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HEMATOPOIESIS AND STEM CELLS
A practical approach to curate clonal hematopoiesis of
indeterminate potential in human genetic data sets
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KEY PO INT S

•We present a practical
method to ascertain
CHIP that combines
sequence-based and
population-based
filtering in the UK
Biobank and All of Us.

• Small changes in
filtering parameters can
have a large effect on
the accuracy of CHIP
variant classification.
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Clonal hematopoiesis of indeterminate potential (CHIP) is a common form of age-related
somatic mosaicism that is associated with significant morbidity and mortality. CHIP
mutations can be identified in peripheral blood samples that are sequenced using
approaches that cover the whole genome, the whole exome, or targeted genetic regions;
however, differentiating true CHIP mutations from sequencing artifacts and germ line
variants is a considerable bioinformatic challenge. We present a stepwise method that
combines filtering based on sequencing metrics, variant annotation, and population-
based associations to increase the accuracy of CHIP calls. We apply this approach to
ascertain CHIP in ~550 000 individuals in the UK Biobank complete whole exome cohort
and the All of Us Research Program initial whole genome release cohort. CHIP ascer-
tainment on this scale unmasks recurrent artifactual variants and highlights the impor-
tance of specialized filtering approaches for several genes, including TET2 and ASXL1.
We show how small changes in filtering parameters can considerably increase CHIP
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misclassification and reduce the effect size of epidemiological associations. Our high-fidelity call set refines previous
population-based associations of CHIP with incident outcomes. For example, the annualized incidence of myeloid
malignancy in individuals with small CHIP clones is 0.03% per year, which increases to 0.5% per year among indi-
viduals with very large CHIP clones. We also find a significantly lower prevalence of CHIP in individuals of self-
reported Latino or Hispanic ethnicity in All of Us, highlighting the importance of including diverse populations. The
standardization of CHIP calling will increase the fidelity of CHIP epidemiological work and is required for clinical CHIP
diagnostic assays.
024
Introduction
Somatic mosaicism occurs across tissues as the human body
ages.1 One of the best-characterized examples of this is clonal
hematopoiesis of indeterminate potential (CHIP), where a
somatic mutation within a hematopoietic stem cell leads to
clonal production of blood cells. CHIP is defined in recent
World Health Organization (WHO) and International Consensus
Classification (ICC) guidelines as the presence of a somatic
mutation in a myeloid neoplasm driver gene (eg, DNMT3A,
UME 141, NUMBER 18
TET2, ASXL1, JAK2, TP53) at a variant allele fraction (VAF) of
≥2% in an individual without a diagnosed hematologic disorder
or an unexplained, persistent cytopenia.2,3 When one or more
unexplained cytopenias are present, this is instead referred to
as clonal cytopenia of undetermined significance (CCUS). CHIP
and CCUS are premalignant lesions, and only ~0.5% of CHIP
cases progress to overt myeloid malignancy per year.4,5

Somatic CHIP variants are detected using genetic sequencing.
A highly cost-effective and popular approach is to repurpose
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large cohort whole-genome sequencing (WGS) and whole-
exome sequencing (WES) data for CHIP analyses. This
method has been used to uncover the bulk of known CHIP
disease associations in the population. In contrast, targeted
sequencing approaches, such as gene panels, are frequently
used in smaller cohort studies of CHIP and in clinical diagnostics
because of their relative cost-effectiveness and greater
sequencing depth, which increases accuracy.6-12 Genomes and
exomes have comparatively limited sensitivity to detect small
clones owing to their modest sequencing depth.13 For this
reason, estimates of CHIP prevalence and effect sizes for dis-
ease associations largely depend on the sequencing method
used.14

The increasing availability and decreasing cost of genetic
sequencing has led to both a rapid expansion of gene
sequencing for routine clinical care of patients with myeloid
malignancy and an exponential growth in research studies;
however, a critical gap is the assignment of pathogenicity to
specific mutations. Molecular pathology interpretation of vari-
ants can be inconsistent across institutions.15,16 Published
research studies have widely varying approaches to defining a
sequence mutation as CHIP.4,17 In germ line genetics, publicly
available large-scale reference data sets of hundreds of thou-
sands of individuals have greatly enhanced our ability to assess
pathogenicity.18 We hypothesized that a large-scale analysis of
a population-scale cohort study could similarly inform the
pathogenicity of variants and improve the interpretation of
results for CHIP and myeloid malignancies.

