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Differential diagnosis of bone marrow failure
syndromes guided by machine learning
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KEY PO INT S

•We developed a
machine-learning
algorithm to guide
differential diagnosis of
BMF.

•Acquired vs inherited
prediction relied on 25
variables recorded
through a
comprehensive physical
and laboratory
evaluation at the time
of first evaluation.
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The choice to postpone treatment while awaiting genetic testing can result in significant
delay in definitive therapies in patients with severe pancytopenia. Conversely, the
misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual
and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of
an affected family member as a stem cell donor. To predict the likelihood of patients
having acquired or inherited BMF, we developed a 2-step data-driven machine-learning
model using 25 clinical and laboratory variables typically recorded at the initial clinical
encounter. For model development, patients were labeled as having acquired or inherited
BMF depending on their genomic data. Data sets were unbiasedly clustered, and an
ensemble model was trained with cases from the largest cluster of a training cohort
(n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest
group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised
underrepresented BMF phenotypes and was not included in the next step of data
modeling because of a small sample size. The ensemble cluster A–specific model was
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accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of
cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical
and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by
general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize
patients for genetic testing or for expeditious treatment.
Introduction
Bone marrow failure (BMF) syndromes include a spectrum of
rare diseases characterized by impaired hematopoiesis and
blood cytopenias.1-3 BMF is caused by different pathophysio-
logic mechanisms, broadly classified as acquired or inherited. In
acquired cases, the hematopoietic failure is caused by an
immune-mediated destruction of hematopoietic stem and
LUME 141, NUMBER 17
progenitor cells in the marrow.2 Inherited BMF syndromes
(IBMFSs) are a heterogeneous group of diseases caused
by pathogenic germ line variants in a variety of genes critical
for key pathways in the maintenance, self-renewal, differentia-
tion, and genomic stability of hematopoietic stem and
progenitor cells.1,3,4 Telomere biology disorders (TBDs), ribo-
somopathies, and Fanconi anemia (FA) are examples of classical
IBMFSs.3-5
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Treatment decisions and donor selection for hematopoietic cell
transplant are dependent on the underlying BMF etiology,
making it imperative to distinguish between inherited and
acquired diseases. It is often feasible to readily diagnose
IBMFSs in children if they present with a family history and
typical congenital anomalies. However, many patients with
IBMFSs do not have an informative pedigree, lack classical
physical characteristics, or present in adulthood. Notably,
cytopenias due to various etiologies have similar clinical
presentations.1,3,6,7 In contrast, the acquired BMF diagnosis is
by exclusion, especially if patients are older or lack a family
history and typical features associated with inherited pheno-
types. The definitive approach to IBMFS diagnosis is genetic
testing, which is expensive and not routinely available world-
wide, particularly in low-resource settings.

Machine learning, a subdomain of artificial intelligence, has
been increasingly applied in health care to identify patterns and
markers of complex diseases toward improved disease classifi-
cation, risk stratification, and treatment decisions (see
supplemental Material for a quick guide to machine learning,
available on the Blood website).8-12 In this field, computer
algorithms learn from examples rather than a preestablished set
of statistical rules, which can unveil hidden associations and
predict outcomes. Among the different types of machine
learning, unsupervised algorithms focus on identifying patterns
and clusters within a data set, and supervised algorithms learn
to automatically predict specific outcomes (labels) based on a
set of exemplars.11,13 In hematology, machine learning has
been used to improve risk stratification, the diagnosis and
prognosis of lymphoid and myeloid malignancies, and mortality
prediction in sickle cell disease.8,13-18 However, no model has
yet been developed to improve diagnostic decisions in BMF,
likely due to the rarity of these disorders.

We applied machine learning to data from a large historical
cohort of patients with BMF in order to develop a model to
predict etiology and therefore to guide therapy. The approach
was most useful for the differential diagnosis of aplastic anemia
(AA) in adults and was based on patients’ clinical and laboratory
findings at the initial encounter, in order to facilitate decision
making before genetic testing and the initiation of treatment.
f by guest on 21 M
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Methods
Study cohorts
Clinical records from 2 independent cohorts of consecutive
patients with any signs of BMF who were screened for pathogenic
variants in IBMFS-associated genes were included in this study
(supplemental Table 1): the National Institutes of Health (NIH; 441
patients) and the University of São Paulo (USP; 165 patients)
cohorts. For a prediction model interpretation, patients who did
not meet the criteria for classical IBMFSs were classified as having
moderate AA (MAA), severe AA (SAA), isolated cytopenias (such
as thrombocytopenia and neutropenia), myelodysplastic syn-
dromes (MDSs), or hypoplastic MDS based on established criteria
(supplemental Table 2). In contrast, classical IBMFS included
dyskeratosis congenita (DC) or Hoyeraal-Hreidarsson syndrome,
FA, Diamond Blackfan syndrome (DBA), congenital neutropenia,
congenital amegakaryocytic thrombocytopenia, and Shwachman
Diamond syndrome (SDS).
PREDICTION MODEL OF BONE MARROW FAILURE ETIOLOGY
Written informed consent was obtained from all participants in
accordance with the Declaration of Helsinki and under protocols
approved by the institutional review boards of National Heart,
Lung, and Blood Institute (#NCT00001620, #NCT01623167,
#NCT01328587, #NCT01441037, and #NCT00961064), National
Cancer Institute (#NCT00027274), and USP (CAAE number,
93617018.0.0000.5440) at initial assessment.

