood counts
and <5% blasts identified in the bone marrow. However, most
patients either are too frail to receive aggressive upfront therapy
or experience relapse with highly refractory disease, and there-
fore, only 30.5% of patients survive past 5 years,8 and only 5% to
15% of patients age >60 years are cured9.

These poor outcomes may be partly explained by the AML
stem cell model,10 which suggests that a rare population of
leukemic stem cells (LSCs), residing at the apex of the AML
cellular hierarchy, are the primary drivers of leukemia initiation
and maintenance (Figure 1).10 Since Lapidot et al11 established
the foundations for identifying and evaluating AML LSCs in the
1990s, there have been several studies characterizing the
immunophenotype,12-19 biology,20-24 and clinical relevance of
AML LSCs.25-27 By definition, LSCs can transplant and maintain
leukemia in immunodeficient mice and are capable of
self-renewing, avoiding apoptosis, and increasing drug efflux.10

This model holds that LSCs can resist standard antileukemia
therapies, persist during complete remission, and promote
disease relapse (Figure 2A). It has been historically difficult to
isolate, study, and target LSCs, because they constitute a minor
fraction of cells within the bulk leukemic population. Moving
forward, AML researchers will need to reliably differentiate LSCs
from bulk leukemia, which can potentially be addressed with
new single-cell technologies.

AML LSCs and their diverse progeny contribute to the under-
lying molecular complexity and cellular heterogeneity of AML22

in manners not apparent from standard morphologic assess-
ment.4,5 For example, genomic studies have demonstrated that
human AML is associated with mutations in multiple genes
occurring at different allelic frequencies and undergoing
variable patterns of clonal evolution on treatment.28 These
observations suggest that AML contains a complex clonal
architecture with several subclones of variable frequency.
Moreover, each subclone is potentially organized as a cellular
hierarchy initiated and maintained by LSCs with varying prop-
erties of self-renewal, quiescence, and therapeutic vulnera-
bility.10,22,23,29 Although recent advancements in both
characterizing and treating AML have occurred in parallel with
advancements in genomic and biomolecular profiling,30 iden-
tifying effective monitoring and therapeutic strategies has been
challenging. Since 2012, multiple studies have evaluated the
genomic landscape of AML,31-33 which has led to new AML
subgroups,34 risk-stratification systems,35,36 and targeted ther-
apies.37-40 Despite these advancements, patients continue to
have variable and limited treatment responses to both standard
and novel therapies.30 Furthermore, it is not always clear which
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Figure 1. Stem cell model of normal and malignant hematopoiesis. Hematopoietic stem cells (HSCs) are capable of self-renewal (semicircular arrow) and reside at the apex
of healthy polyclonal hematopoiesis (black). The acquisition of mutations in HSCs (m1) can create preleukemic HSCs (pHSCs; purple) that can drive clonal hematopoiesis
(shaded purple). Clonal evolution through additional mutation acquisition (m2, 3, …x) or other molecular processes can further transform pHSCs into LSCs (red). These LSCs
reside at the apex of the AML cellular hierarchy and are capable of (re)generating frank leukemia (brown).
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patients will benefit from cytotoxic chemotherapies, targeted
agents, or alloHCT.

International society guidelines provide clinicians assistance
with AML risk stratification, disease monitoring, and treatment
strategies. For example, the European LeukemiaNet (ELN), an
international expert panel, published updated recommenda-
tions on the diagnosis and management of AML in 2017 (ELN-
2017). The ELN-2017 stratifies patients with AML into adverse-,
intermediate-, and favorable-risk groups based on common
genetic abnormalities, which guides clinicians on prognosis and
therapeutic strategies. There are several limitations, including,
for instance, the impact of cooccurring signaling mutations on
core binding factor AML41,42 and the FLT3-ITD allelic ratio
threshold43 on prediction of survival and relapse. Additionally,
the ELN-2017 was less effective in predicting outcomes in older
patients, because survival was similar between intermediate-
and adverse-risk patients. This deficiency was improved by
incorporating mutation cooccurrence patterns from NGS.44 An
extensive genomic evaluation of 1540 patients emphasized this
346 26 JANUARY 2023 | VOLUME 141, NUMBER 4
point by noting the importance of broadening the genomic
features considered prognostic per the ELN-2017 and incor-
porating gene-gene interactions.33 Currently, the ELN-2017
provides hematologists with a helpful tool for risk stratifica-
tion; however, there are several shortcomings that will need to
be addressed with future research and clinical trials.