Here, we provide a generalizable framework for optimizing
CHIP identification across any research or clinical data set. We
apply this to the 454 787-person UK Biobank (UKB) whole
exome data set and to the 98 560-person All of Us whole
genome data set. Although sequencing of a matched solid
tissue sample is not available for large cohorts, we show linked
demographic data that are available from these data sets can
be leveraged to systematically identify erroneous CHIP calls
and generate appropriate filtering criteria. We make these CHIP
variant calls available for use by the global research community.
We also provide population-scale frequency data on the
mutation rate of these CHIP variants and identify recurrent
sequencing artifacts.
 guest on 07 M
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Methods
Cohort descriptions
The UKB whole exome cohort comprised 454 787 individuals
aged 40 to 70 at enrolment, when DNA was collected for
sequencing.19 Participants were enrolled from 2008 to 2010
and were administered questionnaires, physical measurements,
laboratory tests, and medical imaging at specified baseline and
follow-up time points.20 Health outcomes since enrolment are
tracked from hospitalization general practice health records and
death and cancer registries. WES was performed in 2 tranches:
the first 50 k using Illumina NovaSeq S2 flow cell and the sec-
ond tranche of samples with the S4 flow cell to a median
sequencing depth of ~40× across sites.21 The median age at
enrolment for this cohort is 58 years old (interquartile range, 50
to 63). CHIP has been ascertained by multiple groups in
tranches of this data in the past using highly variable filtering
CURATING CHIP IN HUMAN GENETIC DATA SETS
criteria, resulting in differences in CHIP variant identification
and prevalence estimates.22-24

The All of Us Research Program is an ongoing US-based
observational cohort study.25 Linked health outcome data was
pulled from participant survey questionnaires and electronic
health record information. Read-level WGS data for an initial
tranche of 98 560 participants was released in June 2022. WGS
was performed using Illumina PCR-free whole genome tech-
nology and sequenced on the NovaSeq platform to a median
sequencing depth of 40×.26 Significant emphasis was placed to
ensuring All of Us WGS met clinical grade quality control
specifications.27 Participants were enrolled in 2018 to 2021, and
the median age at enrolment for this subset was 53 years old
(interquartile range, 37-65). CHIP has not previously been
ascertained in this cohort.

Putative somatic variant detection
The identification of somatic variants comprises 2 major steps:
putative variant identification and variant filtering (Figure 1). In
the first step, a somatic variant calling pipeline is used to scan
aligned sequencing files for putative somatic variants. The most
commonly used somatic variant calling pipeline to detect CHIP
in the research setting is Mutect2, a package within the
Genome Analysis ToolKit.28 Mutect2 uses local haplotype
assembly and Bayesian modeling to detect single nucleotide
alterations and small indels. Mutect2 can be used for WGS,
WES, or targeted sequencing data and is optimized for Illumina-
based sequencing. For other sequencing platforms, a different
variant caller may be necessary (eg, TorrentVariantCaller for
IonTorrent data29). Other commonly used somatic variant cal-
lers include Strelka,30 VarDict,31 VarScan,32 and Shearwater.33

The foundational CHIP epidemiology papers identified a list of
variants within 74 driver genes based on established variant
calling from the myeloid malignancy field.34 This list specifies
candidate missense and indel variants for each gene, as well as
a list of genes in which truncating and splice site variants might
be considered (supplemental Table 1; available on the Blood
website). We limit our scan for putative CHIP variants to those
contained in this list. We refer to variants in this list as the
canonical CHIP driver variants, to differentiate them from more
recently described gene variants observed to exhibit hemato-
logic clonality but whose clinical consequences are less well
defined.7,35,36 Of note, it is important to specify the transcript
when scanning for variants, as reference transcripts are peri-
odically updated. For example, an ETNK1 hotspot mutation
that was located at N244 is now in position N155 (supplemental
Table 1).

