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Analysis of the T-cell repertoire and transcriptome
identifies mechanisms of regulatory T-cell suppression
of GVHD
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KEY PO INT S

• Regulatory T cells
modulate Tcon
transcriptome during
GVHD suppression by
affecting several
nonredundant
pathways.

• Regulatory T cells
undergo activation and
clonal expansion during
GVHD suppression.
22
CD4+FOXP3+ regulatory T cells (Tregs) have demonstrated efficacy in the prevention and
treatment of graft-versus-host disease (GVHD). Preclinical and clinical studies indicate
that Tregs are able to protect from GVHD without interfering with the graft-versus-tumor
(GVT) effect of hematopoietic cell transplantation (HCT), although the underlying
molecular mechanisms are largely unknown. To elucidate Treg suppressive function dur-
ing in vivo suppression of acute GVHD, we performed paired T-cell receptor (TCRα and
ΤCRβ genes) repertoire sequencing and RNA sequencing analysis on conventional T cells
(Tcons) and Tregs before and after transplantation in a major histocompatibility complex
–mismatched mouse model of HCT. We show that both Tregs and Tcons underwent clonal
restriction, and Tregs did not interfere with the activation of alloreactive Tcon clones and
the breadth of their TCR repertoire but markedly suppressed their expansion. Tran-
scriptomic analysis revealed that Tregs predominantly affected the transcriptome of CD4
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Tcons and, to a lesser extent, that of CD8 Tcons, thus modulating the transcription of genes encoding pro- and anti-
inflammatory molecules as well as enzymes involved in metabolic processes, inducing a switch from glycolysis to
oxidative phosphorylation. Finally, Tregs did not interfere with the induction of gene sets involved in the GVT effect.
Our results shed light onto the mechanisms of acute GVHD suppression by Tregs and will support the clinical
translation of this immunoregulatory approach.
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Introduction

Allogeneic hematopoietic cell transplantation (HCT) is a well-
established and potentially curative therapy for a broad range of
hematologic malignancies due to the graft-versus-tumor (GVT)
effect. Unfortunately, allogeneic HCT is still associated with
significant morbidity and mortality related to cancer relapse and
transplantation complications, namely graft-versus-host disease
(GVHD). The immunological mechanism responsible for GVHD,
that is donor T-cell alloreactivity toward host antigens, is also
responsible for the beneficial GVT effect of allogeneic HCT.1

Because of the interconnection between these 2 phenomena,
none of the currently used strategies for GVHD prevention and
treatment can efficiently target GVHD without affecting GVT.
Immunoregulatory cellular therapies are a promising approach
for GVHD prevention and treatment.2,3 We, and others, have
previously shown in preclinical murine models that
CD4+FOXP3+ regulatory T cells (Tregs) are able to protect from
GVHD without interfering with the GVT effect of HCT.4-6 There
are ongoing efforts to translate the use of Treg adoptive
transfer for GVHD prevention7-10 and treatment11,12 to clinical
settings with promising results.

The precise cellular and molecular mechanisms underlying
GVHD suppression by Tregs are not completely understood.
Two nonexclusive and potentially complementary models exist:
Tregs could quantitatively affect T-cell responses by limiting the
activation and expansion of alloreactive T-cell clones and/or
6 APRIL 2023 | VOLUME 141, NUMBER 14 1755
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might qualitatively modulate T-cell function by selectively
interfering with pathways responsible for GVHD but dispens-
able for GVT. To gain further insights in support of one or the
other of these models, we performed paired T-cell receptor
(TCR) and RNA sequencing analysis on Tcons and Tregs before
and after transplantation using a major histocompatibility
complex–mismatched mouse model for acute GVHD.

