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RED CELLS, IRON, AND ERYTHROPOIESIS
Iron homeostasis governs erythroid phenotype in
polycythemia vera
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KEY PO INT S

•Homozygous HFE
mutations are
overrepresented in
patients with PV.

•Hepcidin levels govern
severity of, and can be
manipulated to modify,
the erythroid
phenotype in PV.
lood_
Polycythemia vera (PV) is a myeloproliferative neoplasm driven by activating mutations in
JAK2 that result in unrestrained erythrocyte production, increasing patients’ hematocrit
and hemoglobin concentrations, placing them at risk of life-threatening thrombotic
events. Our genome-wide association study of 440 PV cases and 403 351 controls using
UK Biobank data showed that single nucleotide polymorphisms in HFE known to cause
hemochromatosis are highly associated with PV diagnosis, linking iron regulation to PV.
Analysis of the FinnGen dataset independently confirmed overrepresentation of homo-
zygous HFE variants in patients with PV. HFE influences the expression of hepcidin, the
master regulator of systemic iron homeostasis. Through genetic dissection of mouse
models of PV, we show that the PV erythroid phenotype is directly linked to hepcidin
expression: endogenous hepcidin upregulation alleviates erythroid disease whereas
bld-2022-016779-m
hepcidin ablation worsens it. Furthermore, we demonstrate that in PV, hepcidin is not regulated by expanded
erythropoiesis but is likely governed by inflammatory cytokines signaling via GP130-coupled receptors. These find-
ings have important implications for understanding the pathophysiology of PV and offer new therapeutic strategies
for this disease.
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Introduction
Polycythemia vera (PV) is a Philadelphia chromosome–negative
myeloproliferative neoplasm (MPN) driven by activating muta-
tions in JAK21-4 that cause unrestrained erythrocyte production,
increasing patients’ hematocrit and hemoglobin concentrations.
In PV, >95% of cases harbor the JAK2 V617F mutation, with the
remainder of cases usually exhibiting a mutation in JAK2 exon
12.5,6 Complications of elevated hematocrit include venous and
arterial thrombosis, and systemic symptoms including headache,
visual disturbances, and pruritis.7 Therapy typically includes
regular venesection to maintain hematocrit below 45%.6,8 This
phase of the disease may continue for years before some
patients develop fibrotic or leukemic transformation.

Iron availability for erythropoiesis (and other tissues) is governed
by hepcidin, the master regulator of systemic iron homeostasis.
Hepcidin is produced by the liver and occludes and internalizes
the sole cellular iron exporter, ferroportin,9,10 preventing recycled
iron in macrophages and dietary iron absorbed in the intestine
from reaching the plasma and, hence, the bone marrow (BM).11

Elevated hepcidin thus reduces iron availability, whereas sup-
pressed hepcidin enhances it.12 Systemic iron homeostasis is
maintained via the transcriptional regulation of hepcidin, through
which iron loading upregulates transcription via the canonical
bone morphogenic protein (BMP)-Suppressor of Mothers against
Decapentaplegic (SMAD) signaling pathway.13 Hepcidin tran-
scription is suppressed by iron deficiency, partly via matriptase-2
(encoded by TMPRSS6) mediated downregulation of hemojuve-
lin, a coreceptor for BMP signaling. Increased erythropoiesis also
suppresses hepcidin via the erythroid-secreted hormone eryth-
roferrone (ERFE),14 which acts to inhibit BMP signaling.15 Hep-
cidin is also upregulated by inflammation16 (via interleukin-6 [IL-
6]-driven JAK-STAT signaling17).
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Systemic iron metabolism and PV may be closely intertwined.18

Most patients with PV present with iron deficiency at diag-
nosis.19 Overt iron deficiency may mask the elevated hemo-
globin associated with PV.20 Venesection induces iron
deficiency to limit further erythropoiesis. Recent reports have
indicated that treatment of patients with PV with hepcidin
analogues21 or pharmaceutical upregulation of hepcidin in
preclinical models of PV22,23 may ameliorate disease pheno-
type. Given emerging interest in the manipulation of iron
homeostasis in PV, comprehensive characterization of hepcidin
regulation and its role in PV disease is imperative.

Here, we establish and validate an association between disor-
dered systemic iron homeostasis and the risk of PV diagnosis
through unbiased genome-wide association studies (GWASs)
and evaluate the iron phenotype in a large cohort of patients
with PV. We then show that hepcidin levels are critical for
governing the severity of the erythroid phenotype using pre-
clinical models of Jak2-V617F–driven PV. Furthermore, we
demonstrate that in PV, hepcidin is not downregulated by
erythroferrone. We also demonstrate an inflammatory pheno-
type in PV that may influence hepcidin through GP130-coupled
receptors. These findings provide novel insights into under-
standing the pathophysiology of PV and have important impli-
cations for new therapeutic interventions.

Methods
Complete details are available in the supplemental Materials,
available on the Blood website.

Ethics
Patient samples were collected in accordance with Walter and
Eliza Hall Institute ethics 18/10LR or were derived from the
Cambridge Blood and Stem Cell Biobank under ethics approval
18/EE/0199 (East of England, Cambridge East Research Ethics
Committee). All participants provided written informed con-
sent. The UK Biobank has approval from the UK North West
Multi-centre Research Ethics Committee as a Research Tissue
Bank (approval 21/NW/0157). Use of mice was in accordance
with requirements set out by Walter and Eliza Hall Institute
Animal Ethics Committee (approvals 2017.031 and 2020.034).