We used Mutect2 to identify putative somatic variants in 73 of
the 74 canonical CHIP driver genes in the UKB and All of Us
cohort aligned sequencing (CRAM) files. Altogether, 550 782
variants (1.21 variants per person) were output by Mutect2 for
the UKB samples and 104 649 variants (1.06 variants per per-
son) for All of Us samples. Variant calling pipelines such as
Mutect2 cannot reliably identify variants in U2AF1 in
sequencing data that are mapped to the human GRCh38 (hg38)
reference genome because of an erroneous duplication of the
U2AF1 locus on chromosome 21.37 A custom script was used to
identify variants in U2AF1. The pileup region script counts
4 MAY 2023 | VOLUME 141, NUMBER 18 2215



Aligned sequencing files (.cram)
Basic sequence-based filtering:

Total allele depth (DP) ≥20
Minimum allele depth (minAD) ≥ 3
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Figure 1. Schematic of CHIP variant ascertainment workflow. Putative somatic mutations are first identified using a somatic mutation caller and annotated for gene- and
protein-level changes. Variants are then filtered based on an initial, liberal set of parameters and filtered based on gene-specific CHIP variant rules. In some genes, all loss-of-
function mutations are considered putative CHIP variants, whereas in other genes, only specific missense mutations are included. Leveraging available large-scale sequencing
data, we apply 3 filters to identify artifactual genes and variants. We then optimize the sequencing-based filtering parameters, yielding a final CHIP mutation call set.

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/18/2214/2048
mutated alleles present in reads that mapped to U2AF1 in one
of the 2 genomic loci, and variants corresponding to pre-
specified hotspot locations are considered putative CHIP vari-
ants (supplemental Table 1). For samples where reads were
mapped to both loci, the allelic depth was taken as the average
across both sites. This yielded 65 901 U2AF1 variants in
the UKB and 39 182 U2AF1 variants in All of Us, for a total of
616 683 and 143 831 putative variants, respectively. ANNOVAR
was then used to annotate all putative variants for downstream
filtering.38
429/blood_bld-2022-018825-m
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Results
Sequencing depth-based filtering
We first apply basic filtering to remove variants with low
sequencing coverage: we removed variants with a total read
depth (DP) of <20, variants with a minimum read depth for the
alternate allele (minAD) of <3, and variants lacking support in
both forward and reverse sequencing reads. We also removed
variants below the 2% VAF threshold conventionally used to
define CHIP.5 This reduced the number of putative CHIP vari-
ants to 97 696 for UKB (0.21 variants per person) and 6308 for
All of Us (0.06 variants per person). It may be appropriate to
relax or impose further stringency of these basic filtering
criteria, as we discuss later.
In large data sets, Mutect2 will output many multiallelic variants
(ie, GT = 0/1/2 or 0/1/2/3). Because these are difficult to
interpret and might reflect artifactual variants, many groups opt
to exclude these variants from further analysis. However, some
bona fide biallelic variants may appear in the multiallelic variant
list; for example, more than 300 DNMT3A P904L hotspot vari-
ants and 57 PPM1D C478× hotspot variants in UKB sequencing
data were misclassified as multiallelic owing to the artifactual
imposition of a third allele with 0 reads at this site. Therefore,
we recommend exercising caution and examining multiallelic
variants separately.
2216 4 MAY 2023 | VOLUME 141, NUMBER 18
Identification of false positives: sequencing
artifacts
Among the list of variants that remain after basic sequence
depth-based filtering, there are true CHIP variants, germ line
variants, nonpathogenic somatic (passenger) variants, and
sequencing artifacts. We use a multistep process to distinguish
CHIP from these false positives, including filters that leverage
the size of the UKB and All of Us data sets to identify recurrent
false positives.