Target classification and data preparation
Germ line variants identified by either whole-exome sequencing,
targeted panels, or Sanger sequencing were systematically
curated and classified as pathogenic, likely pathogenic, variants of
uncertain significance (VUS), likely benign, or benign based on the
Sherloc/American College of Medical Genetics and Genomics
(ACMG) criteria (Figure 1).19,20 In a binary target classification,
cases were labeled as “inherited” if they had a pathogenic/likely
pathogenic disease-associated variant(s), and as “acquired” when
they had benign or likely benign variants or a negative genetic
test, regardless of the patient’s clinical diagnoses. Next, 30 clinical
and laboratory variables consistently available at diagnosis across
different institutions were selected for modeling, including a mix
of categorical and continuous variables (Table 1; supplemental
Table 3). Telomere length (TL) measurement in either peripheral
blood lymphocytes or total leukocytes was performed by flow–
fluorescent in situ hybridization in the majority of cases by
Repeat Diagnostics (Vancouver, Canada) or as previously
described.21 Three variables were manually removed because of a
high rate of missing values in our cohorts (paroxysmal nocturnal
hemoglobinuria [PNH] clone and karyotype; Table 1) and corre-
lation with other variables (white blood cell counts). Records with
high ratios of missing variables (NIH, n = 42 and USP, n = 27) or
with VUS (NIH, n = 42 and USP, n = 11) were excluded (Figure 1).
A final data set included the NIH data, used for training and
testing (n = 359), and the USP data set (n = 127), used for inde-
pendent validation and quantification of the model’s effective
generalization.

K-means clustering
An initial attempt to create a classification model with consec-
utive BMF cases achieved low accuracy for prediction of pre-
sentations that were underrepresented in our cohorts (DBA, FA,
SDS, and MDS). The portioning of data into groups that share
similarities with an unbiased removal of outliers (which can
introduce a noise into the model) aids accurate prediction.
K-means clustering was then applied in an attempt to overcome
the negative effects of data heterogeneity when only classifi-
cation modeling was applied. First, K-means clustering calcu-
lated and evaluated the ideal number of clusters to partition the
NIH data based on similarities of the variables inputted using
the Calinski-Harabasz criterion.22 We then applied the same
algorithm to cluster the USP data separately. Data were opti-
mally and unbiasedly clustered by the algorithm into 2 major
groups, denoted clusters A and B. Only records of cluster A
were selected for further processing and classification because
data modeling requires large data sets.

Machine-learning classification model selection and
optimization
Feature selection was carried out to rank variables by importance
via the ReliefF algorithm23 within cluster A from the NIH data set.
A final bootstrap aggregation ensemble algorithm model with 25
27 APRIL 2023 | VOLUME 141, NUMBER 17 2101
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Figure 1. Schematic workflow of development of the 2-step machine-learning model. The model was developed with (1) collection of clinical and laboratory data
routinely available for patients with BMF from 2 independent cohorts; (2) curation of germ line variants identified by genetic testing in order to assign a label (target clas-
sification) for each patient correspondent to BMF etiology: acquired or inherited. All patients identified with pathogenic and likely pathogenic variants were labeled as
inherited cases. Patients without germ line variants or with only benign/likely benign variants were labeled as acquired cases. Patients with VUS were not included in the
training data set; (3) data preparation; (4) K-means clustering of cases from the training cohort; (5) classification machine-learning algorithm optimized for the cluster with the
highest number of cases (cluster A); and (6) validation of the model in an external data set. The predictive model was next applied to predict BMF etiology in patients with VUS.
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of the 27 features included in the training data set was selected
based on its performance in the validation dataset.
Statistics
Pearson correlation coefficients were computed to evaluate linear
correlations between continuous variables as well as the correla-
tions between variables and the outcome of acquired or inherited
BMF disease. To evaluate the effects of the predictors and their
interactions, a logistic regression model for a binary outcome was
established on cluster A using the training data set and tested on
the validation datasets.24 Important covariates in this model were
chosen by backward stepwise variable selection procedures based
on the criteria of classification accuracy. Detailed methods are
described in the supplemental Materials.
2102 27 APRIL 2023 | VOLUME 141, NUMBER 17
Results
K-means clustering process structured the data set
according to patients’ blood counts and clinical
diagnosis
In the NIH data set, median patient age was 28 years (range, 1-
86 years), and 52% were male. There were 127 cases labeled as
inherited because of the presence of germ line pathogenic
variants in IBMFS genes: most commonly in TERT, FANCA,
TERC, RTEL1, SBDS, DKC1, TINF2, and MPL (Table 1;
Figure 2A). As expected, all pathogenic variants were found in
genes known to be linked to IBMFS and correlated with
patients’ clinical diagnosis and age of presentation (Figure 2A).
The remaining 232 patients were classified as acquired BMF
because they had no pathogenic variants. Forty patients with
GUTIERREZ-RODRIGUES et al



Table 1. Clinical and laboratory characteristics of the training and validation data sets

Training data set (NIH) Validation data set (USP)

All

Labels Clustering All Labels Clustering

Acquired Inherited Cluster A Cluster B Acquired Inherited Cluster A Cluster B

No. of patients (%) 359 (100) 232 (65) 127 (35) 300 (84) 59 (16) 127 (100) 92 (72) 35 (28) 110 (87) 17 (13)

Labels (%)

Inherited 127 (35.3) 90 (30) 37 (63) 35 (27.5) 29 (26) 6 (25)

Acquired 232 (64.6) 210 (70) 22 (37) 92 (72.4) 81 (74) 11 (65)

Sex (%)

Female 174 (48) 119 (51) 55 (43) 140 (47) 34 (58) 58 (46) 49 (53) 9 (26) 47 (43) 11 (65)

Male 185 (52) 113 (49) 72 (57) 160 (53) 25 (42) 69 (54) 43 (47) 26 (74) 63 (57) 6 (35)

Median age (range), y 28 (1-86) 34 (3-86) 17 (1-61) 29 (1-86) 24 (3-66) 23 (1-83) 27 (1-82) 15 (1-52) 24 (1-82) 10 (1-49)

Laboratory counts (mean ± SD)

Red blood cell counts (103/dL) 3.06 ± 0.78 2.90 ± 0.75 3.36 ± 0.78 2.9 ± 0.7 4.93 ± 0.59 2.83 ± 0.97 2.7 ± 0.98 3.1 ± 0.9 2.7 ± 0.8 3.9 ± 1.2

