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mTOR inhibition attenuates cTfh cell dysregulation
and chronic T-cell activation in multilineage immune
cytopenias
D
ow

nloaded from
 http
Deepak Kumar,1 Thinh H. Nguyen,1 Carolyn M. Bennett,1 Chengyu Prince,1 Laura Lucas,2 Sunita Park,3 Taylor Lawrence,2 Karin Chappelle,2

Mariam Ishaq,2 Edmund K. Waller,4 Sampath Prahalad,5 Michael Briones,1 and Shanmuganathan Chandrakasan1

1Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA; 2Aflac
Cancer and Blood Disorders Center and 3Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA; 4Department of Hematology and Medical
Oncology, Winship Cancer Institute, Emory University, Atlanta, GA; and 5Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of
Atlanta, Emory University School of Medicine, Atlanta, GA
://ashpublications.net/blood/article-pdf/141/3/238/2073544/blood_bld-2
KEY PO INT S

•mTOR inhibition in
patients with m-IC
improves cTfh and T-cell
dysregulation along
with preservation of
absolute T- and B-cell
counts.

•Despite favorable
changes in T-cell
compartment, mTOR
inhibition did not
universally result in
improvement in B-cell
maturation.
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mTOR inhibitors such as sirolimus are increasingly used in the management of multilineage
immune cytopenia (m-IC) in children. Although sirolimus is effective in improving IC, it is
unclear how sirolimus affects the broader immune dysregulation associated with m-IC. We
profiled T- and B-cell subsets longitudinally and measured cytokines and chemokines before
and after sirolimus treatment. Eleven of the 12 patients with m-IC who tolerated sirolimus
were followed for a median duration of 17 months. All patients had an improvement in IC,
and sirolimus therapy did not result in significant decreases in T-, B- and NK-cell numbers.
However, the expansion and activation of circulating T follicular helper and the Th1 bias
noted before the initiation of sirolimus were significantly decreased. Features of chronic T-cell
activation and exhaustion within effector memory compartments of CD4+ and CD8+ T cells
decreased with sirolimus therapy. Corresponding to these changes, plasma levels of CXCL9
and CXCL10 also decreased. Interestingly, no significant improvement in the proportion of
class-switched memory B cells or frequencies of CD4+ naive T cells were noted. Longer
follow-up and additional studies are needed to validate these findings and evaluate the effect
of sirolimus on B-cell maturation.
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Introduction
Multilineage immune cytopenias (m-IC) are increasingly
recognized as a presenting manifestation of underlying
immune regulatory disorders.1-5 Genetic analysis of m-IC
identified several pathogenic variants in immune regulatory
genes in ~40% of these cases.6 Recently, we showed that
patients with m-IC, irrespective of underlying genetic muta-
tions, have broad immune dysregulation characterized by
expansion and dysregulation of circulating T-follicular helper
cells (cTfh), increased T-cell activation, and decreased fre-
quencies of CD4+ naïve T cells and class-switched memory
B (CSMB) cells.7 Tfh cells represent a specialized population of
CD4+ T cells which help in B-cells class switch and make
high-affinity antibodies. Dysregulation in Tfh cells affects
T- and B-cell interaction leading to autoimmunity and humoral
immune deficiency.8,9

Sirolimus, an mTOR inhibitor, is being increasingly used to
treat patients with autoimmune lymphoproliferative syndrome
VOLUME 141, NUMBER 3
(ALPS) and non-ALPS–associated m-IC, and multiple studies
have shown excellent overall response rates.5,10-15 Although
sirolimus improves immune cytopenias in patients with m-IC,
it is still poorly understood whether sirolimus helps in
ameliorating underlying broader immune dysregulation in
these patients. Limited immune studies in m-IC have shown no
change in absolute lymphocyte count, CD4+ T, CD8+ T
and IgG levels on long term treatment with sirolimus.11 To
address how sirolimus affects underlying immune dysfunction
in patients with m-IC, we performed longitudinal immune
evaluation in m-IC patients before and after sirolimus
treatment.

Study design
Human subjects
A total of 12 patients with m-IC (aged 5-18 years, median
age = 8.5 years) and 21 healthy controls (HC) (aged 1-30 years,
median = 16 years) were included in this study from 2017 to
2021. All patients with m-IC were enrolled at Children’s
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Healthcare of Atlanta under institutional review board approved
protocol. The demographics and clinical characteristics for
patients with m-IC are provided in supplemental Table 1
(available on the Blood website). Clinical laboratory parame-
ters were extracted from medical records in all 12 patients. All
patients’ samples were titrated to target serum trough levels
between 5 and 12 ng/mL. Of the 12 patients, 1 was excluded
owing to poor adherence (sirolimus levels <3 ng/mL) leaving
11 patients with sirolimus levels of > 3 ng/mL included in the
analysis. Patients with m-IC were evaluated either at disease
onset or during active disease. Patients with a co-existing
diagnosis of systemic lupus erythematosus, or underlying
malignancy were excluded. Informed consent was obtained
from all subjects as per the Declaration of Helsinki.