UK biobank GWAS
We undertook a GWAS of PV cases vs controls. Associations
with single nucleotide polymorphisms (SNPs) and small indels
were tested genome-wide, using regenie,24 per an additive
genetic model. Associations included adjustment for sex, age,
genotyping array, 10 ancestry principal components, and
relatedness. GWAS results were filtered to include only vari-
ants with a minor allele frequency of ≥1.2%. For variants within
the HFE locus, associations with PV were also tested assuming
a recessive model, with covariate adjustment as described
earlier. Associations at this locus and the 4 blood cell traits
were tested separately in PV cases and controls, using regenie,
as described earlier, under both the additive and recessive
models.

FinnGen GWAS analysis
We used the FinnGen resource, data release 6.25,26 PV cases
were identified as having a relevant International Classification
3200 29 JUNE 2023 | VOLUME 141, NUMBER 26
of Diseases-8, -9, or -10 code in the hospital discharge regis-
ter, cause of death register, or cancer register; controls were
individuals without PV without a record of cancer. Genome-
wide associations with PV were carried out with adjustment
for sex, age, 10 ancestry principal components, and genotyping
batch, assuming the use of an additive genetic model. The
difference in the proportion of individuals with a homozygous
AA genotype in PV cases vs controls was tested using the Fisher
exact test.

Patient samples
We analyzed blood from patients with PV who fulfilled the
World Health Organization criteria for PV at the time of diag-
nosis (n = 30) whose treatment either included a history of
therapeutic venesection (n = 16) or not (n = 14); and from
healthy controls (n = 30). Demographics are presented in
supplemental Table 1.

Animals
Erythroferrone knockout (Erfe-KO)14,15,27 and inducible
hepcidin knockout (iHamp-KO)28 mice have been described
previously. Transgenic mice with a single copy Cre
recombinase-dependent Jak2-V617F transgene located
downstream of the Col1a1 locus (LSL-Jak2-V617F; CreERT2T/+)
were generated (full methodology in supplemental Materials).
Age- and sex-matched control animals were used in all
experiments.

BM transplant model of PV
LSL-Jak2-V617F; CreERT2T/+ (PV) or LSL-Jak2-V617F lacking
CreERT2 (control) BM cells were injected IV into lethally irra-
diated Ly5.1/J (B6.SJL-Ptprca Pepcb/BoyJ) recipient mice.
Seven weeks after BM transplantation, mice were given
tamoxifen (Sigma; 4.2 mg in 90% corn oil or 10% ethanol) via
oral gavage on 2 consecutive days to induce expression of
the mutant Jak2 allele. Complete details are given in
supplemental Materials.

Administration of drugs, antibodies, and siRNA
TMPRSS6 small interfering RNA (siRNA; Silence Therapeutics
GmbH, Berlin, Germany) comprised a double-stranded 19-mer
RNA oligonucleotide targeting human TMPRSS6, linked to a
GalNAc unit at the 5́ end of the sense strand enabling hepatic
targeting.29 Nontargeting control (NTC) siRNA complimentary
to luciferase RNA was used as the control. TMPRSS6 and NTC
siRNA were diluted in sterile phosphate-buffered saline, and
5 mg/kg was administered via subcutaneous injection every
3 weeks for a total of 3 doses.

Antimouse IL-6 (clone MPF-20F3) or rat immunoglobulin G1κ
control antibodies (both made in-house) were administered
via intraperitoneal injection every 3 days for a total of 7 doses
(500 μg per injection) or daily for 5 consecutive days (200 μg per
injection).

Statistical analysis
Sample sizes and statistical tests for each experiment are
denoted in the figure legends. Data represents mean ± stan-
dard deviation. Statistical testing was performed using Prism
version 9.3.1 (GraphPad Software).
BENNETT et al
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Figure 1. GWAS of PV. (A) Schematic of GWAS. Created with BioRender.com. (B) Manhattan plot showing results of GWAS of 440 PV cases vs 403 351 controls, assuming an
additive genetic model. The red dashed line shows genome-wide significance level (P < 5E-8). Three loci with associations exceeding this threshold are labeled with the
nearest gene. (C) Top SNP at each genetic loci that reached genome-wide significance. (D) LocusZoom plot of associations at the HFE locus, assuming a recessive genetic
model. Rs1800562 (C282Y) highlighted, with the other SNPs colored per linkage disequilibrium (r2) to that SNP.
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Results
GWAS links PV diagnosis with HFE variants
We undertook a GWAS of 440 PV cases and 403 351 controls in
the UK Biobank (Figure 1A). We tested 9 191 064 variants
genome wide (Figure 1B). Three genetic loci had SNPs with
genome-wide significant (P < 5E-8) associations. Figure 1C
details the top SNP at each locus. The most significant associ-
ation was with rs62541556 (P = 8.85E-21), a germ line SNP in
JAK2 that tags the 46/1 haplotype implicated in MPNs and is
associated with increased susceptibility to V617F-mutant clonal
hematopoiesis.30,31 The other genome-wide significant associ-
ations were with rs79220007 in HFE (P = 1.42E-14) and
rs3836364 in FBLN2 (P = 4.75E-8).