Hemoglobin (g/dL) 9.92 ± 2.29 9.2 ± 2.05 11.2 ± 2.2 9.4 ± 2.1 12.3 ± 1.5 8.96 ± 2.70 8.6 ± 2.7 9.9 ± 2.6 8.7 ± 2.5 10.8 ± 3.0

Mean corpuscular volume (mean ± SD) 94 ± 11 93 ± 11 98 ± 11 95 ± 11 92 ± 10 96 ± 12 96 ± 12 98 ± 12 98 ± 11 87 ± 12

Platelets (103/dL) 63 ± 76 47 ± 74 92 ± 72 35 ± 30 206 ± 78 58 ± 84 53 ± 81 71 ± 91 29 ± 26 249 ± 79

Neutrophils (103/dL) 1.1 ± 1.1 0.9 ± 1.1 1.5 ± 1.1 1.0 ± 1 1.63 ± 1.3 1 ± 0.86 0.9 ± 0.8 1.2 ± 1.1 1.0 ± 0.9 0.9 ± 0.7

Red cell distribution width 15 ± 3 15.7 ± 3.2 15 ± 2.9 16 ± 3 13 ± 1.5 16 ± 3 16 ± 3.1 16 ± 2.9 16 ± 3 15 ± 2.4

Lymphocytes (103/dL) 1.48 ± 0.83 1.5 ± 0.8 1.5 ± 0.9 1.46 ± 0.8 1.6 ± 0.8 1.6 ± 1.1 1.6 ± 1.2 1.6 ± 0.7 1.46 ± 0.9 2.6 ± 1.9

Monocytes (103/dL) 0.21 ± 0.2 0.16 ± 0.16 0.32 ± 0.22 0.19 ± 0.19 0.35 ± 0.2 0.2 ± 0.16 0.2 ± 0.17 0.2 ± 0.14 0.2 ± 0.15 0.3 ± 0.17

Eosinophils (103/dL) 0.05 ± 0.1 0.03 ± 0.06 0.07 ± 0.1 0.03 ± 0.08 0.12 ± 0.1 0.05 ± 0.12 0.05 ± 0.13 0.05 ± 0.08 0.04 ± 0.12 0.1 ± 0.13

Basophils (103/dL) 0.01 ± 0.03 0.008 ± 0.02 0.02 ± 0.04 0.01 ± 0.02 0.027 ± 0.05 0.01 ± 0.03 0.01 ± 0.03 0.006 ± 0.02 0.01 ± 0.03 0.02 ± 0.04

Reticulocytes (103/dL) 44.1 ± 28.2 38 ± 27 55 ± 27 43 ± 29 48 ± 24 55.1 ± 38 52 ± 36 63 ± 42 53 ± 38 71 ± 33

Presence of PNH clones, n (%)* 63 (17) 62 (27) 1 (0.7) 61 (20) 2 (3) 15 (12) 14 (15) 1 (3) 15 (14) 0

(n, % missing values) 38 (11) 11 (5) 27 (21) 28 (10) 10 (17) 11 (9) 6 (6) 2 (6) 5 (4) 3 (18)

Abnormal karyotype, n (%)* 41 (11) 21 (9) 20 (16) 30 (10) 11 (19) 9 (7) 8 (9) 1 (3) 7 (6) 2 (12)

Complex or monosomy 7, n (%) 13 (4) 7 (3) 6 (5) 11 (4) 2 (3) 3 (2) 2 (2) 1 (3) 3 (3) 0

(n, % missing values) 18 (5) 4 (2) 14 (11) 16 (5) 2 (3) 77 (60) 46 (50) 23 (65) 61 (55) 8 (47)

DC triad is defined by at least 2 of the following: nail dystrophy, skin hyper/hypopigmentation, and leukoplasia.

SD, standard deviation.

*Variables excluded from analysis because of a high number of missing values in cases labeled as inherited or in the validation cohort.
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Table 1 (continued)

Training data set (NIH) Validation data set (USP)

All

Labels Clustering All Labels Clustering

Acquired Inherited Cluster A Cluster B Acquired Inherited Cluster A Cluster B

Telomere length, n (%)

Normal 192 (53) 164 (71) 28 (22) 159 (53) 33 (56) 79 (62) 68 (74) 11 (31) 67 (61) 12 (71)

<10th percentile 56 (16) 39 (17) 17 (13) 48 (16) 8 (14) 13 (10) 11 (12) 2 (6) 13 (12) 0

<First percentile 111 (31) 29 (13) 82 (65) 93 (31) 18 (31) 35 (28) 13 (14) 22 (63) 30 (27) 5 (29)

Bone marrow cellularity for age, n (%)

Hypocellular 331 (92.2) 218 (94) 113 (90) 284 (94.7) 47 (80) 111 (87) 79 (86) 32 (91) 103 (94) 8 (47)

Normocellular 24 (6.7) 10 (4) 14 (11) 14 (4.7) 10 (17) 16 (13) 13 (14) 3 (9) 7 (6) 9 (53)

Hypercellular 4 (1.1) 4 (2) 0 2 (0.7) 2 (3) 0 0 0 0 0

Dysplasia or increased blasts in bone marrow
biopsy, n (%)

19 (5) 9 (4) 10 (8) 16 (5) 3 (5) 16 (13) 9 (10) 7 (20) 13 (12) 3 (18)

Clinical data, n (%)

Presence of DC clinical triad 32 (9) 4 (2) 28 (22) 28 (9) 4 (7) 17 (13) 4 (4) 13 (37) 15 (14) 2 (12)

Presence of abnormal cutaneous findings 44 (12) 7 (3) 37 (29) 27 (9) 17 (29) 5 (4) 2 (2) 3 (9) 4 (4) 1 (6)

Presence of physical anomalies 72 (20) 12 (5) 60 (47) 41 (14) 31 (53) 4 (3) 1 (1) 3 (9) 2 (2) 2 (12)

