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Human T-cell leukemia virus type 1 (HTLV-1), also known
as human T-lymphotropic virus type 1, causes the
aggressive malignancy known as adult T-cell leukemia/
lymphoma (ATL) in 5% of infected people and a chronic
progressive inflammatory disease of the central nervous
system, HTLV-1–associated myelopathy, in ~0.3% to 4%
of them, varying between regions where it is endemic.
Reliable treatments are lacking for both conditions,
although there have been promising recent advances in
the prevention and treatment of ATL. Because ATL
typically develops after several decades of infection, it is
necessary to understand how the virus persists in the
host despite a strong immune response, and how this
persistence results in oncogenesis.
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HTLV-1
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus1,2

distantly related to HIV-1. It has been present in the human pop-
ulation for more than 20 000 years,3,4 and is estimated to infect at
least 10million people globally,5 but the true number is likely to be
greater because systematic epidemiology has not been carried out
in some large areas of endemic HTLV-1 infection. AlthoughHTLV-1
mainly infects CD4+ (helper) T cells, ~5% of the proviral load (PVL)
is present in CD8+ (cytotoxic) T cells6; the adult T-cell leukemia/
lymphoma (ATL) clone is typically a CD4+ cell. The virus induces a T
helper cell 1–like phenotype in the infected cell,7 which may
contribute to the pathogenesis of the inflammatory disease HTLV-
1–associatedmyelopathy. The virus is almost 100% cell associated,
and infection is propagated both within and between individuals
through a specialized cell-to-cell contact called the virological
synapse.8,9 The infection is, therefore, spread in the population by
the transfer of lymphocytes via 2 main routes: breastfeeding and
sexual intercourse; transfer of cellular blood products (including
occupational exposure) and solid organ transplantation10 account
for a small proportion of cases.11 Three closely related retroviruses
that infect humans have been discovered: HTLV-2 infection is
endemic to certain indigenous populations12 and HTLV-3 and
HTLV-4, present in nonhuman primates in sub-Saharan Africa,13

infect humans only sporadically. However, none of these viruses
appear to cause malignant disease in humans.

The strongest correlate of the risk of both HTLV-1–associated
myelopathy14 and ATL15 is the PVL, that is, the percentage of
peripheral blood mononuclear cells (PBMCs) infected with the
virus. The PVL is usually higher than that seen in HIV-1 infection,
and often exceeds 5% of PBMCs. The PVL is stable in each host
within a factor of approximately fivefold but differs between
individuals by more than 1000-fold.14 The PVL is proportional to
the total number of HTLV-1+ T-cell clones in the individual,16

which typically lies between 103 and 105 but can exceed
106.17 Each clone carries a single copy of the HTLV-1 provirus
integrated in a unique position in the host cell genome.18

HTLV-1 replication does not kill the host T cell, and many
infected clones can be repeatedly detected for at least
10 years.16,19 It is likely that most of them survive for the
remaining lifetime of the host. This clonal longevity is key to
understanding the oncogenesis of ATL.

Persistence of HTLV-1 in the host
Like other retroviruses, HTLV-1 can, in principle, remain latently
integrated in the host genome, and in this way it can escape
recognition and destruction by the immune system. However, a
proportion of cells must retain the capacity to re-express the virus,
both to maintain the cell’s proliferative advantage over uninfected
CD4+ T cells and to enable transmission to another host. It is now
known that the replicative genes of the virus, encoded on the
plus-strand of the provirus, are expressed in each cell in rare,
intense, self-limiting bursts.20,21 By contrast, the single gene, HBZ,
encoded on the proviral minus-strand, is expressed by each cell
~50% of the time.22 At the cell population level, the provirus is
persistently expressed, as evidenced by the persistent activation
of the HTLV-1–specific immune response.23