Material and methods
Acute GVHD murine model
Donor CD4+ and CD8+ conventional T cells (Tcons) were
separately isolated from splenocytes harvested from CD45.1
Thy1.1 luc+ C57Bl/6 mice via negative enrichment (STEMCELL
Technologies). T-cell–depleted bone marrow (TCD-BM) cells
were prepared from CD45.1 Thy1.2 C57Bl/6 mice by first
crushing bones, followed by T-cell depletion using CD4 and
CD8 MicroBeads (Miltenyi Biotec). CD45.2 Thy1.2 FoxP3/GFP+

CD4+ Tregs from CD8/CD19-depleted single-cell suspensions
from the spleens and lymph nodes of CD45.2 Thy1.2
FoxP3GFP+ C57Bl/6 mice were sorted using a fluorescence-
activated cell sorter (FACS), BD FACS Aria II. CD45.2 Thy1.2
BALB/c mice were lethally irradiated (8.8 Gy) and received
transplantation with 5 × 106 TCD-BM cells from either CD45.1
Thy1.2 C57Bl/6 mice alone or together with CD45.2 Thy1.2
C57Bl/6 FoxP3/GFP+ Tregs (1 × 106) on day 0. On day 2,
CD45.1+ Thy1.1+ C57Bl/6 Tcons (1 × 106; CD4:CD8 ratio, 2:1)
were injected into the mice to induce GVHD. Irradiated (11 Gy)
syngeneic C57Bl/6 recipients receiving C57Bl/6 CD45.1+

Thy1.2+ TCD-BM and CD45.1+ Thy1.1+ Tcons were used as
controls. Mice were monitored daily, and body weight and
GVHD score were assessed weekly.

Cell isolation
Recipient mice were euthanized 8 days after HCT (6 days after
Tcon adoptive transfer), and single-cell suspensions were
obtained from spleens and lymph nodes. Cells from 3 animals
per group were pooled to obtain 2 biological replicates in each
of the 2 independent experiments. After Fc block (Miltenyi),
cells were incubated with the following antibodies (BioLegend):
CD4 (BV421), CD8 (BV605), Thy1.1 (phycoerythrin [PE]), CD45.1
(PE-Cy7), CD45.2 (allophycocyanin [APC]), H-2kd (biotin), and
CD19 (biotin) followed by streptavidin APC-Fire. Donor-derived
Thy1.1+ CD45.1+ CD4 and CD8 Tcons as well as Thy1.2+

CD45.2+ CD4+ FoxP3/GFP+ Tregs were FACS-sorted. Tcons
and Tregs either taken from the donor aliquot before injection
or recovered at day 8 after HCT were frozen in TRIzol reagent
(Thermo Fisher Scientific) and conserved at −80◦C until analysis.

Supplemental methods
Animals used in the study as well as materials and methods
used for bioluminescent imaging, genomics analyses, histo-
pathological analyses, and statistical analyses are detailed in the
supplemental Methods, available on the Blood website.

Results
Treg treatment inhibited Tcon expansion and
target tissue infiltration without affecting their
TCR repertoire breadth
We used a well-established mouse model of GVHD, in which
Tregs were transferred at time of HCT, 2 days before the
1756 6 APRIL 2023 | VOLUME 141, NUMBER 14
adoptive transfer of Tcons.13 As previously described, mice
treated with Tregs before Tcon transfer showed significantly
improved survival and GVHD scores compared with mice
receiving Tcons alone (supplemental Figure 1A). The use of
Tcons isolated from luciferase+ donors revealed that this effect
was associated with a significant reduction of Tcon expansion at
day 8 after transplantation (day 6 after Tcon administration;
supplemental Figure 1B-C). At this time point, previously
reported to be the peak of Tcon expansion,14 Treg treatment
also affected the localization of luc+ Tcons. The Tcon-derived
signal was mainly restricted to secondary lymphoid organs
(SLO) (spleen and lymph nodes) and reduced in the abdominal
region for mice receiving Tregs compared with untreated mice
with GVHD (supplemental Figure 1B).