Variants that are present in ≥20 individuals in the UKB (0.004%)
and in ≥15 individuals in All of Us (0.02%) were assessed for
their potential to represent recurrent sequencing artifacts. For
this, the association of each variant group with 2 established
strong correlates of CHIP, age4,17 and a common genetic
variant in the TERT promoter (rs7705526),13,24,39 was tested.
Variants that were not associated with either age or rs7705526
at even a suggestive significance of P < .10 were removed from
the data set as they were suspected to represent sequencing
artifacts.

This filtering strategy proved to be particularly useful for ASXL1
variants, wherein 30 groups of truncating variants in exons 5
and 6 are reported in ≥20 people across both cohorts (Figure 2).
Fifteen of the 30 variant groups examined were not associated
with either age or rs7705526. We examined 2 putative variants
that were present >2500 times in the UKB data set more
carefully: ASXL1 p.G646Wfs*12 and ASXL1 p.G645Vfs*58.
ASXL1 p.G646Wfs*12 was initially thought to represent a mere
sequencing artifact,40 but has been more recently confirmed to
be a bona fide mutation in some cases.41,42 Montes-Moreno
et al identified that sequencing methods that used PCR-only
amplification introduced in vitro indels at the homopolymer
locus encoding G645 and G646, whereas protocols using probe
capture before PCR as well as Sanger sequencing did not.42

When these sequencing methods are compared, G646Wfs*12
variants with a VAF ≥10% were true somatic variants, whereas
all G645Vfs*58 were artifactual. Given this, using a higher
VLASSCHAERT et al
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Figure 2. Verifying the association of common putative ASXL1 variants with age can help distinguish true variants from recurrent artifacts. (A) Association of all
ASXL1 variants present ≥20 times in the UKB exome data set and ≥15 times in the All of Us whole genome data set. Variants not associated with age- or a CHIP-associated
TERT promoter variant (rs7705526) are colored in red. Variants associated with rs7705526 only are colored in blue. (B-C) Association of ASXL1G646Wfs*12 and G645Vfs*58 with
age across VAF strata identifies specific large VAF subsets of G646Wfs*12 as somatic mutations, whereas G645Vfs*58 appears to be an artifact of exome sequencing that is not
present in All of Us. (D) There is a significant association of ASXL1 variants passing filtering with myeloid cancer, death, and smoking, but a minimal association with variants
that were removed, supporting that these removed variants are artifacts.
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VAF threshold for ASXL1 p.G646Wfs*12 and removing
p.G645Vfs*58 variants has been suggested as a means to
remove in vitro indel contaminants.41,42 We tested different
VAF thresholds for both variants in UKB and similarly found that
G646Wfs*12 variants with VAF ≥10% were associated with age
(Figure 2B), whereas no G645Vfs*58 variants VAF strata was
associated with age (Figure 2C). Compared with the rest of the
CURATING CHIP IN HUMAN GENETIC DATA SETS
UKB cohort, G646Wfs*12 variants with VAF ≥10% were asso-
ciated with a 2.4-fold increased risk of death (HR, 2.4; 95% CI,
1.9-3.0) and an 18-fold increased risk of incident myeloid cancer
(HR, 18.2; 95% CI, 10.7-30.9) in Cox proportional hazards
models adjusted for age, age-squared, sex, smoking status, and
10 principal components of ancestry, further strengthening its
credibility as a true CHIP variant. In All of Us, there were
4 MAY 2023 | VOLUME 141, NUMBER 18 2217
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proportionally fewer G646Wfs*12 variants (lowest VAF 9.2%),
and there were no G645Vfs*58 variants, likely because of a
combination of the PCR-free sequencing library preparation
methods and the longer sequencing read length. In total, there
were 613 ASXL1 p.G646Wfs*12 variants with VAF ≥10% in UKB
and 119 in All of Us, making this among the top 3 most com-
mon CHIP variants in both cohorts. In many CHIP calling
methods, frameshifts at homopolymer sites, such as
G646Wfs*12, are typically excluded.