The PVL reaches an equilibrium or set point in each host, partly
determined by the efficiency of that person’s immune response,
which, in turn, depends on the host’s genotype, in particular the
HLA class 1 and killer immunoglobulin-like receptor com-
plexes.24,25 The CD8+ cytotoxic T-lymphocyte (CTL) response
plays an especially important part in determining the outcome of
infection.23 A detectable CTL response to the frequently
expressed HBZ protein is associated with a low PVL and a low risk
of disease.26-28 By contrast, even a strong CTL response to the
immunodominant antigens encoded on the plus-strand, particu-
larly the viral transactivator protein Tax, makes less impact on the
PVL27 because the rare transcriptional bursts make only a small
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Figure 1. HTLV-1 oncogenesis (schematic). During chronic
infection, HTLV-1 replicates persistently via the turnover of
existing HTLV-1–infected T-cell clones and a low rate of
infection of new clones. Each infected cell expresses HBZ
~50% of the time and the plus-strand genes (notably tax) in
rare intermittent bursts. The host immune response, partic-
ularly the CTL response, reaches an equilibrium with the
persistent replication of HTLV-1 at the set point of PVL. The
efficacy of the immune response is diminished as ATL
develops; Tregs induced or maintained by HBZ may
contribute to the immune suppression. The main source of
oncogenic mutations appears to be a mitotic replication
error. In addition, Tax protein may exert direct oncogenic
effects (see “Oncogenic actions of HTLV-1 products”);
genome-wide deposition of the transcriptionally repressive
mark H3K27me3 also often contributes to ATL oncogenesis.
† indicates that in ~40% of cases of ATL, Tax expression is
lost, probably as a result of immune-mediated selection.
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proportion of infected cells susceptible to killing by the anti-Tax
CTLs at a given instant. However, the critical CTL target antigen
HBZ is poorly immunogenic and is expressed at a very low
level.20,29 Therefore, the low frequency of the proviral plus-strand
bursts and the low-level expression of HBZ contribute to the
persistence of the virus in vivo by limiting the effectiveness of
immune surveillance. Cell stress can trigger a transcriptional burst
of the proviral plus-strand,30 but it is not known whether stress or
other factors govern the frequency of bursting in vivo.
50588/blood_bld-2022-019332-c-m
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Selective survival of HTLV-1+ clones in
nonmalignant HTLV-1 infection
Three observations indicate that there is selective clonal survival
of certain HTLV-1–infected T cells in the nonmalignant cell
population during chronic HTLV-1 infection. Firstly, T cells
infected with HTLV-1 in vitro carry the single-copy provirus
integrated in any chromosome, with a frequency proportional
to chromosome size.31 But in vivo, the clones that survive carry
the provirus disproportionately often in 1 of the 5 acrocentric
chromosomes,31-33 especially chromosome 13.32 Secondly, the
wide variation between individual HTLV-1 clones in the PVL,14

which depends on the host’s immune response,23 indicates
that a host who controls the virus efficiently, that is, with a low
PVL, may possess 1000-fold fewer HTLV-1+ clones than a host
with an inefficient immune response to the virus.17 Thirdly, the
PVL rises quickly during primary infection, doubling every ~1.4
days,34 but many clones are then lost before the PVL settles to
the set point.35 We recently reported the unexpected obser-
vation that selective clonal survival of HTLV-1+ cells is strongly
associated with 2 spatial factors, that is, the radial position of
the provirus in the nucleus and the genomic distance of the
provirus from the centromere on each chromosome.31 These
factors correlate with clonal survival independently of the tran-
scriptional intensity of the host genome flanking the provirus,
suggesting that transcriptional latency is not the sole factor that
is selected for clonal survival. How the spatial factors confer a
survival advantage on the infected cell is not known; the virus
2300 11 MAY 2023 | VOLUME 141, NUMBER 19
appears to exploit topological attributes of the genome that are
not yet identified.
Oncogenic mutations in ATL
There is no hotspot of integration of the HTLV-1 provirus in the
host genome.32 Integration near a number of potential onco-
genes occurs more often than by chance in ATL clones32 and
may cause transactivation of these genes,36 but such clones
account for only a small fraction of ATL cases.

