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Light shed from the gut in
large B-cell lymphoma
Camille Bigenwald1 and Laurence Zitvogel1,2 | 1Gustave Roussy and
2University Paris Saclay

In this issue of Blood, Yoon et al1 show that patients with diffuse large B-cell
lymphoma (DLBCL) at diagnosis exhibit a profound intestinal dysbiosis. The
relative overrepresentation of Enterobacteriaceae family members is a
robust and independent predictive factor of febrile neutropenia and relapse,
despite first-line rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone (RCHOP) chemotherapy.
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The RCHOP regimen has been consid-
ered the gold standard treatment for
patients with DLBCL for >10 years,
providing a progression-free survival
(PFS) of >60% at 5 years.2 Despite
numerous attempts to dethrone RCHOP
by adding additional drugs (polatuzu-
mab vedotin, lenalidomide, and ibruti-
nib), no drug combination has been able
to outperform RCHOP so far.

Here, the authors showed that gut dys-
biosis governs both toxicity and efficacy
of RCHOP, paving the way to the
development of microbiota-centered
biomarkers and therapies.1

The authors analyzed the stool taxonomic
composition of 189 patients newly diag-
nosed with DLBCL at baseline (excluding
patients treated with antibiotics) using
16S rRNA and whole-genome shotgun
sequencing, with 3 aims.1 First, they
compared the metagenomic-based fecal
repertoire from patients with DLBCL with
that of 158 sex- and age-matched healthy
donors (HDs), and correlated the gut
microbiota compositional deviations with
the incidence of febrile neutropenia and
RCHOP failure (see figure). In this cohort,
86% of patients had a prolonged
response, with a median follow-up of
16 months. Relapses usually occur within
24 months following RCHOP-based first-
line treatment of DLBCL. Hence, this high
response rate may be explained, at least
in part, by the relatively short follow-up.

Nevertheless, patients with DLBCL
showed reduced alpha and beta
diversity of their gut microbiota compo-
sition compared with HDs. Most partic-
ularly, Enterobacteriaceae, including
Escherichia coli, Citrobacter species (Cit-
robacter freundii, Citrobacter kasseri, and
Citrobacter portucalensis), and Entero-
bacter species, were relatively more
abundant in patients with DLBCL than in
HDs. This was accompanied by a rela-
tive underrepresentation of health-
related short-chain fatty acid (SCFA)–
producing bacteria, including Prevotella
copri, Lachnospiraceae (Fusicateni-
bacter saccharivorans, Anaerostipes
hadrus, and Agathobacter rectalis), and
Faecalibacterium species. The meta-
genomic signature was a robust pre-
dictor of hematological malignancy,
allowing the authors to accurately
discriminate HD from DLBCL-derived
fecal samples (area under the curve,
0.89).

Of patients, 22% experienced febrile
neutropenia, which led to a reduction in
chemotherapy dose in 16 of 22 patients.
Dose adaptation largely depends on
medical attitude and clinical centers.
Whether febrile neutropenia resulted in
a delay in subsequent RCHOP was not
clarified. Interestingly, patients experi-
encing febrile neutropenia had a relative
enrichment in fecal Enterobacteriaceae
(E coli and Klebsiella pneumoniae) and
in tolerogenic species associated with
resistance to immunotherapy (such as
Enterocloster species [Enterocloster
clostridioformis], Eggerthella lenta,3 and
Clostridium innocuum4) with a parallel
relative underrepresentation of SCFA
producers compared with febrile
neutropenia-free patients with DLBCL.

Moreover, a high relative abundance
of Enterobacteriaceae family members
was an independent prognosis factor
strongly associated with shorter PFS, and
outperformed the International Prog-
nostic Index score (70% vs 95% 1-year
PFS in patients with DLBCL with high vs
low Enterobacteriaceae [dichotomized
according to the 51st-100th vs 0-50th
percentile]) (see figure). The detrimental
effect of stage III/IV was erased in the
presence of low Enterobacteriaceae
abundance, meaning that stage I/II PFS
Kaplan-Meier curve was superposable to
that depicting PFS of stage III/IV DLBCL
with low Enterobacteriaceae. Febrile
neutropenia was not independently
associated with a shorter PFS.

In parallel, the authors analyzed baseline
cytokine plasma levels and found that
high fecal Enterobacteriaceae relative
abundance correlated with higher
interleukin-6 (IL-6) and interferon gamma
plasmatic concentrations. IL-6 is a pro-
inflammatory cytokine induced by sepsis
or endotoxemia and genotoxic stress,
such as the one mediated by doxoru-
bicin.5 It is tempting to speculate that
IL-6 may interfere with chemotherapy
efficacy and gut intestinal barrier fitness.

This study is the largest analysis of the
prognostic impact of stool taxonomic
composition in newly diagnosed patients
with DLBCL ever described to date,
highlighting the negative impact of the
relative excess of intestinal Enterobac-
teriaceae for treatment toxicity and fail-
ure. The relative abundance of gut E coli/
Shigella Enterobacteriaceae in patients
with DLBCL compared with HDs was
already reported in a smaller cohort of
patients DLBCL,6 and may be in line with
the cancer-associated stress ileopathy
previously described.3 In autologous and
allogeneic hematopoietic cell trans-
plantation, the alpha diversity of pre-
transplant microbiota is lower than in HDs
and further decreases during the course
of transplantation.7 Loss of fecal diversity
is associated with graft-versus-host dis-
ease and lower PFS and overall survival.
In contrast, the presence of SCFA-
producing bacteria correlated with
improved response rates in patients with
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Study outline and results. Fecal 16S rRNA, shotgun metagenomic sequencing, and serum multiplex enzyme-linked immunosorbent assay (ELISA) were performed in a large
cohort of newly diagnosed patients with DLBCL who were treated with RCHOP and in healthy individuals. Patients with DLBCL exhibit a profound dysbiosis, marked by high
Enterobacteriaceae overrepresentation relative to short-chain fatty acid–producing bacteria. High relative abundance of Enterobacteriaceae in patients with DLBCL was
associated with higher interleukin 6 (IL-6) and interferon gamma (IFN-γ) plasmatic concentrations, increased risk of febrile neutropenia, and lower PFS, compared with patients
with no dominance of Enterobacteriaceae family members.
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refractory B-cell acute lymphoblastic leu-
kemia or B-cell lymphoma who were
amenable to CD19 chimeric antigen
receptor T-cell therapy.8 This study sug-
gests a vicious circle between intestinal
Enterobacteriaceae, systemic inflammation
and immunosuppression, febrile neu-
tropenia, and relapse. Anthracycline medi-
ates immunogenic cell death and T-cell–
dependent long-term clinical benefit.
Therefore, restoring “gut eubiosis” and
intestinal barrier fitness may represent a
mandatory prerequisite for full-fledged
RCHOP efficacy. Increasing the relative
dominance of SCFA producers (using a
high-fiber diet, specific prebiotics, pro-
biotics,9 or complex microbial ecosys-
tems10) should therefore be considered in
front-line patients with DLBCL.
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