Interestingly, the top SNP in HFE, rs79220007, is in very high
linkage disequilibrium (r2 = 1.0) with rs1800562, a SNP known
to cause C282Y, the most common mutation causing HFE-
related hemochromatosis, an autosomal recessive disorder
producing iron overload.32,33 Among PV cases, there was an
excess of individuals with the AA homozygous (C282Y) geno-
type, compared with the number that would be expected under
Hardy-Weinberg equilibrium (2.7 expected vs 35 observed).
Given the overrepresentation of AA genotypes in PV cases and
the established role of homozygous C282Y variants in disease,
we reexamined the HFE locus for associations with PV under a
recessive model. The association with rs1800562 was more
statistically significant under the recessive model than under the
additive model (P = 2.63E-26 vs P = 2.91E-14; supplemental
Table 2; Figure 1D), with the homozygous AA genotype asso-
ciated with a 12.58-times increased odds of PV, compared
with G/G or G/A genotypes. Commensurately, there was more
than 10-fold increase in the number of individuals with a
PV diagnosis for individuals homozygous for C282Y (AA)
3202 29 JUNE 2023 | VOLUME 141, NUMBER 26
(n = 35, 1.35%, supplemental Table 3), compared with those
with GA or GG genotypes (n = 69, 0.12%; and n = 336, 0.1%,
respectively).

Next, we sought confirmation of the association of rs1800562
with PV through a look-up of rs1800562 in a GWAS of PV in the
independent FinnGen study (394 PV cases vs 217 902 con-
trols).25,26 Again, there was an overrepresentation of the AA
genotype among PV cases (0.6 expected vs 4 observed). The
crude odds ratio comparing the frequency of the AA homozy-
gous genotype in PV cases vs controls in FinnGen was 5.19
(P = 8.29E-3; supplemental Table 4). The FinnGen GWAS
assumed an additive genetic model and did not demonstrate
an association between rs1800562 and PV (P = .68). However,
the C282Y variant is less frequent in Finnish than in British
populations (minor allele frequency of 3.7% vs 7.8%), therefore,
there may have been limited power to capture the recessive
association when an additive effect is assumed.

Using the UK Biobank, we then examined associations between
rs1800562 and blood cell traits in PV cases and control indi-
viduals separately under both additive and recessive models. In
line with a previous GWAS,34 in control individuals, the A allele
of rs1800562 was highly associated with higher hemoglobin
concentrations, hematocrits, and mean corpuscular volume but
lower erythrocyte count (supplemental Table 5) compared with
those with PV; this latter association was larger and more sta-
tistically significant under a recessive model (supplemental
Table 5).

HFE regulates iron homeostasis by influencing transcription of
hepcidin.35 HFE knockout mice exhibit marked reductions in
liver Hamp1 messenger RNA (mRNA) expression.36 The C282Y
BENNETT et al
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HFE variant dysregulates the iron-hepcidin axis, causing lower
hepcidin concentrations relative to iron stores.37 We therefore
sought to further investigate how iron homeostasis may affect
PV disease.

Patients with PV exhibit iron deficiency with
appropriate reductions in hepcidin expression
We compared hematology and iron markers in 30 patients with
PV with 30 healthy controls (Figure 2). Patients with PV exhibi-
ted increased hematocrit and red cell count, and reduced
ferritin (log ferritin: PV, 1.211 vs control, 1.572; P = .0002) and
transferrin saturation (PV, 12.1% vs control, 24.43%; P < .0001);
hepcidin levels were reduced (PV, 6.89 ng/mL vs control, 17.01
ng/mL; P < .0001), and erythroferrone levels increased (PV,
12.41 ng/mL vs control, 4.26 ng/mL; P = .0004). The ratio of
IRON HOMEOSTASIS GOVERNS ERYTHROID PHENOTYPE IN PV
hepcidin-to-ferritin was similar between groups (PV, 0.485 vs
control, 0.443; P = .6048). As expected, patients with PV had
elevated platelet and leukocyte counts. Interestingly, we did
not observe significant differences between patients whose
treatment included a history of therapeutic venesection and
those whose did not (supplemental Figure 1).

Hepcidin regulation in a murine inducible knockin
BM transplant model of PV
To define hepcidin regulation in PV, we developed a BM
transplant model of PV (Figure 3A). Importantly, this model
allows inducible mutant Jak2-V617F expression in the
hematopoietic lineage while preserving wildtype JAK2-STAT
signaling in hepatocytes. Reconstitution of the BM by donor
cells was highly efficient (supplemental Figure 2). Ten weeks
29 JUNE 2023 | VOLUME 141, NUMBER 26 3203
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after tamoxifen induction, recipient mice that received trans-
plantation with LSL-Jak2-V617F; CreERT2T/+ BM (hereafter,
termed as mice with PV) exhibited a classic PV phenotype with
elevated red cell count, reticulocytes, hematocrit and hemo-
globin levels; decreased mean corpuscular hemoglobin (MCH)
and mean cell volume (MCV); suppressed renal erythropoietin
(Epo) expression; and splenomegaly (Figure 3B-I); the severity
of the phenotype was not inconsistent with human disease.
Unlike other murine models of PV,38,39 mice with PV did not
have thrombocytosis and exhibited only an approximate
twofold increase in leukocytes (supplemental Figure 3).
Compared with controls, mice with PV had a skewed distri-
bution of BM-resident erythropoietic progenitor cells, with
increased levels of the most-mature (stage V) erythroid cells
(Figure 3J; supplemental Figure 4). However, in the spleen,
erythropoiesis was skewed toward increased intermediate
progenitors and reduced stage V cells (supplemental
Figure 4). In this PV model, despite increased erythropoiesis
and higher Erfe mRNA in the BM (but not the spleen) and
serum ERFE protein levels (Figure 3K-M), hepcidin mRNA (gene:
Hamp1) and serum protein levels were not reduced (Figure 3N-O).
Serum and liver iron concentrations were similar between mice
with PV and controls (Figure 3P-Q), but spleen iron was reduced
(Figure 3R).