Emerging evidence suggests that detecting and characterizing
MRD may improve our ability to determine which patients can
benefit from further treatment and, if so, which therapy will be
most effective (Figure 2B). MRD is defined as persistent leukemia
below the 5% of total bone marrow cells detectable by
morphologic evaluation and has been shown to independently
predict treatment outcome.45 MRD can be detected by using
multiparameter flow cytometry or other molecular assays.46 Flow
cytometry–based MRD detection greater than the 0.1%
threshold is associated with significantly shorter relapse-free
survival and overall survival.47,48 Most cases of AML contain
mutations that can serve as clonal markers for MRD, and there-
fore, genomic profiling using real-time quantitative PCR or NGS
EDIRIWICKREMA et al
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Figure 2. Clinical course for a patient with AML who is refractory or eventually relapses. (A) Patients with AML present with high leukemia blast burden (brown), receive
induction chemotherapy, and often enter complete remission. Some patients have refractory disease, and most patients who achieve complete remission ultimately relapse.
Patients who are refractory to induction therapies never clear their disease, as assessed by morphology. Those who enter complete remission often have persistent
measurable residual disease (MRD), below levels detectable by morphologic analysis. These patients relapse, with variable clonal dynamics, but often have an expanded LSC
(red) compartment. Those who relapse late may have had persistent pHSCs (purple) that reevolved into AML. (B) MRD can be assessed by morphology using microscopy
(detection limit, 10−2 cells), cytogenetics (10−2 cells), multiparameter flow cytometry (10−4 cells), or mutation-specific polymerase chain reaction (PCR) or next-generation
sequencing (NGS; 10−6 cells). FISH, fluorescence in situ hybridization; FITC, fluorescein isothiocyanate; PE, phycoerythrin.
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Figure 3. Multiomic analysis of single cells. Current single-cell methods can quantify numerous analytes, including scDNA-seq, messenger RNA (scRNA-seq), chromo-
some accessibility (assay for transposase-accessible chromatin using sequencing [scATAC-seq]), DNA methylation, intracellular proteins using mass spectrometry,
and surface proteins using antibody-derived tags (ADTs). Additionally, barcoding methods coupled with both scRNA-seq and scATAC-seq can facilitate lineage-tracing
studies.
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can provide specific assays for MRD detection. In fact, detection
of molecular MRD during complete remission is independently
prognostic in regard to relapse and survival rates49 and has
subsequently been incorporated in the ELN-2017 risk-stratifica-
tion system.35,45 However, bulk genomic profiling methods fail to
accurately resolve the clonal architecture of AML MRD and are
limited in their ability to identify AML clones that drive disease
relapse.28 Of interest, several groups have observed improve-
ments in predicting prognosis by incorporating basic LSC flow
cytometry markers into MRD assessment.45 It will therefore be
critical to design LSC-specific MRD assays, because LSCs may
need to be eradicated in order to achieve cure.

These observations highlight the underlying biomolecular
complexity of AML that has limited our ability to effectively
study, monitor, and treat patients. It is important to accurately
characterize this underlying heterogeneity in order to improve
AML research and disease management. Recent advancements
in single-cell genomics have provided a remarkable toolset to
begin addressing these limitations.50-52 Here, we review how
single-cell genomics has enhanced the investigation of AML by
discussing the current state and future directions of single-cell
genomics in AML research, important gaps in our understand-
ing of AML pathophysiology and disease management, and
potential clinical translations of these technologies.
Clonal heterogeneity, clonal evolution, MRD, and
the utility of scDNA-seq
NGS can provide an important method for MRD detection, which
has been shown to be prognostically relevant.49,53,54 It is also an
important tool for characterizing the clonal architecture of AML
that may assist in risk stratification and disease management.
Indeed, clonality inferred by bulk NGS is heterogenous in AML
348 26 JANUARY 2023 | VOLUME 141, NUMBER 4
and highly dynamic at relapse.32,55 An evaluation of the clonal
architecture across 2829 patients using bulk NGS identified
specific clonal abundances and gene-gene interactions that were
associated with clinical outcomes and drug sensitivities.56 How-
ever, we know that individual clones exist in a complex
ecosystem, and analogous to individual and population geno-
mics, single-cell genomes can be quite different from bulk pop-
ulations of cells.57 An important example is that several
mutations, including DNMT3A, TET2, and ASXL1, detected at
remission may represent preleukemic clonal hematopoiesis58