The provirus of HTLV-1 in the malignant clone is usually single
copy, as in the majority of nonmalignant HTLV-1+ cells, but 2 or
more proviral copies are found more often in malignant than in
nonmalignant clones.32,37 In cells with >1 provirus, 1 or more
copies are often defective but may retain the ability to express
HBZ, contributing to clonal dominance (see “Oncogenic actions
of HTLV-1 products”).

Like the majority of malignancies of adults, ATL results from a
multistage process of oncogenesis; that is, the progressive
acquisition of a number of somatic mutations, each conferring on
the clone a progressive advantage in survival, proliferation, or
both. A landmark study in 2015 reported the identification by
whole-exome sequencing of putative oncogenic drivers in 426
cases of ATL in Japan.38 A high proportion of recurrently detected
somatic mutations were found in genes in the signaling pathway
of the T-cell antigen receptor (TCR), NF-κB, and other genes
involved in pathways that are characteristically expressed in
T cells. The most frequent changes included activating mutations
in PRKCB, PLCG1, VAV, and CARD11. More recently, these
authors carried out whole-genome sequencing of 150 cases of
ATL.39 The results revealed 10 oncogenic drivers that had been
previously unrecognized, which were present in 56 recurrently
mutated genes. The median number of oncogenic driver events
identified mutated in each case was 9, and 149 of 150 cases had
>1 driver alteration. An important outcome of this study39 was to
identify the contribution of point mutations in intergenic
BANGHAM
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(noncoding) regions of the genome, which were not identified in
the preceding whole-exome study. Other repeatedly observed
mutations in pathways that confer an advantage to healthy CD4+ T
cells include those in genes that encode certain transcription
factors (IRF4,GATA3, and IKZF2) and chemokine receptors (CCR4,
CCR7, and GPR183).

The most surprising finding made by Kogure et al39 was
a remarkably high frequency of mutations (53% of cases) in a
transcriptional repressive complex, CIC-ATXN1. This mutation
had gone unrecognized in the earlier study because the genetic
structure of the complex was not completely understood then.
Experiments in mice showed that such mutations in the
CIC-ATXN1 complex can increase the number of cells with a
phenotype (CD4+CD25+CD127−FoxP3+) characteristic of the
immunosuppressive regulatory T cells (Tregs) in the circulation.
This Treg-like phenotype is frequent in both ATL clones and
nonmalignant HTLV-1–infected cells,40,41 and secretion of the
chemokine CCL22 by HTLV-1–infected T cells maintains a high
population of CCR4+ Tregs among both infected and unin-
fected CD4+ T-cell populations.42 It is likely that the phenotype
confers an advantage to the virus and the malignant clone by
diminishing the effectiveness of the cellular immune
response.41 The products of the HBZ gene of HTLV-1 also
confer a Treg-like phenotype on the cell.43 This function of HBZ
has presumably conferred an evolutionary advantage to the
virus. ATL may arise from a cell that already possesses Treg
function, but in most cases it is likely that Treg functions are
acquired through the actions of HBZ43 and as a result of suc-
cessive mutations or epigenetic changes.44

The importance of the immune response in surveillance against
ATL is emphasized by 3 further observations. Firstly, driver
mutations in ATL are also frequently observed in class 1 HLA
genes (HLA-A and -B), which are key genes that determine the
specificity and efficiency of the CTL response, and certain other
genes involved in immune surveillance, including CD58 and
FAS.38,39 Secondly, immune suppression increases the risk of
developing ATL.45 Thirdly, structural mutations are frequently
found in ATL38,46 in the 3′-untranslated region of the PD-L1
gene, which encodes the immunosuppressive PD-L1 protein
familiar as a target of checkpoint-inhibitor therapy. Koya et al,47

in a single-cell analysis of nonmalignant and malignant HTLV-1–
infected cells, obtained evidence that the upregulated PD-L1
expression observed in certain cases of ATL can promote the
expression of PD-L1 in other cell types, perhaps contributing
further to the severe immune suppression observed in
ATL. However, it is not yet clear whether treatment with
anti–PD-1/PD-L1 antibodies can be of therapeutic benefit in
ATL because of the small numbers of patients and the diverse
subtypes of disease included in clinical trials to date.48,49 Also,
Misawa et al, in 2022,50 reported a case in which treatment of a
patient with PD-1/PD-L1 blockade for nonsmall-cell lung cancer
was followed by the emergence of ATL.