ERFE does not regulate hepcidin expression in PV
ERFE levels were modestly increased in our PV model
(Figure 3M), a magnitude of increase not dissimilar to the clin-
ical cohort (Figure 2F). To determine the effect of ERFE on
hepcidin levels and disease severity in PV, we crossbred the
LSL-Jak2-V617F; CreERT2T/+ mice with a previously generated
Erfe-KO mouse15,27,40 (PV × Erfe-KO mice). The intercrossed
mice were used as donors for BM transplants, allowing for Jak2-
V617F expression along with Erfe deletion in hematopoietic
cells of recipient mice. Although mice with PV have increased
ERFE (Figure 3M), ERFE is undetectable in PV × Erfe-KO mice
(Figure 4A); however, deletion of Erfe in mice with PV did not
alter hepatic Hamp1 expression (Figure 4B) or hepcidin protein
(Figure 4C) or alter systemic iron levels (Figure 4D-E), erythroid
parameters (red cell count, hematocrit, or hemoglobin;
Figure 4F-H), terminal erythropoiesis in the BM (Figure 4I),
splenomegaly, or other nonerythroid hematologic lineages
(supplemental Figure 5).

Hepcidin determines PV erythroid disease severity
We hypothesized that hepcidin regulates erythroid disease in
PV. To test this hypothesis, we first deleted hepcidin in mice
with PV using a previously generated iHamp-KO mouse
model.28 Because mutant Jak2-V617F expression in hepatocytes
was not a concern in mice unable to express hepcidin, we cross-
bred LSL-Jak2-V617F; CreERT2T/+ mice with iHamp-KO mice,
creating mice with simultaneously inducible systemic mutant Jak2-
V617F expression and hepcidin deletion (PV × iHamp-KO).
Figure 3. Novel mouse model of PV. (A) Schematic of BM transplant PV mouse model. (B
24 control and PV, n = 25. (H) Kidney Epo mRNA expression relative to Hprt; n = 6. (I) Sple
BM determined by flow cytometry. Based on CD44 expression and FSC-A, Ter119+ ce
erythroblasts (Baso); III, polychromatic erythroblasts (Poly); IV, orthochromatic erythroblast
Erfe mRNA expression relative to Hprt in (K) the BM, n = 13 control; PV, n = 17, and (L) th
Liver Hamp1mRNA expression relative to Hprt; control, n = 13; PV, n = 17. (O) Serum hepc
PV, n = 21. (R) Spleen (n = 15) nonheme iron content. Mann-Whitney test for panels B,D,I,
way analysis of variance (ANOVA) with Šídák correction for multiple comparisons for pa

IRON HOMEOSTASIS GOVERNS ERYTHROID PHENOTYPE IN PV
As expected, PV × iHamp-KO mice showed no hepatic
Hamp1 expression (Figure 5A) and greatly reduced serum
hepcidin protein (Figure 5B). Deletion of hepcidin in mice with
PV worsened the erythroid phenotype in PV × iHamp-KO ani-
mals, compared with mice with PV that express hepcidin (PV
animals), having increased the hemoglobin concentration
(19.20 vs 22.70 g/dL; P = .0021; Figure 5C), MCH (12.28 vs
17.07 pg; P < .0001; Figure 5D), and hematocrit (68.70% vs
75.85%; P = .0065; Figure 5E) but did not affect non-erythroid
lineages (supplemental Figure 6). Interestingly, hepcidin dele-
tion did not significantly alter the distribution of erythropoietic
cells in the BM (Figure 5F). However, the worsened erythroid
phenotype may reflect increased iron availability for red cell
production as evidenced by increased MCV (43.98 vs 57.62 fL;
P = .0012; Figure 5G) and increased liver iron (Figure 5H) but
did not change the spleen iron content (Figure 5I). PV × iHamp-
KO mice had lower red cell counts than the hepcidin-expressing
controls (15.78 × 106/μL vs 13.16 × 106/μL; P = .0052;
Figure 5J), which, interestingly, recapitulates blood cell traits
among controls with the HFE rs1800562 A allele (supplemental
Table 5). Hepcidin deletion did not affect splenomegaly of mice
with PV (supplemental Figure 6).
TMPRSS6 inhibition increases endogenous
hepcidin and improves PV disease
Because hepcidin ablation worsened the PV erythroid pheno-
type, we hypothesized that increasing hepcidin levels would
impair erythroid iron availability and reduce erythroid disease.
Mice were injected with TMPRSS6 siRNA (which has been
shown to cause sustained knockdown of murine Tmprss629) or
NTC siRNA every 3 weeks for a total of 3 injections starting 1
week after tamoxifen induction of the mutant Jak2-V617F
(Figure 6A), at which time mice with PV had a MPN phenotype
(supplemental Figure 7). TMPRSS6 siRNA treatment resulted in
efficient knockdown of hepatic Tmprss6 (Figure 6B). In mice
with PV, compared with NTC siRNA treatment, TMPRSS6 siRNA
increased hepatic Hamp1 2.07-fold (Figure 6C) and hepcidin
protein 3.10-fold (Figure 6D).

