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The cyclic adenosine monophosphate response element-
binding protein (CREBBP) gene is located on chromosome
16p13 and encodes a histone acetyltransferase having the same
name that is involved in transcriptional regulation and cell cycle
control.1,2 The translocation t(8;16)(p11;p13)[KAT6A::CREBBP]
results in the disruption of CREBBP as well as its fusion to
KAT6A, another gene important in transcription control. This
fusion is sufficient for leukemogenesis and leads to a rare but
well described type of acute myeloid leukemia (AML) with
consistent biologic characteristics and a distinct gene expres-
sion profile.3-8 Although generally associated with inferior out-
comes among adults, including a recent adjustment made by
the European LeukemiaNet toward the adverse-risk group,
there are variable reports regarding the prognostic significance
of this fusion among pediatric patients.4,7,9 This prognostic
variability is partially related to the high association of
KAT6A::CREBBP with congenital leukemia as well as the phe-
nomenon of spontaneous regression in a majority of these
patients.4,10-17 Because of the poor outcomes associated with
this alteration on North American protocols, patients aged >90
days with KAT6A::CREBBP have been reclassified as high risk in
the active Phase 3 Children’s Oncology Group (COG) trial for de
novo AML, AAML1831 (NCT04293562). Little is known about
the prognostic significance of CREBBP sequence variants,
including pathogenic single nucleotide variants (SNVs) and
insertion/deletions (indels). In this letter, we report the preva-
lence and prognostic significance of all alterations involving
CREBBP in pediatric patients with AML and their impact on co-
occurring lesions, specifically t(8;21)[RUNX1::RUNX1T1].

CREBBP variant status was determined in a total of 2216
patients enrolled in 4 successive COG trials for de novo pedi-
atric AML (NCT00003790, NCT00070174, NCT01407757, and
NCT01371981) and associated with comprehensive clinical and
cytogenetic information. Fusions involving CREBBP were pro-
spectively obtained via conventional cytogenetics and retro-
spectively confirmed via RNA sequencing. Indels and SNVs were
retrospectively interrogated via next generation sequencing18

and their pathogenicities were established in accordance with
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology guidelines. For patients with
transcriptome data available, unsupervised clustering was done
and their results were compared with those of patients without
CREBBP alterations. The research was approved by the appro-
priate review boards and conducted in accordance with the
Declaration of Helsinki. The Kaplan-Meier method was used to
determine overall survival (OS) and event-free survival (EFS). The
significance of predictor variables was tested using the log-rank
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statistic. The significance of observed difference in proportions
was analyzed using Fisher exact test, and observed differences in
medians were analyzed using the Kruskal-Wallis test. The Cox
proportional hazards model was used to estimate a hazard ratio
for EFS in a multivariable analysis.

We identified 52 (2.3%) patients with a pathogenic alteration
involving CREBBP, which is slightly higher than the incidence in
publicly available adult AML databases (1.1%).19,20 This higher
incidence is largely driven by fusions involving CREBBP (CREBBP/
fus), which made up 31% (n = 16) of our cohort (compared with
12.5% in the adult database). The remaining 36 patients (69%) in
our cohort had a CREBBP mutation (CREBBP/mut; supplemental
Table 1, available on the Blood website). Eighteen of these were
due to an indel (CREBBP/indel), including 15 leading to frameshift
mutations and 3 leading to deleterious inframe insertions or
deletions (Figure 1A). The other 18 were due to a SNV (CREBBP/
SNV), including 17 deleterious missense or nonsense mutations
and 1 splice-site mutation (Figure 1A). A single patient had 2
pathogenic missense mutations. Patients with CREBBP/fus were
younger than patients with CREBBP/indel or CREBBP/SNV
(median ages of 2.6 vs 8.7 vs 7.4 years, respectively; P = .056),
including 4 patients with a CREBBP/fus diagnosed in the first 90
days of life. There was a higher prevalence of RUNX1::RUNX1T1
in patients with CREBBP/indel (n = 8) than in patients with
CREBBP/SNV (n = 1) (44.4% vs 5.6%, respectively; P = .018;
Figure 1A). In contrast, there was no association between
CREBBP/SNV and a specific cytogenetic abnormality. There was
a similar prevalence of cooccurring contemporarily defined
high-risk lesions among patients with CREBBP/indel (n = 4;
CBFA2T3::GLIS2, KMT2A::AFF1, MLLT10::PICALM, and NUP98::
HOXA9) and those with CREBBP/SNV (n = 5; CBFA2T3::GLIS2,
FUS::ERG, NUP98::KDM5A, ETV6::MNX1, and high allelic ratio
FLT3-ITD). There was a paucity of cooccurring genomic mutations
in patients with CREBBP/fus (Figure 1A). In contrast, genomic
mutations most frequently cooccurring in patients with CREBBP/
mut included mutations in RAS (25%), KIT (13.9%), and WT1
(11.1%). The frequency of these mutations were the same
between patients with CREBBP/SNV and patients with CREBBP/
indel and had a similar distribution to that of patients without
CREBBP mutations. Transcriptome data were analyzed, and,
consistent with previous reports, unsupervised clustering showed
tight clustering of CREBBP/fus as well as a similar but distinct
gene expression profile to that of KMT2A rearrangements.3,4