Kataoka et al51 found that specific driver mutations carry a
different prognostic significance in ATL. Mutations in PRKCB,
TP53, IRF4, and CDKN2A were more common in the aggressive
forms of the disease, whereas STAT3 mutations were more likely
to be found in the indolent form. The combination of mutation in
PRKCB and amplification of chromosome 9p24, which contains
the PD-L1 gene, was associated with a particularly poor prognosis.
HTLV-1 PERSISTENCE AND ATL ONCOGENESIS
The authors identified 2 groups of cases based on the mutations
present. Patients with chronic ATL were mainly in group 1, char-
acterized by mutations in genes encoding molecules upstream in
the TCR/NF-κB signaling pathway, including PLCG1, VAV1, CD28,
RHOA, and STAT3. Patients with the lymphomatous form of ATL
were found in group 2, with a larger number of mutations,
particularly in genes downstream in the TCR/NF-κB signaling
pathway, including PRKCB and IRF4, and in HLA class 1, CD58,
TET2, and EP300. Patients with acute ATL or smoldering ATL were
found in both groups.

Evolution of the ATL clone, abnormal
oligoclonality, and early detection of
disease
The unique genomic integration site of the HTLV-1 provirus can
serve as a clone-specific marker. Consequently, in some cases
in which samples of PBMCs from an individual have been stored
before the clinical presentation of ATL, the same clone can be
identified, and the timing of the successively acquired driver
mutations can be documented. Using this approach, Rowan
et al19 and Wolf et al52 reported the time course of appearance
of driver mutations in the premalignant clone in 6 incident cases
of ATL, from each of whom several PBMC samples were stored
before the emergence of the disease. The results showed that,
although the mutational burden in the premalignant clone
typically increased in the 6 months before diagnosis, driver
mutations could be detected in the clone up to 10 years
earlier.52 Yamagishi et al53 also reported the sequential
appearance of mutations during the evolution of the malignant
clone, and these authors reviewed54 the contribution of both
genetic and epigenetic modifications to this evolution. The
evolution of the ATL clone is depicted schematically in Figure 1.

The ability to detect potential driver mutations before the
development of ATL raises the question whether it is possible to
identify HTLV-1–infected individuals at high risk of progression
to malignancy, who might benefit from treatment to halt or slow
the progression. The following 4 criteria of high risk can be
identified in a patient who is immunocompetent15,19,45,55: age
>60 years, a PVL >4% of PBMCs, mutations in known oncogenic
drivers, and disproportionate proliferation of 1 clone.

A cardinal feature of HTLV-1 infection is oligoclonal prolifera-
tion of the infected cells, that is, the growth to high abundance
of a small number of infected T-cell clones in the circula-
tion.56,57 This oligoclonal proliferation, which is present in some
degree in all HTLV-1–infected persons, does not necessarily
presage the onset of ATL.32 However, early detection of
exceptional clonal proliferation might allow for early interven-
tion in the emergence of a premalignant clone to prevent or
slow down the progression to frank malignancy. Early identifi-
cation of people who are infected and at risk of progression
requires objective quantification of the degree of oligoclonality.
Rowan et al19,52 have developed a practical assay to quantify
oligoclonality in the laboratory: the oligoclonality index16