Hepcidin upregulation by TMPRSS6 siRNA significantly
reduced the hematocrit (61.24% vs 43.24%; P < .0001;
Figure 6E), hemoglobin (17.34 vs 11.35 g/dL; P < .0001;
Figure 6F), and MCH (13.29 vs 9.84 pg; P = .0010; Figure 6G)
levels in mice with PV but did not reduce red blood cells
(12.83 × 106/μL vs 11.81 × 106/μL; P = .1458; Figure 6H) and
had no effect on non-erythroid lineages (supplemental
Figure 8). TMPRSS6 siRNA treatment corrected renal Epo sup-
pression (Figure 6I) and the distribution of BM (but not splenic)
resident erythropoietic progenitor cells in mice with PV
(Figure 6J-K) but had no effect on splenomegaly (supplemental
Figure 8). TMPRSS6 siRNA treatment elevated Erfe mRNA
expression in the spleen of mice with PV but had no effect on
Erfe mRNA in the BM or ERFE protein levels in the serum
-G) RBCs (B), reticulocytes (C), HCT (D), HGB (E), MCH (F), and MCV (G); control, n =
en weight normalized to total body weight; n = 24. (J) Terminal erythropoiesis in the
lls were gated into 5 distinct populations: I, proerythroblast (Pro-E); II, basophilic
s and reticulocytes (Ortho/Retic); and V, RBCs. Control, n = 24 control and PV, n = 25.
e spleen; control, n = 7; PV, n = 14. (M) Serum ERFE; control, n = 14; PV, n = 15. (N)
idin; control, n = 9 and PV, n = 12. (P) Serum iron; n = 6. (Q) Liver; control, n = 17 and
L,M,N, unpaired 2-tailed t test with Welch correction for panels C,E-H,K,O-R, or two-
nel J. **P < .01; ***P < .001; and ****P<.0001.
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Figure 4. ERFE does not affect hepcidin in PV. (A) Serum ERFE; control, n = 4; Erfe-KO, n = 4; PV, n = 5; and PV × Erfe-KO, n = 11. (B) Liver Hamp1mRNA expression relative
to Hprt; control, n = 15; Erfe-KO, n = 15; PV, n = 15; and PV × Erfe-KO, n = 13. (C) Serum hepcidin; control, n = 4; Erfe-KO, n = 4; PV, n = 12; and PV × Erfe-KO, n = 12. (D) Liver
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Figure 5. Hepcidin deletion worsens PV erythroid disease severity. (A) Liver Hamp1 mRNA expression relative to Hprt. (B) Serum hepcidin. (C-E) HGB (C), MCH (D), and
HCT (E). (F) Terminal erythropoiesis in the BM determined by flow cytometry. Based on CD44 expression and FSC-A, Ter119+ cells were gated into 5 distinct populations: I ,
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(Figure 6L-N). MCV was reduced in mice with PV treated with
TMPRSS6 siRNA (Figure 6O), indicative of iron-restricted
erythropoiesis. TMPRSS6 siRNA significantly reduced serum
IRON HOMEOSTASIS GOVERNS ERYTHROID PHENOTYPE IN PV
iron in mice with PV (Figure 6P) but did not reduce nonheme
liver iron (Figure 6Q) and the treatment raised nonheme splenic
iron levels (Figure 6R).
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Inflammatory cytokines may upregulate hepcidin
in PV
Inflammatory cytokines (including IL-6) are elevated in PV.41,42

Hepcidin transcription is directly regulated via inflammation,
via IL-6–mediated JAK-STAT signaling.17 Thus, we examined
whether JAK-STAT signaling was increased in the hepatocytes
of mice with PV. RNA-sequencing analysis of livers from animal
with PV that received BM transplantation and control animals
revealed 1466 differentially expressed genes (DEGs) (598
downregulated; 868 upregulated) (Figure 7A; supplemental
Table 6) in mice with PV compared with controls. The tran-
scriptional profile of livers from mice with PV was different from
controls (Figure 7B). Gene Ontology pathway analysis of DEGs
revealed the upregulation of biological processes related to
JAK-STAT signaling in mice with PV compared with control
animals (Figure 7C, top 3 bars). Consistent with this analysis,
gene set enrichment analysis using the MSigDB hallmark gene
sets revealed upregulation of the inflammatory response
pathway in the liver of mice with PV (Figure 7C, fourth bar).

