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MYELOID NEOPLASIA
HOXA9 forms a repressive complex with nuclear
matrix–associated protein SAFB to maintain acute
myeloid leukemia
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•HOXA9 nucleates a
chromatin complex with
nuclear matrix protein-
SAFB.

•H9SB complex maintains
leukemia via active
repression of myeloid
differentiation genes.
/blo
HOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a
poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human
AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment
protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML
proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo.
Integrated genomic, transcriptomic, and proteomic analyses further demonstrated that
the HOXA9-SAFB (H9SB)–chromatin complex associates with nucleosome remodeling and
histone deacetylase (NuRD) and HP1γ to repress the expression of factors associated with
differentiation and apoptosis, including NOTCH1, CEBPδ, S100A8, and CDKN1A.
Chemical or genetic perturbation of NuRD and HP1γ–associated catalytic activity also
od_bld-2022-01652
triggered differentiation, apoptosis, and the induction of these tumor-suppressive genes. Importantly, this mecha-
nism is operative in other HOXA9-dependent AML genotypes. This mechanistic insight demonstrates the active
HOXA9-dependent differentiation block as a potent mechanism of disease maintenance in AML that may be amenable
to therapeutic intervention by targeting the H9SB interface and/or NuRD and HP1γ activity.
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Introduction
Acute myeloid leukemia (AML) is an aggressive blood cancer
characterized by the increased proliferation and self-renewal of
immature cells of the myeloid series and a failure of differenti-
ation within this compartment.1 A cardinal feature of AML is
aberrant transcription and mutations that alter transcription
factors; epigenetic regulators and genome structural proteins
are frequent and recurrent.2 A common mediator of trans-
formation, downstream to many of these mutations, and over-
expressed in ~70% of cases of AML, is the clustered homeobox
transcription factor HOXA9.3-5 Overexpression of HOXA9 also
indicates a high-risk AML subgroup, with high expression levels
associated with poor prognosis.6,7

However, the mechanisms whereby HOXA9 mediates trans-
formation in the hematopoietic stem and progenitor cell
compartment remain relatively poorly understood. Previous
studies have established its role as a transcriptional activator
when associated with TALE homeobox proteins MEIS1 and
PBX1/3.8,9 More recent studies have shown this complex to
drive the proliferation and survival of leukemic cells via its
interaction with multiple signaling pathways10-13 and via the
stimulation of enhancer activation/modifications.14,15 Interest-
ingly, HOXA9 has been described to also have repressive
function.16-18 However, the contribution of HOXA9-mediated
repression to AML induction and maintenance remains
unknown. Historically, studies of HOXA9 function have been
somewhat hampered by the lack of reliable tools, with the
majority of genomic and proteomic studies based on the
exogenous overexpression of tagged versions of HOXA9. In
this study, we make use of a commercial HOXA9 antibody
validated in chromatin immunoprecipitation sequencing (ChIP-
seq),10 and for the first time to our knowledge, we describe the
protein interactome of endogenous HOXA9 in human
AML cells. Then, we use these data to identify a novel
HOXA9-repressive complex and characterize its functional and
mechanistic role in AML maintenance.
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Methods
Cell lines
MOLM13, MV411, and HL60 cells were cultured in RPMI 1640
medium containing 10% fetal bovine serum, 1% L-glutamine,
and 1% penicillin-streptomycin. OCIAML3 cells were cultured in
minimum essential medium α containing 20% fetal bovine
serum, 1% L-glutamine, and 1% penicillin-streptomycin.

For treatment with inhibitors, panobinostat-LBH589 and chaeto-
cin cells were seeded in a 6-well plate at a density of 5 × 105/mL in
3 mL media. Inhibitors were diluted to a working stock of 10 mM
with dimethyl sulfoxide and were used at a final concentration of
4 nM panobinostat and 40 nM chaetocin. The cells were har-
vested for assays at specific time points.

RIME
Rapid immunoprecipitation mass spectrometry of endogenous
proteins (RIME) was performed as described earlier.19

PLA by Duolink
The proximity ligation assay (PLA) was performed using Duolink
In Situ Red Starter Kit Mouse/Rabbit (Sigma-Aldrich), following
the manufacturer’s instructions.