Presence of multiorgan diseases 87 (24) 29 (13) 58 (46) 66 (22) 21 (36) 15 (12) 3 (3) 12 (34) 12 (11) 3 (18)

Long-standing cytopenias or macrocytosis 66 (30) 11 (5) 55 (43) 44 (15) 22 (37) 5 (4) 1 (1) 4 (11) 4 (4) 1 (6)

Long-standing history of recurrent bleeding and
infections

109 (6) 47 (20) 62 (49) 82 (27) 27 (46) 6 (5) 5 (5) 1 (3) 5 (5) 1 (6)

Immunodeficiency 20 (6) 7 (3) 13 (10) 9 (3) 11 (19) 1 (1) 0 1 (3) 1 (1) 0

Proband with early gray hair 20 (6) 9 (4) 11 (9) 13 (4) 7 (12) 2 (2) 1 (1) 1 (3) 2 (2) 0

Immediate family members with similar
phenotype

23 (24) 9 (4) 14 (11) 21 (7) 2 (3) 0 0 0 0 0

Extended family members with similar
phenotype

60 (17) 31 (13) 29 (23) 50 (17) 10 (17) 3 (2) 3 (3) 0 3 (3) 0

Relatives with early gray hair 32 (9) 19 (8) 13 (10) 28 (9) 4 (7) 0 0 0 0 0

DC triad is defined by at least 2 of the following: nail dystrophy, skin hyper/hypopigmentation, and leukoplasia.

SD, standard deviation.

*Variables excluded from analysis because of a high number of missing values in cases labeled as inherited or in the validation cohort.
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Figure 2. Genetic and clinical characterization of cases from the NIH data set. (A) Germ line variants identified in the NIH data set (n = 399) according to patients’ ages and
clinical diagnosis. Variants identified at maximum population frequency of 1% in the general population (gnomAD database) were curated and classified as pathogenic/likely
pathogenic (light blue), and as benign, likely benign, or of uncertain significance (VUS; purple). Patients with pathogenic variants in IBMFS genes were labeled as inherited
(n = 127). Mutations in genes linked to DBA (n = 9), FA (n = 25), SDS (n = 11), and DC/Hoyeraal-Hreidarsson syndrome (n = 28) were mostly pediatric whereas patients with AA,
isolated cytopenias, or MDS/HypoMDS, due to pathogenic variants in telomere biology genes (n = 46) or other genes (RUNX1, n = 1; DDX41, n = 1; and biallelic MPL, n = 1),
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VUS were removed from analysis as they lacked a label
(acquired vs inherited) required for data modeling.

Next, all cases were unbiasedly clustered by an algorithm into 2
main groups based on clinical and laboratory data. In the
training cohort, 300 records were assigned to cluster A (90 and
210 cases labeled as inherited and acquired, respectively) and
59 records to cluster B (of which 37 and 22 cases were labeled
as inherited and acquired, respectively) (Table 1). Within each
cluster, patients labeled as acquired were older, whereas blood
counts were higher in cases labeled as inherited (Figure 2B).
Most patients in cluster A had hypocellular bone marrow
morphology with bilineage or pan-cytopenias (MAA or SAA
with or without typical findings of IBMFS), whereas patients in
cluster B had single or bilineage cytopenias, with or without
bone marrow hypocellularity, as seen in classical IBMFSs such as
DBA, SDS, FA, and congenital neutropenia (Figure 2C). These 2
different clusters associated with patients’ blood counts and
clinical diagnosis, resulting in an unbiased grouping of patients
with BMF likely to share the same pathophysiologic mechanism
(Table 1; Figure 2B; supplemental Figure 2).

Clinical and laboratory variables for BMF
prediction by machine learning
Next, we investigated which variables were most important for
the prediction of inherited vs acquired BMF in cluster A using
the ReliefF method; 25 of the initial 27 variables from the data
set were important (Figure 3A). TL was a top predictor for dif-
ferential diagnosis of BMF etiology, followed by age, sex, blood
counts, and clinical variables, particularly a history of long-
standing cytopenias or macrocytosis and mucocutaneous find-
ings (supplemental Table 3). By Pearson correlation analysis,
young age and moderate blood counts (excluding lympho-
cytes) were positively associated with inherited cases
(Figure 3B). In addition, continuous variables, mainly repre-
sented by patients’ blood counts, were positively intercorre-
lated, likely because of global hematopoietic failure in patients
with AA from cluster A (Figure 3C).

All 25 variables were used to optimize an ensemble an algo-
rithm able to correctly predict acquired vs inherited disease in
89% of cases from the validation cohort, with sensitivity of 79%
(correct prediction of inherited cases) and specificity of 92%
(correct prediction of acquired cases) (Figure 3D). Clusters A
and B in the validation cohort showed similar patterns observed
in the training data set; cluster A (n = 110) in the USP cohort was
enriched with AA cases whereas cluster B (n = 17) mostly had
other IBMFS presentations (Table 1; Figure 2C; supplemental
Figure 3). Eleven cases with VUS variants were removed from
analysis.

Our model better predicted acquired than inherited AA. In the
validation data set, only 12 cases were predicted differently
Figure 2 (continued) were in a broader age spectrum. Patients with no variants or with
contrast, patients with variants classified as VUS were removed from analysis (n = 40). A fi

acquired were used for data modeling. (B) Violin plots of continuous variables in the trainin
lower median blood counts, whereas cluster B was enriched for patients with physical a
(supplemental Figures 2 and 3). Median ages and blood counts, from both clusters A and
in cluster A than in cluster B and RDW was higher in cluster A than in B, possibly becaus
inherited cases had lower median ages but higher blood counts. (C) Clinical diagnosis of p
Each dot represents a single patient that is colored according to the assigned cluster.
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from their labels as determined by genetic sequencing,
including 20% (6 of 29) inherited and 7% (6 of 81) acquired
cases mispredicted as acquired and inherited, respectively
(Figure 3E; Table 2). Among patients mispredicted by the
machine, 5 of the 6 labeled as acquired because of a negative
genetic test had either DC (n = 3) or MAA with a family history
of hematologic malignancies (Table 2; Figure 3E). Therefore,
only 1 acquired case (1.2%; USP051) was truly misclassified.