Thus, using a human in vitro hepatocyte model, we explored
the hypothesis that soluble factors (including cytokines) may
upregulate hepcidin in patients with PV. Liver-derived HepG2
cells grown in media supplemented with plasma from patients
with PV exhibited increased hepcidin (HAMP) mRNA expression
compared with cells grown in media supplemented with healthy
donor plasma (Figure 7D), indicating that patients with PV
produce soluble factors that upregulate hepcidin. We reasoned
that IL-6 may be driving this upregulation because mice with PV
exhibited increased serum IL-6 (Figure 7E). In addition, RNA-
sequencing Gene Ontology pathway analysis as well as gene
set enrichment analysis using the MSigDB hallmark gene sets
revealed increased IL-6–driven responses in the livers of mice
with PV (Figure 7C, fifth to seventh bars). To determine whether
IL-6 alone is responsible for hepcidin upregulation in PV, mice
that received BM transplantation were treated with anti–IL-6 or
control (anti–immunoglobulin G) antibodies. Mice treated with
anti–IL-6 antibodies every 3 days for 3 weeks showed normali-
zation of IL6-JAK-STAT (eg, Saa1) transcripts and reduced
expression of hepatic JAK-STAT transcripts (eg, Fga) (Figure 7F-
G), confirming neutralization of IL-6 signaling. However, IL-6
neutralization did not alter hepcidin expression (Figure 7H).
These results were replicated in mice treated with anti–IL-6 daily
for 1 week (supplemental Figure 9). In keeping with unaltered
hepcidin expression, anti–IL-6 treatment had a minimal effect
on erythropoiesis or iron distribution in mice with PV
(supplemental Figure 10).

We therefore hypothesized that other cytokines may upregulate
hepcidin in PV. In keeping with this, Kyoto Encylopedia of
Figure 6. TMPRSS6 inhibition increases endogenous hepcidin and improves PV disea
(C) mRNA expression relative toHprt; control + NTC, n = 9; PV + NTC, n = 16; PV + TMP, n =
HCT (E), HGB (F), MCH (G), and RBCs (H); control + NTC, n = 6; PV + NTC, n = 14; PV + TM
NTC, n = 16; PV + TMP, n = 17. (J-K) Terminal erythropoiesis in the BM (J) and the spleen (K
were gated into 5 distinct populations: I, proerythroblasts; II, basophilic erythroblasts; III, p
RBCs; BM: control + NTC, n = 7; PV + NTC, n = 13; and PV + TMP, n = 19; and spleen: con
Erfe mRNA expression relative to Hprt; spleen: control + NTC, n = 9; PV + NTC, n = 8; and
Serum ERFE; control + NTC, n = 7; PV + NTC, n = 7; and PV + TMP, n = 8. (O) MCV; contro
n = 2; PV groups, n = 4. (Q-R) Liver (Q) and spleen (R) nonheme iron content; liver: control +
groups, n = 11. Kruskal-Wallis test for panels B,D,G,I,L-N,P,R, ordinary one-way ANOVA f
parisons for panels J-K. *P < .05; **P < .01; ***P < .001; ****P < .0001. NTC, nontargeting

IRON HOMEOSTASIS GOVERNS ERYTHROID PHENOTYPE IN PV
Genes and Genomes (KEGG) pathway analysis of DEGs
revealed upregulation of genes involved in cytokine-cytokine
receptor interaction in the liver of mice with PV compared
with controls (Figure 7C, bottom bar). HepG2 cells cultured in
media supplemented with plasma from patients with PV
exhibited increased JAK-STAT target gene expression (FGA)
but no change in BMP-SMAD target gene expression (SMAD7)
when compared with cells cultured in media supplemented with
plasma from healthy donors (Figure 7I). Notably, levels of other
IL-6–family cytokines (IL11,43,44 oncostatin M [OSM]45) are
known to be elevated in PV. Thus, we screened other IL-6–
family cytokines for a role in hepcidin regulation because these
cytokines induce JAK-STAT signaling via a common GP130
receptor subunit (except IL-31). Addition of individual IL-6–
family cytokines to HepG2 cells revealed that in addition to IL-6,
IL-11, OSM, and leukemia inhibitory factor (LIF) increase HAMP
mRNA levels; whereas IL-27, cardiotrophin 1 (CT-1), and ciliary
neurotrophic factor (CNTF) have no effect, and cardiotrophin-
like cytokine factor 1 (CLCF1) decreases hepcidin expression
(Figure 7J). The increase in hepcidin expression by IL-11, OSM,
and LIF (as well as IL-6) was confirmed in a second hepatocyte
cell line, Huh7 (Figure 7K). We then determined whether inhi-
bition of GP130 could normalize hepcidin expression in HepG2
cells treated with PV plasma. HepG2 cells grown in media
supplemented with PV plasma and anti-GP130 antibodies no
longer exhibited increased HAMP expression, rather HAMP
expression decreased, reaching levels indistinguishable from
that of cells cultured in media supplemented with control
plasma and anti-GP130 antibodies (Figure 7L).
Discussion
Here, we provide population genetic and experimental evi-
dence that diagnosis and clinical features of PV are influenced
by systemic iron homeostasis. This work establishes a central
role for iron homeostasis in influencing the erythroid phenotype
in PV and provides a rationale for the use of therapies that
modify iron metabolism to treat this disease.