Based on these results, we first hypothesized that Tregs would
inhibit the expansion of alloreactive clones during GVHD by
controlling the TCR repertoire breadth, similar to what has been
previously shown during antiviral responses.15 To test this
hypothesis, at day 8 after HCT, we reisolated donor-derived
CD45.1+ Thy 1.1+ CD4 and CD8 Tcons previously adminis-
tered to syngeneic CD45.2+ C57Bl/6 mice or allogeneic
CD45.2+ BALB/c mice in the presence or absence of CD45.2+

FOXP3GFP+ Tregs (Figure 1A). As expected, the analysis of the
TCR repertoire based on the sequencing of the TCRα and TCRβ
chains revealed a significant clonal restriction of both CD4
(Figure 1B, left panel) and CD8 (Figure 1C, left panel) Tcons
recovered from allogeneic HCT recipients compared with Tcons
from syngeneic HCT recipients. Importantly, such clonal
restriction in allogeneic HCT recipients was not inhibited by
Treg treatment (Figure 1B-C, left panels). Clonal overlap
between Tcons collected at day 8 and those collected before
injection was reduced in allogeneic HCT recipients compared
with syngeneic controls (Figure 1B-C, middle panels) and Tregs
did not inhibit such reduction in clonal overlap (Figure 1B-C,
right panels). Collectively, our data indicate that Tregs affected
the expansion and the localization of Tcons after HCT without
affecting the TCR repertoire breadth of Tcons and the initial
activation of alloreactive T-cell clones during GVHD.
Treg treatment affected CD4 and to a lesser
extent CD8 Tcon transcriptome during GVHD
Next, we evaluated the impact of Treg treatment on CD4 and
CD8 Tcons at the transcriptomic level. Principal component (PC)
analysis of the top 1000 most differentially expressed genes
across all samples revealed that 68% of the variance was
explained in PC1, which clearly segregated CD4 and CD8
Tcons recovered at day 8 from allogeneic recipients from cells
before injection or recovered from syngeneic recipients
(Figure 2A), revealing a dominant effect of the allogeneic
transplant procedure on the different T-cell populations. PC1
was mainly driven by naive T-cell genes (Ccr7, Sell, Il6ra, Il6st,
Foxo1) that were progressively downregulated along PC1,
pointing to T-cell activation/effector differentiation as a main
element affected by the transplantation into allogeneic mice
and, to a lesser extent, into syngeneic recipients (Figure 2A).
The impact of Tregs on CD4 and CD8 Tcon transcriptome was
revealed in PC2 (Figure 2A), which contributed to 14.8% and
17.3% of the variance in CD4 and CD8 Tcons, respectively. Treg
treatment mainly affected CD4 Tcon transcriptome (Figure 2A,
left panel), inducing the downregulation of 219 genes and the
LOHMEYER et al
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Figure 1. Tregs did not affect the TCR breadth of Tcons after HCT. (A) Schematic representation of the experimental pipeline. On day 0, Balb/c or C57Bl/6 recipient mice
were lethally irradiated and received transplantation with 5 × 106 CD45.1+ Thy 1.2+ TCD-BMs with or without 1 × 106 Foxp3GFP Tregs from C57Bl6 donors. On day 2, 1 × 106

CD45.1+ Thy1.1+ Tcons from C57Bl/6 donors were injected. GFP+ donor Tregs and CD45.1+ Thy1.1+ CD4 and CD8 donor Tcons before transplantation (day 0 of 2) and
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upregulation of 111 genes (Figure 2B, left panel) compared
with Tcons in the absence of Tregs. In particular, Treg coad-
ministration induced the downregulation of proinflammatory
genes (Il18rap) and of Th1-signature genes (Tbx21, Il12rb1,
Il12rb2) compared with Tcons injected alone. However,
compared with resting cells (day 0) or with cells injected into
syngeneic recipients, Tregs still allowed significant upregulation
of Tbx21, encoding for the Th1-master regulator transcription
factor T-bet (supplemental Figure 2). Tregs promoted the
upregulation of anti-inflammatory genes (Il18bp) and Th2
signature genes (Ccr4, Il4) in CD4 Tcons (Figure 2B left panel;
supplemental Figure 2). Conversely, only a limited impact of
Treg treatment was observed on CD8 Tcons (Figure 2A, right
Figure 1 (continued) isolated on day 8 were used for sequencing analysis. (B-G) Clonalit
after HCT in syngeneic recipients (green box and symbols), allogeneic recipients (blue b
Representative example of overlap of the TCRA and TCRB repertoire in CD4 (C) and CD
(C,F) represent clone frequencies before and after HCT and the number of unique clone
whereas overlapping clones are colored in dark gray. Repertoire overlap in CD4 (D) and C
Jaccard index of similarity. Groups were compared using a nonparametric Mann–Whitn
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panel), with only 19 genes upregulated and 17 genes down-
regulated (Figure 2B, right panel) in Treg-treated CD8 Tcons
compared with those in untreated CD8 Tcons. Collectively,
these results revealed that Tregs did not interfere with the
major transcriptomic changes associated with T-cell activation/
effector differentiation during GVHD but exerted a CD4-
dominant immunomodulatory effect on lineage-specific genes
suppressing Th1 differentiation.