measured via flow cytometry, based on the Gini index, quan-
tifies the degree to which 1 or a small number of clones dom-
inates in the population with PBMC. These authors showed that
an oligoclonality index measured via flow cytometry >0.77 was
associated with a high risk of subsequent development of ATL.
11 MAY 2023 | VOLUME 141, NUMBER 19 2301
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Molecular mechanisms in oncogenesis
of ATL: mitotic replicative error
It was previously believed that the HTLV-1 tax gene was the
primary cause of ATL. Tax transactivates many host genes as
well as the proviral plus-strand; persistent Tax expression can
immortalize cells in vitro and induce tumors of certain cell types
in transgenic mice. Persistent expression of tax, under the
control of the lck promoter, resulted in T-cell tumors in trans-
genic mice.58 However, the relevance of these observations to
the oncogenesis of ATL in humans is not clear. A dominant role
of tax in ATL oncogenesis now appears unlikely, for the
following reasons: firstly, tax is expressed in rare, intermittent
bursts in each nonmalignant cell; secondly, tax expression is lost
in ~50% of the ATL cases, by either mutation, deletion, or DNA
methylation59; and thirdly, ATL can develop in a clone with
provirus that was defective in tax expression at the time of
integration60; such type 2 defective proviruses, which are found
in both asymptomatic carriers of HTLV-161 and in some ATL
clones, lack the 5′ long terminal repeat and part of the adjacent
region of the provirus. However, direct effects of Tax may
contribute to oncogenesis in some cases of ATL (see “Onco-
genic actions of HTLV-1 products”).

Two chief factors are associated with the acquisition of driver
mutations and the disproportionate expansion of a clone that
culminates in ATL: the duration of infection and a high PVL.15 As
outlined earlier, a high PVL is made up of a large number of HTLV-
1+ clones: the clones appear to survive indefinitely and turn over
more frequently than uninfected CD4+ T cells62; that is, they are
effectively immortalized in vivo. Furthermore, most cases of ATL in
immunocompetent individuals arise in those infected during
infancy, usually via breastfeeding. Each clone has therefore passed
through a large number of mitotic events in a person aged >60
years who is infected with HTLV-1. Each mitotic event is accom-
panied by a low frequency of mutations, most commonly single-
nucleotide misincorporations, known as replicative errors. Muta-
tions therefore commonly arise, probably randomly, in HTLV-1–
infected T-cell clones19 and do not necessarily presage ATL; only
certain mutations contribute to the oncogenesis. Tomasetti and
Vogelstein63,64 showed that the risk of malignant transformation in
a wide range of cell types is strongly correlated with the total
number of mitoses that the cell lineage has undergone. Therefore,
a simple explanation for the progressive generation of the onco-
genic driver mutations that culminate in ATL is mitotic replicative
error. The probability that 1 or more infected clones undergoes
malignant transformation will depend on the number of clones
present in that person and on the time since infection, explaining
the observed correlations with age and with the PVL. The trajec-
tory of the PVL and the emergence of an ATL clone are shown
schematically in Figure 1.

Each HTLV-1–infected T-cell clone has a proliferative rate and,
therefore, a malignant potential that is partly determined by the
proviral integration site, the antigen specificity of the clone, and
the epigenetic modifications and mitotic errors that it acquires.
There is, therefore, a continuum of potential for malignant
transformation across the whole population of infected cells in
each individual. Consequently, there are well described cases in
which >1 clone has transformed65-68: this is most clearly
observed among patients in whom the dominant clone has
been eliminated, either by drug treatment or, in rare cases, by
2302 11 MAY 2023 | VOLUME 141, NUMBER 19
spontaneous regression,67 and in whom a second clone
becomes fully transformed. This phenomenon of clonal suc-
cession, in which 1 clone is replaced by a second, unrelated
clone, differs fundamentally from the progressive subclonal
diversification of 1 clone that commonly occurs in solid tumors.
Oncogenic actions of HTLV-1 products
For the aforementioned reasons, it is likely that the dominant
mechanism of oncogenic mutations in ATL is mitotic replicative
error. However, although the 2 key regulatory genes of HTLV-1,
tax and HBZ, are not rapidly transforming oncogenes, such as
myc or src, their products may contribute to oncogenesis. The
accessory regulatory proteins1 of HTLV-1 (p12, p13, and p30)
have not been shown to play a direct part in ATL oncogenesis.
The impact of HTLV-1 Tax protein has been extensively stud-
ied.69,70 Tax is well-documented to cause double-strand DNA
breaks, micronuclei,71,72 and clastogenesis.73 Giam and Pasu-
pala74 recently reported that NF-κB hyperactivation by Tax led
to the formation of R-loops, which, when removed by
transcription-coupled nucleotide excision repair, resulted in
double-strand DNA breaks and cellular senescence. However,
HBZ prevents senescence of the infected cell,75 perhaps by its
known action in inhibiting canonical NF-κB signaling.76 HBZ
also promotes clonal longevity by inducing telomerase (hTERT)
expression.77 Tax also suppresses expression of DNA poly-
merase β78 and inhibits both certain cell-cycle checkpoints79,80