Genetic evaluation
All 12 patients with m-IC underwent genetic testing. Four
patients were found with pathogenic or likely pathogenic gene
variants, that is, LRBA (n = 1), PI3KCD (n = 1) and FAS (n = 2),
whereas 2 patients were found with gene variants of uncertain
significance which includes PNP, PRKCB and ADA. One patient
was found with CFHR3 gene deletion (risk allele). Additional
details about genetic testing and the variants are listed in
supplemental Table 2.

Flow cytometry and description of different immune subsets
(supplemental Table 4), cytokine/chemokine profiling and sta-
tistical analysis are included in the supplemental data.

Results and discussion
In our previous study, we found that patients with m-IC display a
broad signature of T- and B-cell immune dysregulation that was
markedly different from patients with chronic ITP (cITP).7

Patients with m-IC showed an expansion of cTfh population
along with upregulation of activation, exhaustion and senes-
cence markers.7 At a median follow-up of 17 months (range,
5-30; supplemental Figure 1) on sirolimus therapy, most
patients achieved favorable clinical response of immune cyto-
penia and lymphoproliferation (supplemental Table 1). In
addition, patients on sirolimus therapy showed a significant
decrease in total (CXCR5+) and PD-1+ cTfh populations
(Figure 1A-C). Furthermore, we noted a decrease in levels of
activation, senescence and exhaustion markers on cTfh sug-
gesting that sirolimus not only helped in restricting the
abnormal expansion of cTfh but also improved the dysregu-
lated state of this subset (Figure 1D-F). Earlier, we showed that
cTfh displays early lineage commitment in CD4+ naïve T -cell
populations and expands further in CD4+ memory and TEMRA
cells owing to likely preferential proliferative stress in cTfh.7 We
observed a significant decrease in the proportion of cTfh in
both CD4+ naïve T along with CD4+ TEMRA populations on
sirolimus treatment, suggesting suppression of early lineage
commitment of these cells and reversal of preferential cTfh
expansion (Figure 1G-I).

Another important feature of patients with m-IC is chronic T-cell
activation.7 On sirolimus treatment, we found a significant
decrease in both CD4+ and CD8+ effector memory (EM) T-cell
activation than to the HC (Figure 2A-B and supplemental
Figure 2A). We also observed a decrease in expression of
mTOR INHIBITOR IMPROVES IMMUNE DYSFUNCTION IN m-IC
senescence and exhaustion markers in CD4+ EM T cells
(Figure 2D-E). Similarly, a decrease in exhaustion markers was
seen on CD8+ EM T cells (supplemental Figure 2B). Similar
findings of decrease in frequency of PD-1+CD4+ and T-cell
senescence was reported earlier in APDS (activated phospho-
inositide 3-kinase δ) syndrome using PI3Kδ inhibitor leniolisib
which targets upstream of PI3K/Akt/mTOR pathway.16 Previous
studies have shown increased mTOR activity in patients with
ALPS and APDS.17,18 However, in our study cohort, despite
having diverse genetic defects, we found similar response to
sirolimus suggesting increased mTOR activity in patients with
m-IC irrespective of underlying genetics.

We previously showed skewing of cTfh toward a Th1 phenotype in
patients with m-IC.7 Longitudinal evaluation on sirolimus therapy
showed a decrease in Th1 skewing in both total CD4 and cTfh
compartments, with corresponding decrease in Th1/Th2 ratios,
suggesting a likely decrease in Th1/IFN-γ mediated inflammation
(supplemental Figure 2D-E, 2G-H and 2J-K). However, we did not
find any significant change in Th17 or cTfh17 populations
(supplemental figure 2F and 2I). Despite decrease in T -cell acti-
vation and Th1 polarization, we did not find any significant
improvement in frequencies of CD4+ naïve T -cells (Figure 2C).
Although not included in our assessment, previous observations
have also shown an improvement in regulatory T (Treg)-cell
numbers in m-IC patients on sirolimus therapy.15

An assessment of absolute B-cell numbers showed no differ-
ence on sirolimus therapy (supplemental figure 3D). Although
CSMB cells increased in some patients on sirolimus treatment, it
was not statistically significant and did not result in appreciable
change in immunoglobulin profile (Figure 2F, supplemental
Figure 3A-C). Another observation worth noting is that
despite attenuation of T -cell activation and decrease in lym-
phoproliferation on sirolimus therapy, absolute counts of CD4+

T, CD8+ T and NK cells remain stable in peripheral blood of
m-IC patients, alluding to its potential role in immune preser-
vation (supplemental Figure 3E-H). A similar observation of
stable T -cell numbers on sirolimus therapy was previously
reported by Bride et al in 2016.11 By maintaining absolute
T- and B-cell numbers and decreasing chronic activation,
exhaustion and senescence, sirolimus has a unique role in
improving functional immunity in patients with m-IC and may
slow evolution to more significant immune deficiency states
such as common variable immunodeficiency or combined
immunodeficiency (CID) with worsened T- and B-cell function.