Tregs underwent clonal restriction and activation
during GVHD suppression
Next, we performed the same integrated analysis of the TCR
repertoire and the transcriptome on Tregs during GVHD
y of the TCRA and TCRB repertoire in CD4 (B) and CD8 (E) Tcons recovered at day 8
ox and symbols), and allogeneic recipients receiving Tregs (red box and symbols).
8 (F) Tcons before transplantation and at day 8 after HCT (left panels). Scatter plots
s (dot size). Clones that are only observed at 1 time point are colored in light gray,
D8 (G) Tcons recovered at day 8 after HCT and before injection quantified using the
ey U test and P values are shown.
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suppression. Similar to what we had observed in Tcons, Tregs
underwent clonal restriction during GVHD suppression, as
revealed by a significantly increased TCRα and TCRβ clonality
index at day 8 compared with that before injection (Figure 3A).
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Accordingly, we observed only limited TCR overlap between
day-0 and day-8 Tregs (Figure 3B-C). These results indicated
that during GVHD suppression Tregs underwent clonal restric-
tion to a similar extent as CD4 Tcons (Figure 1B). To assess
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whether Tregs and CD4 Tcons reacted to the same antigens
during GVHD, we subsequently compared the TCR repertoire
of these 2 subpopulations. We observed a small clonal overlap
between Tregs and CD4 Tcons before injection, and this was
further reduced at day 8 after transplantation (Figure 3D-E),
suggesting that Tregs and CD4 Tcons responses during GVHD
engage different cell clonotypes triggered by different epitopes
or antigens. The increased activation state of Tregs during
GVHD suppression was further supported by the transcriptomic
analysis revealing downregulation of genes characterizing naive
Tregs (Sell) and upregulation of several genes involved in the
activation, such as Icos, Tnfrsf4 (encoding the costimulatory
molecule OX40), Ccr2, Klrg1, and Gzmb (Figure 3F). After
transplantation, Tregs preserved the distinct transcriptomic
signature observed before injection (supplemental Figure 3A),
further enhanced by the upregulation of genes involved in Treg
activation and suppressive function (Ccr4, Ccr8, Gata3, Il9r,
Il2ra, Il10, Tnfrsf18, Tnfrsf4, Areg) (supplemental Figure 3B).
Collectively, these data indicate that during GVHD suppression
Tregs undergo activation and clonal restriction similarly to that
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observed in CD4 Tcons, although the analysis of the TCR
repertoire of the 2 populations indicated divergence rather than
similarity between Tregs and CD4 Tcons during GVHD.