and the DNA damage responses.81 Finally, Tax functionally
inactivates p53,82,83 and TP53 is mutated in a proportion of
cases of ATL, especially in the rapidly progressive form.51 These
effects cause genetic instability, which, in turn, may confer a
survival or proliferative advantage to the clone. Furthermore,
2 endonucleases involved in this repair mechanism, xeroderma
pigmentosum F and G, are often deficient in ATL.84

Tax expression is lost via either deletion, mutation, or DNA
methylation in ~50% of ATL clones,59 presumably as a result of
immune-mediated selection. However, Tax may contribute in
the early stages of oncogenesis and, possibly, to the mainte-
nance21 of the malignant clone in cases in which it is retained.

In contrast, HBZ appears to be retained in all ATL clones, and
although each nonmalignant infected cell expresses HBZ ~50%
of the time,22 its expression in ATL cells is more sustained and
may be constant. These observations suggest that HBZ plays a
necessary part in ATL oncogenesis85 and imply that HBZ is a
critical component of a possible future vaccine.26-28 Paradoxi-
cally, HBZ opposes many of the actions of Tax.1 For example,
HBZ inhibits Tax-mediated transactivation of the proviral
plus-strand by blocking the binding of the transcription fac-
tors CREB and CBP/p300.86 This modulation of Tax-mediated
effects by HBZ is thought to be essential in regulating the
proviral expression and in promoting the longevity of the
infected clone.

HBZ may contribute to ATL oncogenesis by 2 chief mecha-
nisms. Firstly, both HBZ protein and HBZ messenger RNA
promote proliferation of the cell.87 This effect may be critical in
maintaining the proliferative advantage of both nonmalignant
HTLV-1–infected cells and ATL cells over uninfected T cells. The
molecular mechanisms of these effects are not fully understood,
BANGHAM
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but there is recent evidence that HBZ binds to a superenhancer
of BATF3, a master regulator of ATL cell survival.88 Secondly,
HBZ increases the expression of several molecules characteristic
of Tregs, particularly FoxP3, TIGIT, and CCR4.89 The resulting
Treg-like phenotype may contribute to the severe immune
suppression observed in ATL; moreover, impairment of the
immune response is likely to confer a further survival advantage
to the ATL clone. Thus, the chief role of HBZ in both nonma-
lignant cells and ATL oncogenesis is to promote the survival
and proliferation of the clone. Finally, epigenetic modification
of the host genome contributes to ATL oncogenesis. There is
frequent widespread deposition of the repressive histone
modification H3K27me3,90,91 as observed in many solid tumors,
and genome-wide hypermethylation of DNA may be a target
for therapeutic intervention.92

The HTLV-1 provirus binds the chromatin architectural protein
CTCF,93 resulting in the formation of unusual chromatin loops
and clone-specific deregulation of host genes flanking the
provirus94; this deregulation may contribute to oncogenesis in
certain cases. It is likely that CTCF confers an evolutionary
advantage to the virus by regulating either proviral expression95

or the spatial position of the provirus in the nucleus31 or both;
however, further work is needed to elucidate the mechanisms of
this putative advantage.96,97