In total, 152 variant groups in the UKB data (total, 38 264 vari-
ants) and 20 variant groups in the All of Us data (total, 681 var-
iants) were not associated with either age or rs7705526. As a final
step, we verified whether any of these variant groups were bona
fide CHIP hotspots and identified that TP53 R175H and
DNMT3A V716I were each reported in 3 or more myeloid cancer
cases in COSMIC database v96. All variants not associated with
age or the TERT variant, except for these 2 hotspots, were
removed from both data sets and are listed in supplemental
Table 2. All variants that were robustly associated with age
and/or the TERT variant are indicated in supplemental Table 3.

Identification of false positives: germ line variants
Variants disrupting the catalytic domains in TET2 and CBL are
considered putative CHIP variants. In traditional CHIP calling
methodologies, a binomial test is used to filter out possible
germ line variants in these domains; that is, a test to determine
whether the measured read depth for the variant is statistically
different from half of the sum of all sequencing reads at that
site, as would be true for heterozygous germ line variants. We
conducted a binomial test across all TET2 and CBL missense
variants and flagged variants that failed the binomial test at
P < .01. For many variant sites, there were multiple passing and
nonpassing variants, indicating that this site might exist as an
acquired CHIP variant in some and as a germ line variant in
others. However, it is possible that some of the missense vari-
ants with a VAF near 50% represent large CHIP clones and not a
germ line variant. In an effort to recapture some of these large
VAF clones in the UKB, we examined the association of all TET2
missense variants with age and whether the addition of variants
failing the binomial test improved or weakened the association
with age (supplemental Figure 1). We found that the addition of
large VAF clones improved the association in 3 of the 9
examined sites, TET2 H1904R, I1873T, and T1884A, suggesting
that these are likely CHIP variants. These variants were exempt
from the binomial test-based removal, including in All of Us.

We extended the binomial test examination to all other genes
in both data sets to identify possible germ line mutations
therein. For variants present more than 3 times in either data
set, we examined the proportion of variants failing the binomial
test. All variants in 4 variant groups, DNMT3A G298R, TP53
R110C, RUNX1 R223C and SUZ12 D725Vfs*18, failed the
binomial test at P < .01; these 159 total variants were removed
from the data set. A list of variant groups where all variants
failed the binomial test, that is, recurrent germ line variants, is in
supplemental Table 4.

Sample quality verification
In addition to variant quality checks and rigorous filtering, it is
advisable to verify the number of variants per person and
2218 4 MAY 2023 | VOLUME 141, NUMBER 18
inspect variant lists for samples with an unusually high variant
count, which could represent a poor-quality sample. For
example, in All of Us, there were 10 individuals with 4 or more
mutations. In 5 of these samples, all variants appeared to be of
low quality and were likely artifactual, whereas the other
5 appeared to be credible. One example of each is presented
in supplemental Table 5.

Revisiting the CHIP gene list
The originally defined CHIP gene list included 74 genes43;
however, larger sample sizes enable us to prune this list. We
found that putative variants in 16 of the 74 genes were not
positively associated with either age nor were observed in
myeloid cancer cases in the either cohort and were not other-
wise identified in published studies as driving myeloid CHIP
(M-CHIP).34 These genes were: SF3A1, GATA1, GATA3, PTEN,
SF1, STAG1, IKZF2, IKZF3, PDSS2, LUC7L2, JAK1, JAK3,
GNA13, KMT2A, KMT2D, and CSF1R (supplemental Table 6).
Putative variants in these genes were removed from the CHIP
call set in both UKB and All of Us.