Paired transcriptomic analysis of Tregs and Tcons
identified interleukin-10 (IL-10) and IL-35 as
potential mechanisms of GVHD suppression
Tregs use a wide range of mechanisms to suppress immuno-
pathological processes, ranging from the production of immu-
nosuppressive molecules to the metabolic modulation of target
cells.16,17 To deduce the dominant mechanisms of suppression
used by Tregs to control GVHD from transcriptomic data, we
analyzed the transcript expression of suppressive molecules in
Tregs before and after HCT as well as the expression of gene
sets induced by such molecules in Tcons. We did not observe
any differences in Tgfb gene expression between Tregs
obtained before injection (day 0) and Tregs recovered at day 8
after HCT (Figure 4A). Accordingly, gene set enrichment anal-
ysis (GSEA) of transforming growth factor–β–induced genes did
not reveal any differences between Tcons treated or not treated
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with Tregs (Figure 4B). Conversely, Tregs at day 8 after HCT
expressed higher transcript levels of Il10 and Ebi3, encoding for
1 of the 2 subunits constituting IL-35, compared with Tregs
before injection (Figure 4A). Accordingly, GSEA revealed a
significant enrichment of IL-10–induced genes in CD4 Tcons
and IL-35–induced genes in CD4 and CD8 Tcons (Figure 4B).
Finally, the day-8 Tregs displayed a significant upregulation of
the Il2ra gene, encoding the α-chain of the Il-2 receptor
(Figure 4A). In addition to being a constitutively expressed
marker in Tregs that is further upregulated during activation, IL-
2RA is also essential in the IL-2 deprivation of Tcons, an addi-
tional Treg mechanism of suppression.18,19 GSEA for IL-2–
induced genes in Tcons did not reveal any significant difference
between Tcons recovered from mice treated or not treated with
Tregs (Figure 4B). Collectively, our transcriptomic results sup-
port the involvement of IL-10 and IL-35 production by Tregs
and their downstream signaling in Tcons as major mechanisms
of suppression of GVHD by Tregs.

Treg-modulated genes involved in metabolic
pathways favoring oxidative phosphorylation and
suppressing glycolysis in CD4 and CD8 Tcons
To identify additional mechanisms of Treg suppression during
GVHD, we performed GSEA for hallmark gene sets on CD4 and
CD8 Tcons in the presence or absence of Tregs. This analysis
identified the oxidative phosphorylation (OXPHOS) gene set as
the top gene set induced in CD4 Tcons (Figure 5A) and the top
third in CD8 Tcons (Figure 5B). Given the recently discovered
importance of T-cell metabolism in GVHD,20-22 we analyzed in
detail the impact of Tregs on genes involved in the main
metabolic pathways (Figure 5C). Treg treatment significantly
suppressed the transcription of genes involved in glycolytic
processes including Slc2a1, encoding for the glucose receptor
GLUT1, and Pkm, encoding for the key glycolytic enzyme
pyruvate kinase, in both CD4 and CD8 Tcons (Figure 5C).
Conversely, Treg treatment led to a global upregulation of
genes encoding for enzymes involved in OXPHOS (Figure 5C).
We did not observe any significant impact of Tregs on Tcon
transcription of genes involved in fatty acid β-oxidation (FAO) or
the tricarboxylic acid cycle (Figure 5C). Analysis of metabolic
gene sets in Tregs at day 8 after HCT compared with Tregs
before injection revealed an enrichment in both OXPHOS and
glycolysis gene signatures and a trend toward enrichment of
FAO gene signatures (supplemental Figure 4). Collectively, our
results demonstrated that Tregs significantly modulate genes
involved in Tcon metabolism, leading to the downregulation of
genes involved in glycolysis and the upregulation of the genes
responsible for OXPHOS, pointing to a metabolic shift of Tcons
induced by Tregs during GVHD.

Tregs reduced the infiltration of activated T cells
and inflammation in intestinal tissues while
inducing OXPHOS
To assess the impact of Treg treatment in GVHD target organs,
we performed a transcriptomic analysis of colonic tissues har-
vested 8 days after transplantation from mice receiving Tcons in
the presence or absence of Tregs. We detected significantly
reduced Cd3e transcripts in the colon from mice receiving
Tregs compared with mice receiving Tcons alone (Figure 6A).
Similarly, we observed a reduction in transcripts of the Trac,
Trbc1, and Trbc2 genes, encoding TCR subunits (supplemental
ANALYSIS OF TREG SUPPRESSION MECHANISMS OF GVHD
Figure 5A). Immunohistochemistry staining for CD3 of colonic
tissues from mice receiving Tregs confirmed a reduction in
T-cell infiltration compared with tissues from mice receiving
Tcons alone (supplemental Figure 5B-C). We have previously
shown that expression of the T-cell activation markers ICOS and
OX40 is a sensitive parameter for GVHD monitoring.23,24 We
detected reduced transcript levels of both Icos and Tnfrsf4,
encoding ICOS and OX40 respectively, whose expressions
positively correlated with Cd3e expression (Figure 6A).