(Figure 1) and not relapse-causing leukemic cells.49 Studies
incorporating single-cell DNA sequencing (scDNA-seq) observed
distinct clones at remission that contain variants associated with
clonal hematopoiesis and further delineated which clone
harboring these mutations contributed to relapsed disease.28

Because bulk NGS is unable to accurately resolve clonal archi-
tecture, especially with rare variants, it is inherently limited in its
ability to identify relapse-fated MRD.

Accurately characterizing the clonal context of MRD is critical in
determining its clinical relevance. Modern paradigms of pre-
leukemic clonal evolution, developed from rigorous xeno-
transplantation models of leukemia and high-throughput
sequencing studies, suggest that early preleukemic mutations
arise in self-renewing cells or promote self-renewal in differenti-
ated cells.59 Therefore, given the low mutation rate in hemato-
poietic cells, latency of leukemogenesis, and low mutation
burden in AML, it is believed that leukemogenesis arises from the
accumulation of mutations in functionally normal HSCs. These
HSCs, containing early leukemia-specific mutations, are consid-
ered pHSCs, which can drive clonal hematopoiesis, and will,
through further evolution, transform into frank AML17,21,60,61

(Figure 1). Numerous studies have evaluated the patterns of
clonal evolution in AML using bulk NGS on highly purified cell
EDIRIWICKREMA et al
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types17,21,59 and showed that in certain cases, AML arises from
sequential mutation acquisition in pHSCs. Subsequent analyses
revealed that these pHSCs can survive posttreatment,21 and
clones expanding at relapse either retain or develop stem cell
properties.23

Ordering of mutation acquisition and cooccurrence analyses
using bulk NGS have provided insight into not only the preva-
lence of pHSCs17,59 but also the treatment vulnerabilities and
outcomes.33,56 However, these patterns are often missed by
bulk NGS. Several groups have addressed these limitations
using scDNA-seq.28,62,63 Studies by Miles et al62 and Morita
et al63 demonstrated that cooccurring mutations in epigenetic
regulators commonly occur in ancestral clones, whereas muta-
tions in signaling pathways occur later, in distinct subclones,
SINGLE-CELL GENOMICS IN AML
possibly through convergent evolution. Additionally, our group
has demonstrated that scDNA-seq could identify clinically
relevant MRD by differentiating preleukemic clonal hemato-
poiesis from relapse-causing clones. We also observed that in
certain cases, relapse-causing clones were not present at
diagnosis or during remission.28 Dillon et al64 subsequently
showed that scDNA-seq could be used to distinguish clonal
hematopoiesis from leukemic cells by designing targeted gene
panels that also captured breakpoints in AML patients with
cytogenetic abnormalities.

Furthermore, the incorporation of cell-surface protein expres-
sion with scDNA-seq analyses has provided interesting insight
into the significance of underlying clonal architectures. Both
Miles et al62 and Morita et al63 were able to determine the
26 JANUARY 2023 | VOLUME 141, NUMBER 4 349



D
ow

nloade
specific contributions of clonal hematopoietic mutations to
mature leukocyte lineages, providing additional evidence that
these preleukemic mutations may exist in pHSCs and uniquely
contribute to hematopoiesis. Additionally, they were able to
determine specific alterations in immunophenotype depending
on clonality in AML.