CREBBP/indel clustered together, which was likely driven by the
cooccurrence of RUNX1::RUNX1T1, given its strong gene
expression profile.21 In contrast, CREBBP/SNV did not show a
specific clustering pattern (Figure 1B).
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Figure 1. Molecular and transcriptome profiles based on CREBBP status. (A) Cytomolecular status and cooccurring mutational profile of patients based on CREBBP
alterations, (B) Unsupervised clustering was performed across the entire transcriptome patient data set (n = 1079). Variance stabilizing transformation was performed
(R function, vst), and scaled values were used to calculate the variance for each gene across all samples (R function, var). The genes were sorted based on variance, and the top
100 genes with highest variance were clustered (R function, ward.D2) and presented visually in a heatmap generated using pheatmap function in R.
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Evaluation of outcomes based on the type of alteration
demonstrated a similar EFS between patients with CREBBP/fus
and patients with CREBBP/mut (5-year EFS was 33.3% vs 22.2%,
respectively; P = .801; Figure 2A). Patients with CREBBP/mut
LETTERS TO BLOOD
had a significantly worse EFS compared with patients without
(5-year EFS was 22.2% vs 45.2%, respectively; P = .005;
Figure 2A), and this inferior EFS is similar to that of patients with
contemporarily defined high-risk but without CREBBP/mut
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Figure 2. Correlation of clinical outcomes with CREBBP status. (A) EFS based on
CREBBP status, (B) OS based on CREBBP status.
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(5-year EFS is 25.2%; P = .929). Furthermore, this poor EFS was
maintained in patients with CREBBP/indel with cooccurring
RUNX1::RUNX1T1, which was significantly worse than that
of patients with RUNX1::RUNX1T1 but without CREBBP/indel
(5-year EFS was 12.5% vs 67.7%, respectively; P = .001). When
patients with cooccurring high-risk lesions were excluded
from the analysis, the remaining patients with CREBBP/mut
(n = 27) who would otherwise be considered low-risk main-
tained their poor EFS (5-year EFS was 29.6%). We performed a
Cox regression analysis and found CREBBP/mut was an
independent predictor of an inferior EFS in the presence of
contemporarily defined cooccurring low- or high-risk cyto-
molecular alterations (hazard ratio, 1.71; 95% confidence
interval, 1.18-2.47; P = .005; supplemental Table 2). Despite
their poor EFS, patients with CREBBP/mut had a comparable
OS with those without CREBBP disruptions (5-year OS was
51.4% vs 62.4%, respectively; P = .153, Figure 2B), demon-
strating that these patients could successfully be salvaged
following relapse. In contrast, patients with CREBBP/fus had
an inferior OS (5-year OS was 33.3%; P = .002). Strikingly, all
patients with CREBBP/fus that experienced a relapse ulti-
mately died from their disease. Of the 5 long-term survivors
with CREBBP/fus, 2 were diagnosed within the first 90 days of
life and might have ultimately benefited from spontaneous
regression.
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We report the prevalence of CREBBP/fus in a large cohort of
patients with pediatric AML with an incidence similar to that
reported in a prior analysis.4 This is also the first report, to our
knowledge, to comprehensively report the prevalence of
CREBBP/mut in pediatric AML. Furthermore, we show that
these patients have a poor EFS, regardless of the alteration
type. This was especially notable in those patients with
CREBBP/indel with a cooccurring RUNX1::RUNX1T1. The
favorable EFS typically conferred by RUNX1::RUNX1T1 was
abrogated by the cooccurrence of CREBBP/indel. Finally, the
presence of a CREBBP/mut maintained independent prog-
nostic significance for an inferior EFS, within the context of a
Cox regression analysis.

Translocations between CREBBP and KAT6A in patients aged
>90 days are considered as high risk in the active COG phase 3
trial. Survival of patients with relapsed CREBBP/fus AML is dismal
and warrants novel interventions. Histone deacetylase inhibitors
have shown preclinical promise in CREBBP mutated tumors, and
further studies in AML are warranted.22,23 Given the comparably
poor EFS and high salvage rates associated with CREBBP/mut
AML, intensification of upfront treatment, including hematopoi-
etic stem cell transplant, should be considered in this population.
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