PC analysis performed for the top 1000 most differentially
expressed genes helped clearly segregate tissues from mice
receiving Tcons and Tregs from mice receiving Tcons alone,
with PC1 explaining 79.4% of the variance (Figure 6B). Differ-
ential gene expression analysis helped identify 106 down-
regulated genes and 54 upregulated genes in the colon of mice
receiving Tregs treatment compared with that of mice receiving
Tcons in the absence of Tregs (supplemental Figure 5D). GSEA
for hallmark gene sets on colonic tissues from mice receiving
Tregs identified the OXPHOS gene set as the top induced gene
set (Figure 6C-D). Conversely, the top hallmark gene signature
suppressed by Tregs was allograft rejection (Figure 6C-D). In
addition, Treg administration was associated with a significant
downregulation of gene signatures involved in the signaling
pathways of several proinflammatory molecules including tumor
necrosis factor-α, interferon gamma, IL-2/STAT5, and IL-6/JAK/
STAT3 (Figure 6C).

Collectively, the transcriptomic analysis of colonic tissues
revealed an impact of Tregs on colon infiltration of activated
Tcons, suppression of tissue inflammation, and induction of
OXPHOS during GVHD.

Treg treatment did not affect the induction of
effector gene sets involved in GVT effect
We, and others, have previously shown that Tregs are capable
of suppressing GVHD without impairing the GVT effect of the
transplantation procedure.5 We therefore hypothesized that
Treg treatment would have minimal, if any, impact on Tcon
transcription of effector molecules involved in the GVT effect.
To test this hypothesis, we compared the transcription of
effector molecules in Tcons recovered at day 8 from allogeneic
mice treated or not treated with Tregs. As shown in Figure 7A,
the addition of Tregs did not inhibit but further increased the
transcription of Ifng, Il2, and Tnf in CD4 Tcons. Accordingly,
Tregs did not prevent the upregulation of gene sets involved in
leukocyte-mediated cytotoxicity after HCT (Figure 7B). Similar
results were observed in CD8 Tcons in which Tregs did not
prevent the upregulation of cytotoxic genes, including Ifng,
Gzmb, and Prf1 (Figure 7C), nor the enrichment of genes
involved in leukocyte-mediated cytotoxicity (Figure 7D).
Collectively, these results demonstrate that Treg treatment did
not interfere with the induction of genes encoding effector
molecules involved in the GVT effect of HCT.
Discussion
In this work, we used integrated TCR repertoire and tran-
scriptomic analysis of murine Tcons and Tregs to gain further
insights into the mechanisms of acute GVHD suppression by
Tregs. Our results indicate that Treg treatment did not interfere
6 APRIL 2023 | VOLUME 141, NUMBER 14 1761
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Figure 5. Treg-modulated genes regulate metabolic patterns in CD4 and CD8 Tcons during GVHD. (A-B) Top 10 enriched terms/pathways in CD4 (A) and CD8 (B) Tcons
from mice receiving Tcons and Tregs (positive normalized enrichment score [NES], red bars indicate the significant pathways) or Tcons alone (negative NES, blue bars indicate
the significant pathways) revealed via hallmark GSEA. (C) Map of genes regulating CD4 and CD8 Tcon metabolism before and after HCT. Single genes heatmap represent the
row-scaled gene expression in FPKM (fragments per kilobase of transcript per million reads mapped). Genes and enzymes are indicated.
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with the activation and differentiation of alloreactive Tcon
clones during GVHD. Tregs predominantly affected the CD4
Tcon and to a lesser extent the CD8 Tcon transcriptome,
modulating the transcription of genes encoding pro- and anti-
inflammatory molecules as well as enzymes involved in glyco-
lytic processes.
1762 6 APRIL 2023 | VOLUME 141, NUMBER 14
CD4+CD25+FOXP3+ Tregs are a well-established immuno-
modulatory cell population able to suppress Tcon responses via
several, nonmutually exclusive mechanisms.16 Our analysis
identified multiple pathways potentially involved in Treg sup-
pression of GVHD, namely anti-inflammatory cytokine produc-
tion mirrored by downstream Tcon signaling of IL-10 and IL-35
LOHMEYER et al
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Figure 6 (continued) blue bars indicate the significant pathways) revealed by hallmark GSEA. (D) Enrichment plots displaying enrichment scores for the genes involved
in allograft rejection (HALLMARK_ALLOGRAFT_REJECTION) and OXPHOS (HALLMARK_OXIDATIVE_PHOSPHORILATION) from colon tissues recovered at day 8 after
HCT in the presence or absence of Tregs.
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as well as a metabolic switch of Tcons from glycolysis to
OXPHOS. Conversely, we did not find evidence for a role of
transforming growth factor-β production and competition for
IL-2 to be dominant mechanisms of Treg suppression. The
study of Tcon and Treg transcriptome during GVHD limited our
analysis to T-cell–intrinsic mechanisms of suppression; however,
it did not allow us to evaluate the relevance of cytolysis of
effectors and APCs. Previous studies that addressed the role of
cytolysis mediated by Tregs through production of cytotoxic
molecules failed to find evidence for a role of granzyme B25 and
showed experimental26 and clinical27 evidence for the role of
granzyme A in Treg-mediated suppression of GVHD. Our
transcriptomic analysis found an upregulation of Gzmb and
Gzma in Tregs after transplantation (Figure 3F).