The ability to accurately resolve clonal architectures has also
enhanced the ability to identify clonal origins of drug resistance.
Bulk NGS analyses have implicated mutations in RAS/RTK/MAPK
signaling pathways in the acquired resistance to targeted thera-
pies.65,66 These observations have been supported by multiple
scDNA-seq analyses, because subclones with RAS/RTK/MAPK
mutations expanded during treatment with enasidenib,63 ivosi-
denib,66 FLT3 inhibitor,67,68 and venetoclax.69,70 The phylog-
enies of these resistant clones were highly variable, illuminating a
complicating factor that was not apparent from bulk NGS.
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Limitations of scDNA-seq
Although scDNA-seq has provided greater resolution for evalu-
ating clonal architectures in AML, there are several limitations,
including cost, limited single-cell throughput, small mutation
panels, and allelic dropout.28 The limitation in throughput is a
critical barrier for developing meaningful MRD detection assays,
because >10 000 cells are required for accurate MRD assess-
ment below the 0.01% threshold.71 Advancements in micro-
fluidic technologies may allow the analysis of >50 000 cells,
which decreases the detection limit to levels similar to error-
corrected NGS and droplet digital PCR. Improvements are still
needed to increase throughput to >100 000 cells, which would
be comparable to MRD detection using multiparameter flow
cytometry72 (Figure 2B), without impairing performance through,
for example, doublet formation or incurring significant costs.

Many of the technical challenges associated with scDNA-seq
are a consequence of the limited DNA material within a cell
and subsequent difficulties associated with genomic amplifica-
tion within confined droplets.57,73 scDNA-seq workflows need
to carefully address errors associated with genome amplifica-
tion, including allelic dropout, copying mistakes, and unbal-
anced amplifications. Allelic dropout occurs when 1 of the 2
alleles of diploid genomic DNA fails to amplify in PCR-based
assays. This phenomenon can either be random or result from
target specific features that impair polymerase function.
Therefore, amplification bias and allelic dropout, in both the
wild-type and variant alleles, can occur either biochemically or
computationally and will significantly obscure the downstream
reconstruction of clonal architectures. Additionally, the forma-
tion of doublets, which is often inferred by the Poisson statistic
and is therefore limited by cell loading, can further confound
these analyses. Although several downstream74-76 and stand-
alone77 analysis packages incorporate allelic dropout and
doublet detection, best practices for addressing these limita-
tions are not well established.

Popular high-throughput scDNA-seq methods in AML research
often incorporate targeted gene panels.28,62,63,67 Although
there are several benefits to using targeted genomic amplifi-
cation rather than whole-genome amplification,57 a targeted
approach inherently limits the ability to completely resolve the
underlying clonal architecture and identify novel variants that
350 26 JANUARY 2023 | VOLUME 141, NUMBER 4
are biologically relevant. Furthermore, targeted panels are
restricted to regions containing commonly mutated variants,
termed hotspot regions, and not all regions are amplified with
similar efficiency. Difficulty in detecting variants in commonly
mutated genes, including NPM1, ASXL1, TP53, and SRSF2,
highlights these limitations.28,63 It is therefore important to
address these shortcomings when deriving conclusions from
scDNA-seq analyses. New analysis methods have been devel-
oped to integrate bulk NGS with scDNA-seq78 in order to
accurately infer clonal structures and evolution. Until the tech-
nical limitations of scDNA-seq are addressed, future work will
need to acknowledge the complementary roles of bulk NGS
and scDNA-seq in characterizing clonal compositions and
evolution.

Nongenetic factors, transcriptional evolution, and
single-cell multiomics
Cancer is classically defined by genomic alterations that trans-
form cells into a variety of malignant states through complex
multistep processes. The ongoing study of these malignant
states has led to the description of classic hallmarks of cancer.79

Hanahan80 recently proposed 2 new emerging hallmarks,
phenotypic plasticity and nonmutational epigenetic reprogram-
ming. Cellular plasticity is the ability to bypass or disrupt normal
differentiation potencies. Epigenetic reprogramming and alter-
ations in gene and histone composition, chromatin structure, and
in turn gene expression can lead to a multitude of cell states
within genomically identical clones. Stochastic gene expression
within isogenic cells may not only lead to variable cellular prim-
ing and subsequent cell fate decisions but also influence drug
sensitivities.81 This realm of heterogeneity is not captured by
current AML risk-stratification systems35 and may contribute to
their shortcomings. New single-cell technologies are enabling
more sophisticated analyses of cell states (Figure 3). Fennell
et al82 leveraged such advancements by developing SPLINTR
(single-cell profiling and lineage tracing) to track isogenic clones
in murine AML and identified nongenetic factors that influence
clonal fitness. Indeed, advancements in single-cell multiomics,
including scRNA-seq,52,83 assay for transposase-accessible
chromatin using sequencing,84-86 single-cell mass cytometry,87

