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TO THE EDITOR:
Ipilimumab plus decitabine for patients with MDS or
AML in posttransplant or transplant-naïve settings
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CTLA-4 blockade has generated long-lasting remissions for
subsets of cancer patients for whom traditional chemotherapies
have failed. We have previously demonstrated clinical activity
with ipilimumab (IPI) monotherapy at a 10 mg/kg dose in the
treatment of relapse after allogeneic hematopoietic stem cell
transplantation (HSCT) (including leukemia cutis) without
excessive graft-versus-host disease (GVHD) induction.1,2

Epigenetic modifiers enhance expression of CTLA-4, CD80,
and tumor antigen expression on leukemia cells and can induce
cytotoxic CD8+ T-cell activation.3-5 We set out to determine if
combining decitabine (DEC) with IPI could augment
responses without causing unacceptable immune toxicity.
Here, we report the results of a multicenter phase 1 trial with
combination IPI + DEC in patients with relapsed, refractory
(R/R), or secondary myelodysplastic syndromes (MDS)/acute
myeloid leukemia (AML) in both the post-HSCT and trans-
plant-naïve settings (NCT02890329; CTEP 10026).

This phase 1 trial used a 3 + 3 dose-escalation design and was
approved by central and local institutional review boards. All
patients provided written informed consent. Eligible patients
with morphologic relapse, refractory, or untreated secondary
MDS/AML were stratified by prior transplant status into post-
HSCT (arm A) or transplant-naïve (arm B) arms. Both arms
received a lead-in priming cycle of DEC (cycle 0), and in the
absence of GVHD or disease progression, patients received
combination IPI + DEC in 28-day cycles for 1 year
(supplemental Figure 1, available on the Blood website). IV DEC
at 20 mg/m2 was administered on days 1 through 5. The 3 IV IPI
dose-escalation cohorts included 3, 5, and 10 mg/kg on day 1
of each “ipilimumab induction” cycle (cycles 1-4) and every
other “ipilimumab maintenance” cycle (cycles 5-12). IPI infusion
was withheld for immune-related adverse events (irAEs) and
resumed only if the irAE resolved within 8 weeks. Dose-limiting
toxicities (DLTs) were assessed for 8 weeks after the
first IPI dose and defined as being any of the following:
treatment-related death; ≥grade 3 acute GVHD; ≥grade 3
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nonhematologic toxicity; or grade 4 hematologic toxicity
without recovery. Overall response rate (ORR) included com-
plete remission (CR) and CR with incomplete count recovery for
AML, and CR and marrow CR with or without hematologic
improvement for MDS.6,7

From September 2017 to August 2021, a total of 54 patients
enrolled, including 6 who withdrew (n = 3) or progressed (n = 3)
during cycle 0. Ultimately, 48 patients received combination
IPI + DEC, including 25 post-HSCT patients (23 AML and 2
MDS; all R/R) and 23 transplant-naïve patients (15 AML and 8
MDS; including 20 R/R and 3 previously untreated), and are
included in the following safety and efficacy analyses
(supplemental Figure 2; supplemental Tables 1-3).