Recently we showed similar immune anomalies that exist in
patients with m-IC, irrespective of presence or absence of
genetic drivers.7 Therefore, we wanted to evaluate whether
response to sirolimus is also similar in patients with known
genetic defects versus patients with unknown or no genetic
variants. Toward this goal, we segregated patients with m-IC,
based on the absence or presence of pathogenic/likely patho-
genic genetic variants and evaluated immune subsets in these
subgroups after sirolimus therapy. We observed a similar trend
in both the subgroups showing decrease in percentage of cTfh,
cTfh activation, senescence and exhaustion as well as T-cell
activation. However, owing to the limited number of samples in
gene (+) subgroup, the samples did not meet the significance
for some phenotypes (supplemental Figure 4).
19 JANUARY 2023 | VOLUME 141, NUMBER 3 239
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Figure 1. Attenuation of cTfh expansion and dysregulation on sirolimus treatment. (A) Representative flow plots showing frequency of cTfh cells in a patient with m-IC
before (Pre) and after (Post) sirolimus treatment. (B-C) Frequency of PD-1+ cTfh (PD-1+ CXCR5+) and total cTfh (CXCR5+) are shown for HC and patients with m-IC (n = 9) before
and after sirolimus therapy. (D-F) Plots showing frequencies of cTfh activation (HLA-DR+ CXCR5+), exhaustion (Tim3+ CXCR5+) and senescence (CD57+ CXCR5+) gated on total
memory CD4+T (CD45RA-CD4+) cells. (G-H) cTfh population was gated on CD4+ naïve T and CD4+ TEMRA T cells and plots showing percentage of these populations pre-
and post-sirolimus therapy. (I) Violin plot showing percentage of cTfh in naïve, memory and TEMRA compartments of CD4+ T -cells in HC and patients with m-IC before and
after sirolimus treatment. Kruskal-Wallis 1-way ANOVA followed by Dunn’s multiple comparison test for non-normally distributed samples and ordinary 1-way ANOVA fol-
lowed by Tukey’s multiple comparison test for normally distributed samples were used for statistical comparison of HC with m-IC pre- and posttreatment groups. Paired t test
or Wilcoxon signed-rank test was used for paired analysis between pre- and post-m-IC groups. *P < .05, **P < .01, ***P < .001, ****P < .0001; ns, not significant.
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Based on the unique profile of patients with m-IC, we had
earlier proposed immune parameters based on the 4-point
scoring system.7 We found that in our cohort of patients
with m-IC, the median score decreased from 3 to 1 for those
on sirolimus therapy, suggesting a global improvement in
immune dysregulation (Figure 2G and supplemental figure 5).
Further characterization of inflammatory milieu in these
240 19 JANUARY 2023 | VOLUME 141, NUMBER 3
patients was performed by chemokine and cytokine profiling.
Although the levels of IFN-γ were not different, more reliable
markers of IFN-γ induced chemokines, that is, CXCL9 and
CXCL1019,20 were significantly decreased on sirolimus ther-
apy, suggesting decreased IFN-γ mediated inflammation and
corroborating our previous observations of a decreased Th1
polarization and T-cell activation. A decreasing trend in IL-18
KUMAR et al
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Figure 2. Changes in T- and B-cell immune abnormalities and inflammatory milieu in patients with m-IC on sirolimus therapy. (A) FACS plots showing frequency of
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levels was also observed in patients on sirolimus therapy,
suggesting an improvement in innate inflammation.
Improvements in IL-21 levels despite a decrease in cTfh fre-
quency could suggest a more functional cTfh compartment.
However, we did not observe any change in CD40L levels
which is critical for cTfh and B-cell interaction.8 A decrease in
IL-10 levels was also seen in patients with m-IC. Elevated IL-10
levels in ALPS have been shown previously and correlate with
disease severity.21 Cytokines important for naïve and Treg
development22 such as IL-2 and IL-7 remained unchanged.
IL12p40, a cytokine required for Th1 differentiation23,24

showed an overall (non-significant) decrease in median
values on sirolimus therapy (Figure 2H).

Our cohort illustrates that despite different genetic drivers in m-
IC, sirolimus treatment results in the improvement of immune
dysregulation signatures (Supplemental Figure 6). Future
studies of a larger cohort of patients will be important to vali-
date our findings. Studies with longer follow-up are needed to
determine if improvement in CD4+ naïve T-cells and CSMB
populations occurs as well. Moreover, we did not test whether
the improvements in immunologic profiles observed with siro-
limus therapy are also observed with other immunosuppressive
agents such as mycophenolate mofetil5 used to treat immune
dysregulation in patients with m-IC. Overall, our study lays the
foundation for future studies to explore the role of sirolimus in
immune preservation and improving functional immunity in
patients with m-IC.

Conclusions
In summary, our data suggest that mTOR inhibition not only
improves immune cytopenia and lymphoproliferation but also
significantly improves the dysregulated immune phenotype seen
in patients with m-IC such as Tfh cell expansion and chronic T-cell
activation, without compromising overall lymphocyte counts and
immunoglobulin levels. However, longer term studies are
needed to determine if the beneficial effects of sirolimus are
durable and extend to other dysregulated immune subsets such
as naïve CD4+ T cells and CSMB cells.
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