Coinfection with the nematode Strongyloides stercoralis may
increase the risk of ATL, but it is difficult to distinguish the cause
and effect in this complex coinfection.98
1/19/2299/2050588/blood_bld-2022-019332-c-m
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Implications for clinical management
of ATL
If the main mechanism of oncogenesis in ATL is persistent mitotic
replicative error in the long-lived HTLV-1–infected T-cell clones,
what are the implications for clinical management? Current guid-
ance on therapeutic options for the different forms of ATL has
been recently reviewed99; here, I consider the underlying princi-
ples. These principles are not fundamentally different from those
in other malignancies; what is unusual in ATL is that the prema-
lignant clone can, in some cases, be identified at an early stage in
the oncogenic process,52 making possible an understanding of
the order and the trajectory of the successive steps in oncogen-
esis19,53,54 and raising the possibility of early detection and
intervention in individuals at high risk.

Perhaps the chief reason for the refractoriness to treatment of
ATL is the huge diversity of HTLV-1–infected clones in each
person.16 If 1 clone has undergone transformation to ATL, it is
likely that other clones in that individual have acquired driver
mutations. There is evidence for this in the well-documented
phenomenon of clonal succession.68

As in other malignancies, an important therapeutic principle is to
target more than 1 pathway that confers a proliferative or survival
advantage to the clone, in order tominimize the rate of emergence
of resistance mutations. The AKT/mammalian target of rapamycin
pathway plays an important part in ATL cell survival and prolifera-
tion.100 Daenthanasanmak et al101 showed that simultaneous
treatment with 3 agents, which respectively inhibit BET (bromo-
domain and extraterminal motif protein), phosphatidylinositol
HTLV-1 PERSISTENCE AND ATL ONCOGENESIS
3-kinase, and NF-κB, strongly inhibited the growth of ATL cells
both in vitro and in xenografts of ATL cells in mice, reducing c-myc
expression and increasing apoptosis. Similarly, inhibition by vale-
metostat of both enhancers of zeste homolog 1 and 2, central
enzymes in the polycomb transcriptional complexes, has theoret-
ical potential as a new therapeutic agent in ATL.102

Prevention of ATL is not only preferable in principle but is alsomore
likely to be successful in practice. The rationale of prevention is to
minimize the rate of acquisition of potential driver mutations by
reducing the total number of mitotic events in the infected cell
population. This is effected by reducing both the PVL and the rate
of proliferation of the infected cells. The discovery that combination
treatment with type 1 interferon and zidovudine could prevent or
slow the progression of ATL, especially in indolent cases of the
disease, provided the first sign that this approach can be success-
ful.103-105 More recently, treatment with the anti-CCR4 monoclonal
antibody mogamulizumab has led to significant improvement in
overall survival rates,106-108 especially if it is included in first-line
therapy with a CHOP (cyclophosphamide, doxorubicin, vincris-
tine, and prednisone)–like regimen.109,110 Mogamulizumab has the
following 2 important therapeutic effects in ATL: in addition to a
direct lytic effect on the CCR4-expressing ATL clone, the antibody
also reduces the population of the immunosuppressive Treg
population, allowing the recovery of a stronger antitumor
cell-mediated immune response.111

Cheminant et al112 reported that the inhibitory receptor
KIR2DL3 is frequently highly expressed in ATL, especially in the
acute type of the condition. Therefore, this molecule may offer
a further potential therapeutic target.

Successful intervention to prevent the development of ATL
depends on the early identification of individuals who are
infected with HTLV-1 and are at high risk of progression to allow
for effective intervention while avoiding unnecessary treatment
of the majority of hosts. Further work is needed to define the
best combination of criteria for early intervention; these criteria
may include high PVL (eg, >4% PBMCs),15 disproportionate
oligoclonality,52 and presence of specific driver mutations.51
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