Optimizing variant level allele depth thresholds
Altogether, 30 146 variants in the UKB exome cohort and 5669
variants in the All of Us first whole genome tranche passed the
filtering steps. In the UKB, there were 7965 unique variants
identified in this data set, 181 of which were present ≥20 times.
More than half of all variants were represented fewer than 20
times in the data set (17 985 in total) and were mainly subject to
the basic sequence-based filtering among the tests imple-
mented above. In the initial filtering step, we set a relaxed
minimum allele depth (minAD) threshold of 3 to increase
sensitivity for CHIP variants. However, previous strategies to
identify CHIP have used a minAD threshold as high as 6 to
increase specificity. To identify minAD thresholds for UKB and
All of Us, we first tested the associations between putative
variants in minAD strata ranging from 3 to 6 with age and the
TERT promoter variant (Figure 3). A minimum allele depth of
5 appeared optimal for UKB exome samples compared with
lower thresholds as the associations with age and the TERT
promoter variant were maximized in this stratum. To estimate
how much false positive misclassification might be present in
the lower strata, we ran simulations where fractions of individ-
uals with CHIP at minAD ≥5 were randomly replaced with
CHIP-free individuals (Figure 3; refer to supplemental Methods
for details). The age- and TERT-variant associations for minAD 3
stratum variants were smaller than the association seen when
half of the minAD ≥5 group individuals were replaced at
random, suggesting that approximately 50% of the variants in
the minAD 3 stratum are expected to be false positives in the
UKB (Figure 3A-B). This holds true for large variants within the
minAD 3 stratum (VAF ≥10%), where the predicted contami-
nation is approximately 40%. In All of Us, the predicted
contamination was lower for minAD 3: it was estimated to be
between 5% and 25% based on the age and rs7705526 asso-
ciation analyses (Figure 3C-D). In contrast to the UKB, each
minAD stratum in All of Us appeared to capture distinct VAF
ranges, and the association with age gradually increases across
strata.

Next, we tested how minAD thresholds of 3 and 5 estimated the
CHIP-associated risk of death and incident myeloid cancer risk
VLASSCHAERT et al
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Figure 3. Association of CHIP variants defined by minimum allele depth (minAD) strata with age and TERT promoter variant rs7705526. (A-D) Show the associations
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in the UKB. A minAD threshold of 3 underestimated the risk for
both outcomes compared with previous population esti-
mates,17 including in subgroups comprising CHIP hotspot
mutations (present ≥20 times in the data set) and nonhotspot
mutations (present <20 times; Figure 4). As lower minAD
thresholds were predicted to contain significant contamination
(Figure 3) and their inclusion did not improve incident outcome
predictions (supplemental Figure 2), only variants above a
minAD threshold of 5 were included in our final set of UKB CHIP
calls. In keeping with previous reports,4,17 CHIP was associated
with an 11-fold increased risk of incident myeloid cancer
CURATING CHIP IN HUMAN GENETIC DATA SETS
(HR, 10.5; 95% CI, 9.1-12.1) and a 40% increased risk of death
(HR, 1.43; 95% CI, 1.36-1.50) in the UKB. Because of limited
prospective data availability in All of Us (participants were
enrolled in 2018-2021), incident event analyses were not per-
formed in All of Us. Variants above a minAD threshold of 3 were
included in the final set of All of Us CHIP calls.

Profile of CHIP variants in the UKB and All of Us
datasets
After the exclusion of individuals with hematologic malignancies
before or within 6 months of study enrolment, there were 16 239
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CHIP variants in 15 304 individuals in the UKB (3.6% prevalence)
and 5125 CHIP variants among 4617 individuals in All of Us (4.8%
prevalence). The distribution of genes affected is shown in
Figure 5A-B. CHIP was detected across all decades of age, and
the prevalence rose sharply with age (Figure 5C). Other risk
factors previously associated with CHIP prevalence that were
replicated here included smoking history23 (OR, 1.12; 95% CI,
1.02-1.22) and self-reported Hispanic or Latino ethnicity13,17 (OR,
0.82; 95% CI, 0.72-0.95; Figure 5D).