Among the inherited cases predicted as acquired, 4 had MAA
and short telomeres, including 2 with a homozygous TERT
variant (USP023 and USP026) (Table 2) and 1 with a TINF2
variant, all classified as pathogenic by the Sherloc/ACMG
criteria. Other mispredicted cases included 2 patients with
normal TLs; the first had hypoplastic MDS caused by a germ line
RUNX1 variant, and the other had SAA at a very early age
caused by a MECOM frameshift variant (Table 2). Overall,
inherited cases mispredicted as acquired were associated with
young age without classical IBMFS features; MAA alone or with
other phenotypes was underrepresented in the training cohort.

Logistic regression model
To understand the directionality of prediction of the ensemble
model, we attempted to recapitulate the “black-box” machine-
learning results by univariable and multivariable logistic
regression. In univariable analysis, short or very short telomeres
were most predictive of inherited BMF, followed by higher
blood counts (particularly basophils and eosinophils), younger
age, and presence of clinical signs suggestive of inherited dis-
ease (supplemental Table 4). In multivariable analysis, 12
covariates recapitulated the machine-learning results, with the
highest accuracy in cluster A from both the NIH and USP data
sets (95% and 88%, respectively): short TL, young age, presence
of physical anomalies, abnormal mucocutaneous findings,
immunodeficiency, multiorgan disease, higher eosinophils and
basophils counts, and higher mean corpuscular volume were
predictors of inherited disease after full adjustment. Sensitivity
and specificity of the multivariable analysis were 76% and 93%,
respectively. In both univariable and multivariable analyses,
predictors associated with an increased risk of inherited BMF
correlated with the machine-learning findings, providing a
linear rationale used by the ensemble algorithm for prediction.

Importance of TL measurement and PNH testing in
BMF
TL measurement in lymphocytes or total blood was a top pre-
dictor in differentiating acquired from inherited BMF by both
ensemble and logistic regression models. As expected, short TL
implicated a diagnosis of TBDs, whereas a normal TL indicated
immune AA in most cases (Figure 3A); short telomeres are also
found in some immune AA cases as well as in other IBMFSs. In
this study, the majority of patients had TLs measured by flow–
fluorescent in situ hybridization, but in some cases, TLs were
variants classified as benign or likely benign were labeled as acquired (n = 232). In
nal training cohort (n = 359) with 127 labeled as inherited and 232 cases labeled as
g cohort (n = 359) according to clusters. Cluster A was enriched for patients who had
nomalies, multiorgan involvement, and long histories of cytopenias or macrocytosis
B, are shown in the graphic. In general, median blood counts of patients were lower
e of enrichment of SAA, which is often transfusion dependent. Within each cluster,
atients labeled as acquired and inherited in both the training and validation cohorts.
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Figure 3. Classification model for prediction of BMF etiology in cluster A. (A) Top predictors ranked by importance by the ReliefF method. Feature selection ranked
27 variables by importance and the top 25 variables were considered important predictors for the model. (B) Correlation coefficient (R) between a target of prediction
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Figure 3 (continued) (categorical) and continuous variables. R was calculated and plotted in order of a variable’s importance. (C) A heatmap showing correlation among
continuous variables. (D) Confusion matrix with prediction results for the validation cohort. The model was validated in the USP data set. Cases labeled or predicted as
acquired are represented by “A,” whereas cases labeled or predicted as inherited are represented by “I.” Model sensitivity represents the ability to correctly predict acquired
cases, whereas model specificity is the ability of the model to correctly predict inherited cases. (E) Cases from the cluster A of the USP data set that were misclassified by the
model. Cases labeled as acquired or inherited that were correctly predicted by the model are represented with purple circles. Cases labeled as acquired that were predicted
as inherited, or labeled as inherited and predicted as acquired are indicated with pink triangles. (F) Prediction results of VUS cases. Results are shown according to clinical
diagnosis and mutated genes observed in VUS cases. Germ line VUS were mostly found in TERT (n = 10), SAMD9 or SAMD9L (n = 10), RTEL1 (n = 8), SBF2 (n = 6), and GATA2
(n = 3). Cases predicted as inherited or acquired by the model are represented by red and blue circles, respectively. Of note, SAMD9/L variants are often VUSs because in
silico tools do not predict the pathogenicity of gain-of-function variants and many cases are de novo without previous family history. ALC, absolute lymphocyte count; ANC,
absolute neutrophil count; BM, bone marrow; Hb, hemoglobin level (g/dL); MCV, mean corpuscular volume.

Table 2. Misclassified cases of cluster A from the validation cohort (n = 12 of 127; 9%): 7% (6 of 81) of acquired and
20% (6 of 29) of inherited cases

Label Prediction Sex Age
Clinical

diagnosis

Pathogenic
germ line
variant

(zygosity)
TL

(flow-FISH) Patient clinical features

USP021 Acquired Inherited M 9 DC None* <First DC clinical triad.

USP035 Acquired Inherited F 18 DC None* <First DC clinical triad since
childhood. Sister and cousin
with Hodgkin lymphoma.

USP036 Acquired Inherited M 11 MAA None* <10th Chronic pancytopenia and
family history of leukemia.

USP045 Acquired Inherited F 7 MAA None* Normal ALL and BMF with café-au-lait
spots after chemotherapy.
Despite suspicion of FA, DEB
in peripheral blood was
negative and no variant in
FANC-related genes was
identified. Patients’ uncle
also died from ALL.

USP051 Acquired Inherited M 3 SAA None* <First No family history or classical
signs of IBMFS.