and surface proteomics with antibody-derived tags,88-90 are
describing cellular landscapes and continuums that have been
incompletely described with bulk high-throughput biomolecular
assays.91-94

AML stem cell biology, heterogeneity, and
evolution
The stem cell model of leukemogenesis (Figure 1) can partly
explain the epigenomic and transcriptional hierarchy of AML.
There remains controversy as to the clinical relevance of LSCs
because of the significant variability in LSC content in primary
patient samples and the nature of xenograft assays. Klco et al22

evaluated the functional heterogeneity of AML clones and
observed variable engraftment potencies within AML sub-
clones. Although they observed clonal restriction within the
engrafted populations, there was no clear relationship between
clonal mutations and engraftment. Furthermore, the engrafting
clone was not consistently the clone that expanded during
clinical relapse, nor was it the founding clone from the primary
leukemia as defined by bulk genetic analysis. To add to the
complexity, Sarry et al95 observed a degree of phenotypic
EDIRIWICKREMA et al
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plasticity in LSC subpopulations that has been corroborated by
other groups.19,27

There is clearly a significant degree of heterogeneity within LSC
subpopulations, both at the intra- and interpatient levels.
Regardless, AML cells may converge on a similar transcriptional
state, enriched for stem cell programs, in the face of underlying
genomic and immunophenotypic differences.19,27,29 These
observations are supported by the identification of gene
expression programs that are upregulated in functionally defined
LSCs and are associated with poor outcome25-27 and disease
relapse.23 Therefore, characterizing LSCs may be enhanced by
using transcriptional signatures in addition to mutation profiling
and immunophenotyping. A primary limitation of prior studies is
that LSC gene signatures and immunophenotyping have been
derived from populations of cells enriched for LSCs, but still at
low frequency. It is therefore difficult to determine which specific
LSC subpopulations are responsible for treatment resistance or
disease relapse.

Single-cell technologies can enhance our understanding of AML
biology, including the stem cell compartment (Figure 1). Recent
scRNA-seq studies in AML revealed that the presence of primi-
tive and differentiated cell states in AML is highly variable and
may be associated with certain genomic features. van Galen
et al83 observed that primitive stem cell signatures derived from
their analysis were associated with worse survival, and differen-
tiated AML cells may modulate the immune microenvironment.
These studies provide preliminary evidence of cell-specific gene
expression programs and cell-cell interactions that may be
associated with AML prognosis and pathogenesis.

It is becoming apparent that novel AML therapies, including
hypomethylating agents such as azacitidine and the oral BCL2
inhibitor venetoclax, have differential effects on AML sub-
populations. The recent landmark VIALE-A trial showed that the
addition of venetoclax to azacitidine improved survival in older
and unfit patients with AML.96 These observations are practice
changing, because they provide an effective treatment for a
patient population that has traditionally been high risk with
limited therapeutic options. Despite these improvements, certain
patients are resistant to these novel agents, and many relapse.
Pei et al97 hypothesized that therapy resistance may be cell type
specific and performed concurrent scRNA-seq and surface
marker profiling to evaluate resistance mechanisms for patients
who do relapse after azacitidine and venetoclax treatment. They
observed that monocytic AML subpopulations preferentially
expand compared with phenotypically primitive AML cells at
relapse. The expanded population had not only lower BCL2
expression but also increased expression of MCL1, which
encodes for an alternative antiapoptotic protein and is the target
of novel selective inhibitors currently being evaluated in clinical
trials.98 Pei et al also noticed that the relapsed monocytic sub-
population upregulated stem cell–associated gene expression
programs, despite having a different immunophenotype,
consistent with prior observations.23 This study provides impor-
tant insights into cell-specific vulnerabilities to novel agents and
subsequently, patient-specific therapeutic strategies.