Finally, we explored whether certain subsets of individuals with
CHIP variants may be more accurately classified as having CCUS
and the prognostic implications of this. Distinguishing CHIP from
CCUS is difficult in large biobanks as data is oftenmissing to qualify
a cytopenia as persistent (≥4 months) and otherwise unexplained;
for example, in the UKB, more than one complete blood count
(CBC) is available in <4% of participants. In single cross-sectional
enrolment CBC data, CHIP was associated with higher leukocyte
and platelet counts but no difference in hemoglobin levels in
adjusted analyses (supplemental Figure 3A-C). Among those with
CHIP, 445 (3%) had anemia without a documented cause (refer to
supplemental Methods). The distribution of CHIP VAF was similar
for those with unexplained anemia compared with those with
explainable anemia and those without anemia, including the pro-
portion of individuals with small CHIP clones (VAF <10%;
supplemental Figure 3D). The presence of unexplained anemia is
associated with a twofold to threefold increased risk of progression
to myeloid cancer among those small and large CHIP clones,
respectively (supplemental Figure 3E).
Discussion
CHIP and CCUS have recently been incorporated into WHO
and ICC myeloid neoplasm guidelines,2,3 a step toward
2220 4 MAY 2023 | VOLUME 141, NUMBER 18
recognizing their importance as premalignant states with wide-
ranging impacts on other organ systems. Just as the recent
International Prognostic Scoring System for myelodysplastic
syndromes incorporates both clinical and molecular features,44

clinicians will increasingly be tasked with the critical challenge
of prognostication for patients with CHIP and CCUS. As high-
lighted here and by others,44,45 such prognostication will
depend not only on clinical factors, such as cytopenias, or
molecular features, such as clone size, but critically upon
whether the mutation identified is in fact a pathogenic somatic
mutation reflecting CHIP.

Here, we show how large data sets with paired genomic and
demographic information can be leveraged to identify CHIP
more accurately for both clinical and research applications. This
strategy builds upon methodologies used in the malignant
hematology field to better understand blood cancer driver
mutations. We provide a set of CHIP calls for the full UKB
exome data set and the All of Us interim 98k-person whole
genome data set, as well as a list of recurrent false positives
encountered during variant interpretation. Although our anal-
ysis was restricted to the originally described list of CHIP vari-
ants,17,43 it can be extended to other genes that have more
recently been observed to exhibit clonality in blood cells.34-36

We highlight how the sequencing methodology can influence
the types of artifacts detected and the filtering strategy
required. For example, methods that use PCR can introduce
in vitro indel artifacts at the G645 and G646 homopolymer sites
in ASXL1, whereas this was not seen with the PCR-free All of Us
whole genome preparation method. In both the UKB and All of
Us, bona fide G646Wfs*16 frameshifts were the most common
ASXL1 variant and were strongly associated with death and
myeloid cancer risk, highlighting the importance of accurately
VLASSCHAERT et al
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identifying this variant. We also highlight how certain hotspot
variants can be missing from data sets because of known issues
with reference genome assemblies (ie, U2AF1 is missing from
both data sets because of hg38 error). Finally, we highlight
bioinformatic strategies to identify and remove suspected germ
line variants from CHIP data sets because sequencing a
matched nonhematologic sample for definitive confirmation of
germ line status is often not possible in large data sets.

Our work also highlights the utility of biobank scale data sets to
inform ongoing efforts to define CHIP and CCUS. There is an
active debate as to whether a CHIP clone in the 2% to 10% VAF
range could realistically have a bearing on an unexplained
cytopenia. Recognizing the limitations of available clinical data in
the biobank setting, we find that cytopenias are equally frequent
in individuals with small (2%-10%) CHIP clones as in individuals
with large (>10%) CHIP clones; however, individuals with a
cytopenia who have a largeCHIP clone are atmarkedly increased
risk for progression tomalignancy. Further studies will be needed
to more comprehensively elucidate factors that predict disease
progression and other morbid outcomes in CHIP and CCUS.
CURATING CHIP IN HUMAN GENETIC DATA SETS
In summary, we present a systematic approach for CHIP variant
identification and validation. We anticipate that this approach
and the data resource contained herein will both enhance the
confidence of molecular labs and clinicians to interpret CHIP
and also increase the rigor and reproducibility of research
efforts to characterize CHIP at scale.
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