USP159 Acquired Inherited F 3 DC None <First DC clinical triad.

USP022 Inherited Acquired M 20 MAA TERT: c.2154C>A;
p.D718E (het)

<First No family history or signs of
IBMFS. PNH clone of 6%.

USP023 Inherited Acquired F 8 MAA TERT: c.1072C>T;
p.R358W (hom)

<10th Consanguinity but no classical
signs of inherited disease.

USP026 Inherited Acquired F 38 MAA TERT: c.193C>A;
p.P65T (hom)

<10th Pulmonary fibrosis.

USP030 Inherited Acquired F 18 MAA 1TINF2:c.844C>T;
p.R282C (het)

<First History of miscarriage. Son with
DC and same pathogenic
variant in TINF2.

USP065 Inherited Acquired M 24 HypoMDS RUNX1: c.497G>C;
p.R166P (het)

Normal Hypocellular bone marrow.
Brother died of ALL.

USP152 Inherited Acquired F 1 SAA 2MECOM:
c.2518delC;
p.E841KfsTer3
(het)

Normal No family history or classical
signs of IBMFS.

ALL, acute lymphocytic leukemia; F, female; FISH, fluorescence in situ hybridization; het, heterozygous; hom, homozygous; HypoMDS, hypoplastic MDS; M, male; <First, TL below the first
percentile of age-matched controls; <10th, TL below the tenth percentile of age-matched controls.

*These patients were not screened for variants in MECOM, SAMD9, and SAMD9L because these genes were included in the panel after these samples were sequenced.1 Although the
TINF2 R282C variant is commonly associated with DC of early onset, USP030 did not have the clinical triad or any classical sign of IBMFS other than a past history of multiple miscarriages.
Telomere disease was later suspected after her son was diagnosed with DC at age of 2 years; he was later found to have the same TINF2 pathogenic variant.2 MECOM isoform
(NM_004991.4).
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measured by a Clinical Laboratory Improvement Amendment–
certified quantitative polymerase chain reaction assay or in-
house Southern blotting; TL measurement technique
appeared to have no effect on the model’s predictive value
based on the model’s overall performance and interpretation.
Regardless of the methodology, obtaining TL measurement
may be as challenging as genetic testing in low-resource cen-
ters. Therefore, we attempted to develop an alternative algo-
rithm without TL data, but the model underperformed for
prediction of inherited cases, especially TBDs without classical
signs of DC. Although the overall accuracy of the model without
TL was 80%, the specificity was 82% and the sensitivity was only
55%. Nevertheless, clinical variables along with age, sex, higher
hemoglobin levels, mean corpuscular volume, reticulocytes,
and platelet counts remained top predictors (supplemental
Figure 4).

As the presence of a PNH clone is considered an exclusion
criterion for the diagnosis of IBMFSs,25,26 in practice, testing for
PNH is usually not requested in patients suspected of having an
IBMFS, which explains the high rate of missing values for PNH
testing in our cohorts. Nevertheless, the presence of a PNH
clone strongly correlated with an immune AA pathophysiology.
In a subanalysis among patients tested for PNH, 24% (83 of 339)
of patients labeled as acquired in both cohorts had a PNH clone
>1% either in neutrophils or red blood cells.

In contrast, only 2 of 151 patients labeled as inherited had PNH
clones. The first patient predicted as having an acquired AA by
the model had the TERT c.2154C>A p.D718E variant, very short
TL, and an uncle with pulmonary fibrosis, but a PNH clone of 6%
at the age of 20 years (USP030; Table 2). This TERT variant was
absent in the general population, predicted to be deleterious in
silico, located at the same codon as another variant that had
been reported to be pathogenic by reducing telomerase
activity to 44%.27 The second patient, labeled and predicted to
have an inherited disease by our model, had a DDX41 (c.1016
G>A, p.R339H) variant and a PNH clone of 3% at the age of
12 years (NIH161). This variant was seen in <8 alleles in
gnomAD, predicted deleterious in silico, located at the same
codon as another variant reported as pathogenic in Clinvar
(c.1016G>T, p.R339L), and segregated with disease in the
patient’s family. The proband had mild thrombocytopenia but
not MDS until the patient lost follow-up; his mother had the
same variant and a history of non-Hodgkin lymphoma and
melanoma; and his siblings were not tested but had a history of
easy bruising and nose bleeding. Nevertheless, because these
2 pathogenic variants were seen in the same context of a PNH,
we cannot state that these variants are truly pathogenic in the
absence of confirmatory functional assays.
Model applicability in predicting BMF etiology in
patients with VUS
After validating the model, we applied it to predict the etiology
of BMF cases found with VUS from both the NIH and USP
cohorts (n = 51). All VUS cases were assigned to cluster A, and 8
and 43 were predicted to have inherited and acquired IBMFSs,
respectively (Figure 3F). With just 1 exception (case NIH214),
VUS cases predicted as having inherited disease had clinical
features and family histories consistent with IBMFS; patients
with TERT and MECOM variants, but not DKC1 and RTEL1
PREDICTION MODEL OF BONE MARROW FAILURE ETIOLOGY
variants, were considered to likely have an IBMFS based on
clinical phenotype and disease inheritance (Table 3). In contrast,
most of the VUS cases predicted as acquired had no strong
clinical evidence of IBMFSs, but 7 had nonspecific findings,
such as early gray hair, macrocytic anemia, or relatives with
cytopenias. Most VUS cases predicted as acquired had het-
erozygous variants in SAMD9, SAMD9L, SBF2, and RTEL1,
indicating that the interpretation of genetic reports with variants
in these genes should be made cautiously (Figure 3F).