Understanding the importance of transcriptional heterogeneity,
Petti et al99 evaluated its role in AML relapse by performing
paired whole-genome sequencing and ultradeep scRNA-seq on
SINGLE-CELL GENOMICS IN AML
samples from patients with AML obtained pretreatment and at
relapse. They observed significant transcriptional evolution at
relapse that was inconsistently associated with genetic changes.
In their cohort, relapsed AML was enriched for a quiescent cell
state that upregulated unique expression programs, including an
LSC signature.27 They performed a case-by-case analysis,
revealing the importance of both the genome and transcriptome
in leukemia evolution, as well as potential contributions from the
immune microenvironment. Although their analysis was limited
by cohort size, their observations highlight important cell-intrinsic
and -extrinsic properties that modulate AML heterogeneity and
are effectively captured with single-cell assays.

A recurring objective in AML research is to distinguish LSCs not
only from mature blasts but also from residual healthy cells. A
general strategy is to use immunophenotypic or transcriptional
signatures to identify primitive cells and genomic mutations to
differentiate leukemic and healthy cells. Several groups are
developing strategies to make these distinctions with single-cell
genomics by inferring mutation status through detection of
variant transcripts,83,99-102 and a few groups have been successful
in applying these methods to AML research.50,83,99,100,102 Signif-
icant limitations include low expression of variant transcripts and
limited throughput in current scRNA-seq methods. Velten et al102

attempted to address these shortcomings by incorporating
mitochondrial variant detection; however, limitations persist
because of low coverage of both genomic and mitochondrial
mutations and mitochondrial somatic mutation variability. Future
improvements in these methods will be critical for accurately
integrating cellular states with the clonal architecture of AML.

Limitations and challenges of current single-cell
technologies

Although the clinical care of AML has entered a renaissance, with
9 new therapeutic options approved by the US Food and Drug
Administration since 2017,96,103 AML remains a highly lethal
cancer. Previously, the ability to accurately delineate and monitor
the cellular heterogeneity of AML has limited its study and
management. With recent advancements in single-cell technol-
ogies, AML research has reached a new frontier, because we can
begin to accurately reconstruct both the clonal architecture and
cellular states of AML during treatment. The rapid development
of these assays is unprecedented, and researchers will need to
critically evaluate the data gathered, not only for accuracy but
also for functional and clinical relevance.

As we move forward, integrating the measurement and compu-
tational analyses of multiple single-cell analytes will be increas-
ingly important (Figure 3). Mutation status differentiates leukemic
cells from their residual healthy counterparts, transcriptomic and
epigenomic programs delineate cell states and potencies,
and surface immunophenotype enables prospective isolation and
functional interrogations. Although the multiomic evaluation of
single cells is informative, the data provide only a snapshot of the
cellular composition. Determining cellular potencies and their
ultimate fate is vital for understanding the functional relevance of
the captured cells. Advanced computational tools are available to
infer cellular trajectories104,105; however, they provide only a
prediction of the true fate of each cell. New tools are being
developed to assess cell fates using single-cell barcoding stra-
tegies.82,106,107 Weinreb et al106 developed a clonal labeling
26 JANUARY 2023 | VOLUME 141, NUMBER 4 351
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system, LARRY (Lineage And RNA RecoverY),106 similar to
SPLINTR,82 and a bioinformatic pipeline108 to facilitate lineage-
tracing experiments using scRNA-seq. An important caveat of
barcoding systems using viral delivery is that the process of
transduction and in vitro culture can dramatically alter relevant
cell biology. Therefore, natural barcoding using mitochondrial
variants is a promising alternative method,109-111 although it is
limited by mitochondrial somatic mutation variability and RNA
editing. Of interest, Bowling et al112 developed an in vivo system
for inducible lineage tracing capabilities allowing for simulta-
neous characterization of lineage history and gene expression.
Future work may consider crossing their engineered mouse line,
CARLIN (CRISPR array repair lineage tracing), with established
genetically engineered mouse models of AML.10 These new
lineage-tracing tools are early in development but can further
enhance our understanding of the functional relevance of
important AML subpopulations.