The most frequent grade ≥3 treatment-emergent adverse
events, in the post-HSCT and transplant-naïve arms, respec-
tively, were neutropenia, 32% and 48%; thrombocytopenia, 28%
and 48%; and febrile neutropenia, 36% and 61% (supplemental
Table 4A). The overall irAE rate was 44% (11 of 25) in the post-
HSCT and 48% (11 of 23) in the transplant-naïve settings
(Figure 1A; supplemental Tables 4B-C). Most irAEs occurred at
an IPI dose of 10 mg/kg (7 of 11 [63%] post-HSCT patients; 9 of
11 [82%] transplant-naïve patients) and were less frequent at
lower doses (n = 2 per arm at an IPI dose of 3 mg/kg; n = 2 in the
post-HSCT arm at an IPI dose of 5 mg/kg). Steroid-responsive
chronic GVHD developed at each tested IPI dose level in the
post-HSCT arm, including 1 severe and 3 moderate cases. In the
transplant-naïve arm, the most common irAEs were dermatitis
(n = 6) and colitis (n = 3). A median of 3 IPI doses (range: 1-8) and
4 treatment cycles were received in both arms (range: 1-13). No
DLTs were observed at IPI dose levels of 3 and 5 mg/kg. Three
DLTs occurred at an IPI dose of 10 mg/kg, including 2 toxic
deaths in post-HSCT patients receiving immune suppression (1
case of late-onset grade 3 acute GVHD of the colon/liver, and 1
case of pneumonitis), and 1 case of steroid-refractory immune-
mediated grade 4 thrombocytopenia without bleeding in a
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Figure 1. Safety and efficacy of IPI plus DEC therapy in MDS/AML patients who are posttransplant or transplant-naïve. (A) Frequency of all irAEs, regardless of grade
and steroid use (topical or systemic) among patients treated with IPI + DEC. IrAEs shown in orange with stripes are indicated for cases in which GVHD-specific findings were
not clearly detected based on available local clinical pathologic assessment. In the post-HSCT group, 11 of 25 patients had observed irAEs, including 7 of 25 with GVHD
(including 2 of 25 with severe GVHD: 1 with severe chronic and 1 with grade 3 acute). In the transplant-naïve group, 11 of 23 patients had reported irAEs. (B) Comparison of
overall response rate (ORR) by treatment arm, carried out using Fisher’s exact test. Arm A (post-HSCT) responders included the following: 4 with CR and 1 with marrow CR
(mCR) without hematologic improvement (HI). Arm B (transplant-naïve) responders included the following: 5 with CR, 2 with CR with incomplete blood count recovery (CRi), 3
with mCR with HI (mCR + HI), and 2 with mCR without HI. (C-D) Kaplan-Meier overall survival and progression-free survival curves in patients who received IPI + DEC, separated
by arms: post-HSCT (arm A, blue; n = 25) and transplant-naïve (arm B, red; n = 23). MLFS, morphologic leukemia-free state; PD, progressive disease; SD, stable disease.
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transplant-naïve patient. In total, 31 patients were treated at the
IPI dose level of 10 mg/kg, including 15 post-HSCT and 16
transplant-naïve patients. In combination with DEC, the maximum
tolerated dose/recommended phase 2 dose (MTD/RP2D) of IPI
was determined to be 10 mg/kg for both arms.

Objective responses were achieved more frequently in the
transplant-naïve group, which had a 52% ORR (n = 12 of 23),
compared with the post-HSCT group, which had a 20% ORR
(n = 5 of 25; P = .034; Figure 1B). Subsequently, 1 transplant-
naïve patient was bridged to HSCT, and 2 post-HSCT patients
underwent a second transplant. Although responses occurred
at each IPI dose level, most occurred at 10 mg/kg (3 of
11 patients at 3 mg/kg, 2 of 6 patients at 5 mg/kg, and 12 of
31 patients at 10 mg/kg). Of the 6 cases of myeloid sarcoma
without morphologic marrow involvement, 3 achieved CR. We
identified 2 historical cohorts (2016-2022), including 46 patients
with post-HSCT morphologic relapse and 44 with previously
untreated AML, who were treated with single-agent DEC at our
institution. Although no difference was detected in the post-
HSCT relapse setting (P = .5), a higher response rate was
LETTERS TO BLOOD
observed with IPI + DEC compared to single-agent DEC in the
transplant-naïve setting (P = .019).

The median follow-up for patients in the study was 9.7 months
(range: 4.4-35.4) in the post-HSCT arm, and 14.3 months
(range: 5.1-25.0) in the transplant-naïve arm. No statistical dif-
ference occurred in overall survival (P = .38) or progression-free
survival (P = .36) between the transplant-naïve and the post-
HSCT arms (Figure 1C-D). Univariate analyses did not reveal
any significant association of response with history of
prior GVHD, presence of a TP53 mutation, blast burden,
disease histology (AML vs MDS), or prior hypomethylating
agent–therapy exposure.