Discussion
In this study, we developed a 2-step data-driven clustering and
classification model that reproduced the expert clinicians’
decision-making process for investigating the AA etiology in
adults, the most representative phenotype of cluster A. Our
model accurately predicted >92% of cases labeled as likely
having acquired AA (specificity), with performance approaching
>98% when accounting for 5 patients labeled as acquired
because of negative genetic testing who were mispredicted by
the model; clinically, they were suspected of IBMFSs based on
their phenotype. Therefore, specificity of the model should be
interpreted with caution as it also reflects a percentage of cases
that would benefit from further screening by whole-exome or
genome sequencing for unveiling potential uncharacterized
mutations (Tables 2 and 3).

In centers specialized in BMF, genetic testing has increasingly
been incorporated into standard clinical evaluation. With
broader access to next-generation sequencing, the list of
genetic loci likely to be involved in IBMFSs and useful in the
identification of pathogenic germ line variation is approaching
100 genes. However, genetic testing laboratories lack detailed
data from patients with BMF to facilitate variant curation, and
functional assays of rare variants are usually not available. In the
United States, a high-resource country, the turnaround time for
a genomic panel is 6 to 8 weeks, and in developing countries,
can approach 12 weeks or longer. By training a predictive
model based on routine clinical and laboratory variables, we
have created a practical tool that can guide the decision to use
expensive genomic assays and expedite initial treatment for
hematologists nonspecialized in BMF or with limited resources.

The current lack of prediction algorithms for BMF can be
explained by the challenge of data collection; BMF cases are
rare and scattered across the world in specialized centers. Our
study is limited by the relatively small sample size (although
large for BMF) because machine-learning algorithms require a
large number of exemplars in a training cohort to accurately
identify patterns associated with dichotomous end
points.11,13,28 Notably, a machine-learning model trained with
>8000 cases underperformed for diseases seen in <10 cases
(prevalence below 1/800).14 In our study, we overcame these
limitations through a collaborative effort that gathered
comprehensive clinical data of >500 patients from different
institutions. In addition, we validated the generalizability of the
model in a completely independent cohort from a resource-
limited country, suggesting that our model will be useful in
low-resource centers to prioritize patients who would benefit
from genetic testing or who undergo immunosuppressive
therapy without awaiting genetic test results, recapitulating the
clinical practice of hematologists specialized in BMF. This is
27 APRIL 2023 | VOLUME 141, NUMBER 17 2109



Table 3. Cases with VUS that were predicted as inherited by the algorithm (n = 8 of 51)

ID Cluster Sex Age Clinical diagnosis Zygosity Germ line variant
TL

(flow-FISH) Patient clinical features Decision making

NIH024 1 F 10 MAA X-linked DKC1; c.915+10G>A <First Dystrophic nails and abnormal lung testing.
Maternal grandfather with
thrombocytopenia, pulmonary fibrosis,
and early hair graying. Mother with early
hair graying.

Variant’s pathogenicity needs
to be confirmed with
functional assays. Extended
screening with WES/WGS is
also recommended.

NIH214 1 M 8 MAA Het TERT c.1324G>A;
p.Asp442Asn

<First No family history or signs of inherited
disease.

The TERT variant is likely the
cause of patient’s disease.

NIH258 1 M 17 Isolated
thrombocytopenia

Het RTEL1: c.2507C>G;
p.Pro836Arg

<First Thrombocytopenia since age 11,
development delay, lymphopenia, short
tongue frenulum, syndactyly of the second
and third digit right foot, microcephaly,
shallow forehead, short stature,
micrognathia, and almond shaped eyes.
Also with splenomegaly, pulmonary
obstructive disease, and atrioventricular
septal defect repaired as infant. Cousins
with thrombocytopenia and enlarged
spleen, improved after splenectomy.

Patient’s phenotype is not
consistent with an AD
telomere disease. This variant
is likely benign. Extended
screening with WES/WGS is
recommended

NIH259 1 M 69 MAA Het MECOM: c.2720A>G;
p.Asn907Ser

<First Long-standing thrombocytopenia and
history of non-Hodgkin lymphoma. Both
father and 2 sons with thrombocytopenia.

TheMECOM variant is likely the
cause of patient’s disease.
Screening of affected family
members can confirm
variant’s pathogenicity.

NIH326 1 M 32 MAA Het TERT: c.383C>T;
p.T128I

<First With splenomegaly. Cousin with
thrombocytopenia and uncle died of
cirrhosis at age of 60.

The TERT variant is likely the
cause of patient’s disease.

NCI
456-1

2 F 5 Isolated neutropenia Het TERT: c.3158G>A;
p.Gly1053Glu

<First Cytopenias at age of 2, multiple warts, and
mild nail dystrophy.

The TERT variant is likely the
cause of patient’s disease.

NIH324 2 M 48 Isolated anemia Het TERT; c.2786 C>T;
p.P929L

<First Cytopenias since age 18, hepatopulmonary
syndrome with s/p liver transplant, and
interstitial pneumonitis. Father died of
cirrhosis at age of 52 and brother had AA
at age of 14.

The TERT variant is likely the
cause of patient’s disease.

USP063 2 M 1 Isolated neutropenia Biallelic USB1 c.477A>C;
p.Q159H/ c.344G>A;
p.R115K

Normal Microcytic anemia, and no megakaryocytes
and erythroid precursors in bone marrow
biopsy. No skin alterations and normal IgG
and IgM, but low IgA. Strong family history
of immunodeficiency; 3 brothers died
months after birth due to severe
immunodeficiency.