Recent studies point to an important role of metabolic regulation
of T cells during GVHD (reviewed in Mohamed et al28). Murine
studies revealed that donor T cells undergo metabolic reprog-
ramming after allogeneic HCT, switching from FAOand pyruvate
oxidation via the tricarboxylic cycle to aerobic glycolysis.20 Using
transcriptomic and metabolomic analysis, Assmann et al21

confirmed that murine donor CD4+ T cells acquired a highly
glycolytic profile during acute GVHD and showed increased
transcription of glycolytic enzymes in human CD4+ T cells iso-
lated from allogeneic hematopoietic stem cell transplantation
recipients just before the onset of acute GVHD. Our tran-
scriptomic results suggest that Tregs inhibit themetabolic switch
of Tcons toward glycolysis by interfering at different crucial
points. We observed a decrease in the transcription of the gene
encoding the glucose transporter GLUT1, which contributes to
the pathogenicity of allogeneic Tcons during GVHD.22,29

Moreover, Tregs inhibited the induction of genes encoding
several glycolytic enzymes, including 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3, the rate-limiting factor in glyco-
lyticmetabolismwhose specific pharmacological inhibition using
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one has been shown to
protect against acute GVHD.20 T-cell metabolic fitness through
glycolysis and OXPHOS has been recently shown to play an
essential role in the GVT effect after allogeneic HCT.30 In our
experiments, Tregs not only inhibited the transcription of
glycolytic genes but also increased the transcription of
OXPHOS-related genes, suggesting a metabolic switch toward
mitochondrial respiration as a source of energy. These results, so
far entirely based on transcriptomic analysis, will need functional
validation before being used to improve the efficacy of
Treg-based therapies.