Limitations of single-cell assays include both cost and
throughput. Although numerous research laboratories are
generating single-cell data and analyses, the cost associated
with these approaches for large AML cohorts remains prohibi-
tive. A concerted effort is needed to make these data and
relevant clinical annotations publicly available for all
researchers. For now, it will be important to externally validate
key observations from single-cell analyses with bulk biomole-
cular profiling data sets that are available for numerous AML
patient samples.113 Several pipelines are in place to rigorously
perform these analyses, which can include cell label transfer114

and bulk expression deconvolution.115-117 Zeng et al29 per-
formed such an analysis by reannotating leukemia stem and
progenitor cell populations from published scRNA-seq data83 in
order to characterize changes in the cellular composition of
AML during treatment. By deconvolving published gene
expression data sets across >1000 patients, they provide an
interesting framework for evaluating responses to a variety of
therapeutic agents, which can be adapted to future studies
in AML.
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Future perspectives of single-cell genomics in AML
Advanced single-cell methods can allow us to answer critical
questions in AML research. For instance, can we reliably
distinguish pHSCs from LSCs? What is the true degree of clonal
heterogeneity within these important AML subsets, and what
are the molecular processes that transform pHSCs to LSCs?
Furthermore, how do AML cells interact with one another and
the microenvironment, and how do they change with time and
treatment? Granja et al86,118 have developed a framework for
integrating assay for transposase-accessible chromatin using
sequencing and scRNA-seq that can facilitate the identification
of differentially regulated gene expression networks relevant in
cellular transitions. It will also be important to incorporate sur-
face marker expression using antibody-derived tags into these
analyses to enable the necessary functional correlates and
lineage-tracing experiments in vivo. Investigating the hypoth-
esis that leukemia stem cells and/or pHSCs do in fact persist
and generate relapsed disease will be critical for designing
curative therapies in AML.

The potential for translating single-cell technologies into viable
clinical assays is exciting, and evaluating MRD for its cellular
352 26 JANUARY 2023 | VOLUME 141, NUMBER 4
composition and clinical relevance may be a promising applica-
tion (Figure 4).28 Although single-cell assays cannot reliably
detect MRD because of throughput, it is clear that MRD, when
detected, is not homogenous.119 Therefore, it will be important
to characterize the cellular composition of that MRD to determine
which cells are truly responsible for treatment failure and relapse.
For instance, if the cellular composition at a late relapse is the
same as that at diagnosis, should clinicians rechallenge with the
same initial induction regimen? If there has been evolution, which
new treatment should clinicians recommend? It will therefore be
critical to incorporate markers that could differentiate relapse-
fated clones from clonal hematopoiesis and, similarly, bona fide
leukemia cells (ie, LSCs and their progeny) from pHSCs (Figure 1).
Furthermore, incorporating transcriptomic or epigenomic fea-
tures in addition to mutation status may be important for identi-
fying nongenetic factors that can contribute to resistant and
relapsed AML.119 Using targeted multiomic profiling will likely be
more feasible than whole-genomic or transcriptomic assays;
however, the features used may need to be relatively broad or
dynamic, because markers present at diagnosis and relapse may
be different. Ultimately, prospective clinical trials will need to
compare single-cell assays with bulk biomolecular profiling
methods in order to reliably understand their utility.
Summary
Many fundamental questions in AML biology and disease
management remain unanswered, driven in part by the diversity
of cells within the leukemia. Prior research has relied on bulk
analysis methods, which have been limited by their inability to
accurately deconvolve the cellular heterogeneity of the disease.
Characterizing the cellular composition of AML and underlying
cell-specific processes is proving to be vital in addressing these
important questions. Recent advances in the development and
implementation of single-cell methods for the analysis of AML
are starting to advance our understanding of this heterogeneity.
Although there are limitations to these single-cell methods,
these techniques may provide the resolution needed to drive
AML research into a new era. It will be critical to not only
establish rigorous benchmarks as we continue to analyze these
complex datasets but also perform the necessary functional
assessments of compelling single-cell observations. In the
upcoming years, the careful implementation of these methods
can provide the insights necessary to advance personalized and
effective medicine in AML.
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