Patient’s family history is not
consistent with an AR
disease, though disease
possible. Extended
screening with WES/WGS is
recommended

AD, autosomal dominant; AR, autosomal recessive; Ig, immunoglobulin; WES, whole-exome sequencing; WGS, whole-genome sequencing.
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Figure 4. Two-step clustering and classification model for
decision making in BMF. In the first step of the model,
K-means clustering grouped cases into clusters A and B,
which correlated with clinical diagnosis. Cluster A was
enriched for cases of FA and DC, patients who had AA at
young ages, and cases with AA and single or bilineage
cytopenias over a broad spectrum of age but most frequently
20 and 50 years old. In contrast, cluster B was enriched for
classical inherited BMF, including early disease onset DBA
and SDS, and cases of FA and DC in middle age. In the
second step, a classification model specific to cluster A was
developed for binary prediction of cases as acquired and
inherited. The cluster A–specific algorithm accurately pre-
dicted the BMF etiology in 79% of cases with IBMFS (model
sensitivity) and 92% of cases with likely immune BMF (speci-
ficity) when TL data were available. The model lost accuracy
without TL, a top predictive factor. However, in the absence of
TL data, IBMFSs were rarely seen in adults with SAA and no
family history or a phenotype suggestive of inherited disease;
presence of PNH clone >1% within this group had a specificity
of 100% for acquired AA. yo, years old.
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particularly important in patients with very low neutrophil
counts in whom outcomes are dependent on rapid treatment.

Our model is useful for distinguishing the AA etiology when the
chromosome breakage testing is negative and classical IBMFS
is not suspected. In cluster A, most patients had AA; TBDs and
congenital amegakaryocytic thrombocytopenias were the most
challenging inherited diseases to identify without genetic
testing or TL measurement. The model performed better for
detecting patients with acquired rather than inherited AA.
Because no specific diagnostic test is currently available for
immune AA, our predictive model should be a valuable clinical
tool for these often extremely ill patients. An explanation for
underperformance in the identification of IBMFSs is that this
group is highly heterogeneous, and many cases did not have
clear genotype-phenotype associations, characterized only by
genetic testing; in our study, 20% of IBMFS cases confirmed by
genetic testing were mispredicted.1,29 Instead, by using vari-
ables highly predictive of IBMFSs and blood count thresholds,
the algorithm identified a more homogeneous group of
patients likely to have immune AA.

Unsurprisingly, TL was a key variable for model accuracy; TBDs
were enriched in cluster A because they often present as AA. In
practice, our data show that lack of both genetic testing and TL
measurement lead to misdiagnosis in ~45% of patients with
IBMFSs. Our model highlights that TL testing can be prefer-
entially incorporated into clinical practice, compared with
genomic testing, due to its much lower cost and its importance
PREDICTION MODEL OF BONE MARROW FAILURE ETIOLOGY
for prediction; accuracy of IBMFS diagnosis increased from 55%
to 79% when TL was available. For centers in which TL mea-
surement is not available, the model still guides physicians
toward clinical diagnosis, particularly by identifying patients
likely to have immune AA. We found that adult patients with
SAA (>18 years old with severe pancytopenia) rarely had an
inherited disease without a positive family history and pheno-
type suggestive of an IBMFS, or consanguinity being present;
presence of a PNH clone >1% was a specific marker of immune
disease in these patients. Of importance, the specificity of the
model for immune AA is 90% vs 92%, absent or with TL,
respectively. Therefore, even in the absence of TL, we can
identify patients likely to benefit from immunosuppression
(Figure 4).

To increase access to our model, we have developed a free
online R shiny app for clustering and prediction of the etiology
of BMF cases, incorporating TL (https://dir.nhlbi.nih.gov/
DDxAA). Genetic testing should be considered for patients in
cluster A who are predicted to have inherited disease and also
for patients in cluster B, for whom no specific model was
available, as they were more likely to have an IBMFS in com-
parison with patients in cluster A (50% vs 30%) (Table 1;
Figure 4). Ideally, a new model should be trained and validated
with an increased number of cases to accurately predict the
BMF etiology of cases from cluster B, enriched for SDS, DBA,
and FA. However, most of these cases will be diagnosed on
routine chromosome breakage testing or based on classical
phenotypes. We also recommend genetic screening in addition
27 APRIL 2023 | VOLUME 141, NUMBER 17 2111
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to chromosome breakage testing for children predicted to have
acquired disease (and often without clinical signs of IBMFS), for
patients with consanguinity in the family, or for patients with
suspicion of MDS and familial predisposition to myeloid
malignancies (all cases in which the model had limited predic-
tive power) (Figure 4).

Our model does not predict the pathogenicity of variants found by
genetic testing. Variants need to be carefully curated according to
evidence-based data on clinical phenotypes, inheritance patterns,
and functional and population data.19 As ongoing work, the
model’s prediction could be validated as additional evidence for
variant curation using traditional criteria, such as the Sherloc/
ACMG criteria (rule PP5).

This machine-learning model is primarily intended for general
hematologists and hematologists in training, not experts in
BMF, having been created in a multi-institutional collaboration
that defined the most important clinical and laboratory data
needed for differential diagnosis of BMF at a patient’s first
screening. The sample size is very large in the context of low
disease prevalence, and the model incorporates clinical data
from different health systems, and geographic and cultural
backgrounds. The study validation cohort was from the USP
BMF clinic, a reference center in a resource-limited country,
whereas the training set was from the NIH, a quaternary care
center with the ability to undertake extensive evaluations. This
approach increases our confidence in the model’s generaliz-
ability, especially its utility in low-resource settings.

Our work, to the best of our knowledge, is the first evidence-
based, data-driven artificial intelligence approach to the diag-
nosis of a group of rare, complex, and highly morbid diseases. It
incorporates both deep clinical and detailed genomics across a
spectrum of rare syndromes, an innovative systems approach. The
model can provide a clinical practice guide for management of
adult patients with AA, aiming for prospective standardization of
data collection and clinical assessment of patients for future
studies. All of the selected 25 clinical and laboratory variables
were critical for accurate prediction, regardless of the degree of
importance (Figure 3A); a comprehensive history, physical exam-
ination, and laboratory evaluation encompassing all organ systems
are critical, and TL testing is encouraged. Adult patients with
inherited AA often had moderate pancytopenia at a younger age
in comparison with patients with immune AA, most of whom are
severely neutropenic. This practical tool is also part of ongoing
research because we will continue accruing to the model in an
effort to increase the number of cases to further refine prediction
of IBMFS cases that were underrepresented in the current cohort,
especially pediatric cases.
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