Our GWAS implicates the HFE locus as a key region associated
with PV diagnosis, formally linking systemic iron regulation and
PV. The top SNP in HFE associated with PV is in very high
linkage disequilibrium with the pathogenic HFE C282Y variant
(which causes hemochromatosis). Interestingly, this disease-
causing SNP is not associated with diagnosis of other MPNs
(essential thrombocythemia and primary myelofibrosis;
supplemental Table 7), indicating that iron metabolism is linked
to PV exclusively. Provision of iron to PV may worsen hemato-
crit.46 Conversely, as we show, iron deficiency is common
among patients with PV19 and may conceal diagnosis.47
se severity. (A) Schematic of experimental design. (B-C) Liver Tmprss6 (B) and Hamp1
18. (D) Serum hepcidin; control + NTC, n = 4; PV + NTC, n = 7; PV + TMP, n = 8. (E-H)

P, n = 17. (I) Kidney EpomRNA expression relative to Hprt; control + NTC, n = 9; PV +
) determined by flow cytometry. Based on CD44 expression and FSC-A, Ter119+ cells
olychromatic erythroblasts; IV, orthochromatic erythroblasts and reticulocytes; and V,
trol + NTC, n = 7; PV + NTC, n = 5; and PV + TMP, n = 7. (L-M) Spleen (L) and BM (M)
PV + TMP, n = 8; BM: control + NTC, n = 8; PV + NTC, n = 11; PV + TMP, n = 16. (N)
l + NTC, n = 6; PV + NTC, n = 14; and PV + TMP, n = 17. (P) Serum iron; control group,
NTC, n = 9; PV + NTC, n = 16; PV + TMP, n = 18; spleen: control + NTC, n = 5 and PV
or panels C,E-F,H,O,Q, or two-way ANOVA with Tukey correction for multiple com-
control siRNA; TMP, TMPRSS6 siRNA.
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Previous small studies have examined the prevalence and
effects of HFE C282Y variants in PV and have not observed
associations.48,49 However, here, the use of large data sets
enabled an unbiased approach to discover and validate the role
of HFE in PV diagnosis. Cases of PV were defined per the
International Classification of Diseases system and subject to
contemporaneous criteria at the time of disease diagnosis.

HFE is an upstream regulator of hepcidin, perhaps via stabili-
zation of BMP-type I receptors (ALK3) to facilitate BMP
signaling.50,51 C282Y variants prevent HFE from reaching the
cell surface, limiting its function, reducing hepcidin expression,
and causing excess iron absorption.37,52 HFE variants may thus
enhance iron availability for erythropoiesis, increasing the like-
lihood of presentation and diagnosis of PV.

Given the established role of HFE in hepcidin regulation, we
reasoned that the ultimate mechanism for the genetic association
with disease phenotype was via changes in hepcidin, and, hence,
we dissected the role of hepcidin in PV using preclinical models.
Genetic deletion of hepcidin in our PV model increased erythroid
parameters, indicating that in PV, unrestricted erythroid iron
access results in unfettered increased hematocrit and hemoglo-
bin production. Conversely, physiologic upregulation of hepcidin
expression through RNA interference of Tmprss6 induced
reductions in serum iron, depriving the BM of iron and causing
reduced hematocrit and hemoglobin concentrations. Hepcidin is
thus critical in determining the erythroid phenotype in PV.

The dependence of the PV erythroid phenotype on systemic iron
homeostasis provides the mechanistic rationale for the suite of
emerging treatments that target iron metabolism for PV. The
mainstay of current treatment for PV is venesection to decrease
hematocrit below 45%, at which point serious thrombotic events
become less likely.8,53 Venesection lowers the hematocrit by
removing red blood cells and inducing systemic iron defi-
ciency,18 thus ameliorating further erythrocyte production.53

However, venesection can cause unwanted adverse effects
including vasovagal reactions due to fluid shifts,54 as well as
symptoms such as chronic fatigue due to systemic iron defi-
ciency,55 and incurs direct and indirect health care costs associ-
ated with patient visits. Some patients are unable to tolerate
venesection because of the severity of adverse events, or do not
achieve satisfactory hematocrit responses and, hence, require
second-line nontargeted agents. New therapeutic options for PV
are thus needed. Withholding iron from the BM by inhibiting iron
export to the plasma offers an exciting therapeutic opportunity
to replace therapeutic venesection to treat PV.56 We
Figure 7. Inflammatory cytokines may upregulate hepcidin in PV. (A) Mean-differenc
change between PV and control liver samples (y-axis). The DEGs are highlighted with po
(adjusted P value <.05). (B) Heatmap of the expression of all DEGs with hierarchical clus
deviation of 1 for each gene. (C) Bar chart depicting GO biological processes, MSigDB h
response, IL-6 responses, or cytokine-cytokine receptor interactions that are associated
significance of the enrichment, increasing from left to right. The red dotted line repres
plemented with 2% plasma from HC donors or patients with PV; HC, n = 4; PV, n = 3. (E) M
(H) relative to Hprt; control + anti–immunoglobulin G (IgG), n = 14; control + anti–IL-6, n
expression of HepG2 cells cultured in media supplemented with 2% plasma from HC don
cells cultured in media supplemented with 10 ng/mL recombinant human IL-6–family cyt
additional cytokines. (L) HAMP mRNA expression of HepG2 cells cultured in media supp
anti-GP130 antibodies or vehicle control (phosphate-buffered saline); n = 4. Unpaired 2-ta
two-way ANOVA with Šídák correction for multiple comparisons for panels I,L. *P < .05;
leukemia inhibitory factor; CT-1, cardiotrophin 1; CNTF, ciliary neurotrophic factor; CLC