The need for TCR activation as well as the nature of the antigens
recognized by Tregs during GVHD is still being debated. The
beneficial effects of low-dose IL-2 treatment on Treg numbers
and function in chronic GVHD31-33 suggest that cytokine-
mediated Treg activation is sufficient for GVHD suppression
without the need for TCR triggering. However, we previously
showed that major histocompatibility complex disparities
between Tregs and the host were necessary because both donor
and third-party Tregs, but not host Tregs, protect from GVHD in
murine allogeneic HCT,34 pointing to a critical role of TCR acti-
vation for alloreactive Treg suppression of GVHD. Our present
study further supports a model of TCR-mediated Treg activation
for GVHD suppression, given the clonal restriction that Tregs
undergo after allogeneic HCT. Interestingly, we observed a
ANALYSIS OF TREG SUPPRESSION MECHANISMS OF GVHD
divergence, rather than a convergence, of Tcons and Tregs
clonotypes detected after HCT compared with the steady state,
suggesting that Tcons and Tregs react against different antigens
during GVHD. The contribution of Tcon-derived IL-2 to this
process is not excluded.

Our results have clinical implications, given the increasing
interest in Treg-based therapies for GVHD prevention and
treatment. The Perugia group pioneered the adoptive transfer
of fresh Tregs followed by Tcons in a T-cell–depleted CD34-
selected HLA-haploidentical HCT platform7,10,35 demon-
strating the potential of human Tregs to prevent GVHD but still
allow the GVT effect in patients. We reported a similar
approach in HLA-matched recipients.9 Recently, therapeutic
adoptive transfer of Treg-enriched donor lymphocyte infusion
combined with low-dose IL-2 has been reported in chronic
GVHD.11 A better understanding of the mechanisms of GVHD
suppression by Tregs is particularly relevant now, after years of
monocentric early-phase clinical trials and, more recently,
multicentric phase 3 clinical trials.

Given the rarity of Tregs, several groups attempted ex vivo Treg
expansion from cord-blood8,36 or from peripheral blood.12 Our
results point to the need for optimized culture conditions that
favor the expansion of IL-10– and IL-35–producing Tregs.37

Our data reveal that, during GVHD suppression, Tregs pre-
served a transcriptomic signature distinct from CD4 and CD8
Tcons (supplemental Figure 3). Among differentially expressed
genes, we identified genes encoding several surface markers,
including killer cell lectin-like receptor family molecules (Klrc1,
Klrd1, Klrk1, Klrb1b), CD160, and cytotoxic and regulatory
T-cell molecule (Crtam). There are ongoing efforts to target
these and other markers to selectively deplete alloreactive
T cells while sparing Tregs.

Our analysis on Tregs and Tcons was conducted using cells
recovered from SLO and not using GVHD target tissues, as
previously reported by other groups who focused on Tcons.38-41

We decided to study SLO because this is the site where Treg
suppression of Tcon-mediating GVHD is thought to take
place.6,42Moreover, the reduction in Tcon tissue infiltration upon
Treg treatment precluded the isolation of sufficient numbers of
Tcons and Treg from the GVHD target tissue sites to conduct this
kind of analysis. However, our bulk analysis of the colons recov-
ered from mice receiving Tcons in the presence or absence of
Tregs supports the results we obtained in SLO, identifying the
OXPHOS signature as themost strongly upregulated factor upon
Treg treatment and identifying several inflammatory molecule
signaling pathways suppressed by Treg administration.

Our study has several limitations. Firstly, our analysis was per-
formed at the peak of Tcon expansion and lacks the dynamic
information about the early impact of Tregs during the very first
days of GVHD suppression. Unfortunately, the limited number of
cells that is possible to recover at earlier time points represents
an obstacle to this analysis. Secondly, the strain combination of
C57Bl/6 donors that was transplanted into BALB/c recipients is
known to be more dependent on CD4+ T cells, and it is possible
that other strain combinations more dependent on CD8+ T cells
may show a greater impact of Tregs with this cell population.
6 APRIL 2023 | VOLUME 141, NUMBER 14 1765
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In conclusion, our results provide further insights into the mech-
anisms of Treg suppression of GVHD.Moreover, our data support
a model in which Tregs qualitatively modulate Tcon function
through several mechanisms rather than prevent the activation of
alloreactive clones, providing a potential explanation for the
ability of Tregs to suppress GVHD while allowing GVT.
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