The median duration of response was 4.46 months (range:
1.0-40.7) and 6.14 months (range: 1.2-16.9) in patients with and
without prior HSCT, respectively (supplemental Figure 3).
Durable remission >1 year with concomitant irAE development
occurred in 3 transplant-naïve patients treated at an IPI dose of
10 mg/kg and 1 post-HSCT patient (number 1006) treated at an
IPI dose of 3 mg/kg. Patient 1006 achieved CR and developed
13 APRIL 2023 | VOLUME 141, NUMBER 15 1885
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Figure 2. Longitudinal evaluation of local and systemic immune responses after IPI plus DEC therapy. (A) Kaplan-Meier overall survival curves in the post-HSCT (left
panel) and the transplant-naïve (right panel) arms, separated by those with irAEs requiring systemic steroids (orange) and those without any irAE (purple). Two post-HSCT
patients who required only topical steroids were not included in this analysis. (B) Multiplex immunofluorescence of bone marrow biopsies obtained serially from patients
before and after combination DEC + IPI therapy. Immunohistochemical staining staining density was semi-quantified by Inform software (Akoya Biosciences, Marlborough,
MA). The left panel shows serial multiplex immunofluorescence images with CD3 (purple), CD8 (white), and GZMB (green) immunohistochemical staining from patient 1002
(who achieved CR). Arrows indicate clusters of CD3+ CD8+ GZMB+ cells observed after 4 cycles of IPI + DEC treatment. The right panel shows dynamic changes in CD3+ T-cell
subsets among 16 available paired samples before and after IPI + DEC treatment. Statistical testing was performed using the Wilcoxon signed-rank test for paired samples and
the Wilcoxon rank-sum test for unpaired samples. (C) Serial flow cytometry-based immune phenotyping was performed using 10 paired blood samples collected at screening,
after DEC lead-in, and after IPI + DEC combination therapy at the RP2D (IPI 10 mg/kg). The left panel shows a uniform manifold approximation and projection (UMAP) plot
with cells colored according to 8 peripheral blood mononuclear cell populations obtained from FlowSOM (Bioconductor). Generated UMAPs were stratified by each
timepoint (T0, T1, and T2). Based on unsupervised cluster analysis of immune cell types and checkpoint expression, accumulations of ICOS+ CD4+ T cells were observed
(dashed line). The right panel shows the proportion of ICOS-positive cells in CD4+ T cells. (D) Comparison of the proportion of CD4+ Treg cells as a subset of total CD3+ T cells
was performed. Box plots indicate median, quartile 1 (Q1), and Q3, and minimum (min) and maximum (max). P values were determined with the 2-sided, paired t-test. T0,
screening; T1, end of lead-in DEC; T2, end of combination IPI + DEC cycle 1; and T3, end of combination IPI + DEC cycle 2.
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chronic GVHD after one IPI + DEC cycle and continues to
maintain a durable CR >3.5 years later. We thus asked if irAE
development was associated with outcome (supplemental
Figure 4). No differences were observed in median overall
survival in either post-HSCT or transplant-naïve patients based
on irAE occurrence (Figure 2A). However, among the trans-
plant-naïve patients, 1-year overall survival was significantly
longer in those with irAE development than in those without
(72.7% vs 33.3%; P = .039), suggesting that IPI + DEC–induced
immune activation was associated with survival benefit. How-
ever, to significantly lengthen progression-free survival among
transplant-naïve patients, subsequent consolidation with trans-
plant is still necessary when possible.

Despite striking examples of individual responders with
increased cytotoxic T-cell infiltrate (CD3+CD8+granzyme B+)
using multiplexed immunofluorescence staining on serial bone
marrow biopsies and globally increased CD3+ density after IPI +
DEC administration, no distinct pattern of local T-cell infiltration
pre- or posttreatment was associated with response, high-
lighting underlying tumor and immune heterogeneity
(Figure 2B; supplemental Figures 5 and 6; supplemental
Tables 5 and 6). We further evaluated systemic effects of
treatment on circulating T-cell subsets (supplemental Table 7;
supplemental Figures 7-9). Following IPI infusion, we observed
upregulation of the inducible costimulator (ICOS) molecule on
CD4+ T cells (mean 13.3% vs 25.7%, P = .021) and on CD8+

T cells (mean 3.5% vs 7%, P = .011), both independent of
clinical response (Figure 2C; supplemental Figure 9D).

Our prior IPI monotherapy study demonstrated that responses
were associated with decreased activation of regulatory T cells.1

Here, we detected a global increase in regulatory T cells
following IPI + DEC treatment (mean 4.2% vs 10.8%; P = .04;
Figure 2D), which has been described previously after
hypomethylating-agent maintenance treatment in the HSCT
setting8-10 and may have been induced as a compensatory
mechanism to immune activation.

In summary, combination IPI + DEC treatment has an accept-
able safety profile and has meaningful clinical activity in patients
with R/R MDS/AML that does not appear to require T cell–
mediated alloreactivity. IPI + DEC treatment may serve as a
less-intensive bridge to transplant among potential transplant
candidates. Future studies are warranted to identify rational IPI-
based treatment strategies to generate prolonged responses
without severe immune toxicity.
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Predictive value of staging PET/CT to detect bone
marrow involvement and early outcomes in marginal
zone lymphoma
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Bone marrow (BM) involvement impacts stage and prognosis in
lymphoma, remaining an important factor in risk-stratification
scores.1,2 Positron emission tomography (PET)/computed
tomography (CT) has demonstrated high sensitivity to detect
focal skeletal lesions compatible with BM involvement in
patients with Hodgkin lymphoma (HL) and diffuse large B-cell
lymphoma (DLBCL), obviating confirmatory biopsies in most
patients.3-5 PET/CT is commonly integrated in the staging
workup and assessment of treatment response across different
lymphomas, though the ability of fluorodeoxyglucose (FDG)
avidity to detect marginal zone lymphoma (MZL) remains
questionable.6-8 Furthermore, whether PET/CT accurately
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