IRON HOMEOSTASIS GOVERNS ERYTHROID PHENOTYPE IN PV
demonstrated that upregulation of endogenous hepcidin levels
through liver-specific TMPRSS6 siRNA deprives the serum of iron
and reduces hematocrit and hemoglobin concentrations in our
PV model. A similar approach using antisense oligonucleotide
therapies has likewise recently shown promising preclinical
results.22 A phase 2 clinical trial showed that a hepcidin mimetic
can obviate the need for venesection in patients with PV previ-
ously dependent on venesection.21 A clinical candidate of the
TMPRSS6 siRNA used here (SLN124) is entering phase 1 and 2
clinical trials (NCT05499013) in patients with PV. Our data indi-
cate that liver iron stores were not altered by TMPRSS6 siRNA
treatment but splenic iron stores increased, consistent with this
therapy redistributing iron stores rather than inducing systemic
iron depletion, a feature that could protect patients from symp-
tomatic iron deficiency. TMPRSS6 siRNA treatment is unlikely to
result in vasovagal responses. Because hepcidin mimetics and
TMPRSS6 siRNA therapies can be administered by subcutaneous
injection, these therapies could potentially be self-administered,
reducing health care costs.

In our clinical study, we found that patients exhibit low iron
stores with concordant reductions in hepcidin that are not likely
influenced by small increases in ERFE. Iron depletion and low
iron stores have been observed in some previous studies18,57

although others have reported hepcidin levels similar to
healthy controls.58,59 Although we detected elevated ERFE in
our PV model and patients with PV, Erfe deletion did not modify
hepcidin expression or alter disease phenotype. These findings
may reflect the smaller degree of ERFE elevation in PV
compared with diseases of ineffective erythropoiesis such as
thalassemia.40 In keeping with this, we found that hepcidin-to-
ferritin ratios are not reduced in patients with PV, unlike in
thalassemia in which ratios are lower.60 Elevations of ERFE
in our PV model were comparable with elevations detected in
experimental mice with low-level ERFE overexpression, which
do not alter hepcidin expression and produce only modest
elevations in serum and liver iron.61

Numerous inflammatory cytokines (including IL-6) are elevated
in patients with PV, some of which may portend inferior prog-
nosis.42,44,62 We found preliminary evidence to suggest that
IL-6–family cytokines (beyond IL-6 itself), which signal via
GP130-coupled receptors,63 may be implicated in hepcidin
regulation in PV. Consistent with our data, previous studies
have indicated that anti–IL-6 treatment of mice with PV does
not alter hematologic phenotype.64 Further characterization of
the role of these cytokine(s) in hepcidin regulation in PV will be
an important continuation of this work.
e plot showing the average log expression of each gene (x-axis) and their log-fold
ints in red and blue indicating upregulated and downregulated genes, respectively
tering in which expression values are standardized to have mean of 0 and standard
allmark gene sets, or KEGG pathways relating to JAK-STAT signaling, inflammatory
with upregulated genes in PV liver samples vs control. x-axis represents statistical
ents P = .05. (D) HAMP mRNA expression of HepG2 cells cultured in media sup-
ouse serum IL-6; control, n = 8; PV, n = 10. (F-H) Liver Saa1 (F), Fga (G), and Hamp1
= 9; PV + anti-IgG, n = 10; and PV + anti–IL-6, n = 13. (I) SMAD7 and FGA mRNA

ors or patients with PV; n = 4. (J-K) HAMPmRNA expression of HepG2 (J) or Huh7 (K)
okines; n = 3. The red line in panel J indicates HAMP expression in the absence of
lemented with 2% plasma from HC donors or patients with PV with the addition of
iled t test with Welch correction for panels D-E, Kruskal-Wallis test for panels F-H, or
**P < .01; ***P < .001; ****P < .0001. GO, gene ontology; OSM, oncostatin M; LIF,
F1, cardiotrophin-like cytokine factor.
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Characterization of the functional role of hepcidin and eryth-
roferrone in PV was undertaken in a novel knockin inducible
Jak2-V617F transplant model, with induction of the phenotype
by tamoxifen delayed to ensure recovery of the mouse from the
toxicity of the transplant procedure, which could itself induce
inflammation and perturb hepcidin.65 The hematologic and
splenic phenotype of this model, and the degree of upregula-
tion of erythroferrone, was consistent with human PV disease
although less severe than previous knockin models of Jak2-
V617F PV, which have exhibited a stronger phenotype, with
higher hemoglobin and hematocrit levels and greater degrees
of splenomegaly22,39,66,67; these models may exhibit more
marked elevations in erythroferrone, and deletion of eryth-
roferrone in these models may induce a change in hepcidin
levels and changes in systemic iron physiology. Evaluation of
the role of erythroferrone in alternative models of PV remains an
ongoing research need.

In summary, our findings implicate systemic iron regulation as a
key determinant of the clinical severity of PV and lay the foun-
dation for strategies that modify iron regulation as potential
therapeutics for this disease.
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