CUT&RUN
CUT&RUN was performed using the CUTANA CUT&RUN kit
(EpiCypher), following the manufacturer’s instructions.

Lentiviral production
Lentiviral particles were produced in 293T cell lines with
cotransfecting packaging plasmids (pMDG2 and psPAX2) with
pkLV2 (as described earlier)20 or pLKO-Tet-on vectors.

Detailed methods are provided in supplemental Methods,
available on the Blood website.

Results
A proteomic screen identified HOXA9 to interact
with matrix (S/MAR)–binding proteins
To define the HOXA9-interacting proteome in acute leukemia,
we performed a proteomic screening in the HOXA9-dependent
MLL-AF9–rearranged MOLM13 AML cell line.21 Both replicates
gave a high degree of concordance (supplemental Figure 1A).
There were 324 proteins significantly enriched in HOXA9-
immunoprecipitates compared with immunoglobulin G (IgG)
immunoprecipitates (>2 log fold change) (Figure 1A;
supplemental Figure 1B; supplemental Table 1). Consistent
with its transcriptional role, interacting proteins included factors
involved in transcription initiation, messenger RNA (mRNA)
processing, basal transcription, acetyl-group transferring, and
lineage-specific transcription such as CEBPα (Figure 1B).
Interestingly, the scaffold/matrix attachment region (S/MAR)
proteins SATB1, SATB2, and SAFB were also greatly enriched.
However, although SATB1 has been described to be rear-
ranged in AML22 and appears to regulate the tumor suppressor
function of PU.1 in AML,23 and the repressive function of SATB2
is required to block B-cell differentiation in BCR-ABL-positive
B-cell acute lymphoblastic leukemia,24 there are no previous
reports on the role of SAFB in leukemia. To gain additional
1738 6 APRIL 2023 | VOLUME 141, NUMBER 14
insights into the role of these S/MAR proteins in leukemia, we
analyzed previously published CRISPR-dropout data from
2 independent screens of AML cell lines.20,25 These demon-
strated that the depletion of SAFB significantly inhibited the
growth of all tested AML cell lines, whereas the depletion of
SATB1 and SATB2 did not (Figure 1C; supplemental Figure 1C),
thus suggesting a novel, essential function of SAFB for the
growth of AML cells.

We first confirmed the interaction of SAFB with HOXA9 in
MOLM13 cells via coimmunoprecipitation (Figure 1D-E). We
also validated the interaction between HOXA9 and SAFB in situ
in MOLM13 cells using the PLA by Duolink (Figure 1F), further
corroborating this protein interaction in situ in primary cells
obtained from patients with AML (n = 7) (Figure 1G;
supplemental Figure 2). Assessing the cumulative differential
signal across multiple patients with AML demonstrated a sig-
nificant positive interaction between HOXA9 and SAFB signal
compared with IgG controls and SAFB (Figure 1H). After con-
firming the protein-protein interaction between HOXA9 and
SAFB in MOLM13 and primary AML cells, we wanted to
determine whether SAFB is required for the identified HOXA9
chromatin interactions to take place. RIME19 for HOXA9 in
MOLM13 cells (n = 2) after SAFB knockdown revealed 60
specific proteins that were lost or reduced in the absence of
SAFB (Figure 1J; supplemental Table 1). Notably, proteins
involved in chromatin architecture and gene repression were
prominent within this SAFB-dependent subset (supplemental
Figure 1D).
SAFB phenocopies HOXA9 to drive proliferation
and prevent differentiation and apoptosis in
leukemic cells
To specifically dissect the role of SAFB in HOXA9-dependent
AML, we used CRISPR-Cas9 to individually target SAFB and
HOXA9 expression in MOLM13 cells.21 HOXA9 or SAFB
depletion led to reduced cell growth comparedwith control cells
in all 3 tested guide RNAs (Figure 2A-B). An increase in myeloid
differentiation and apoptosis upon the depletion of HOXA9 or
SAFB suggested a fully phenocopied effect and a mechanistic
interaction between the associating proteins (Figure 2C-F).

To further test the functional interaction, we targeted SAFB
expression using CRISPR-Cas9 in 2 additional HOXA9-
dependent AML cell lines (MV411–MLL-AF4 rearranged and
OCIAML3–NPM1 mutated) as well as a HOXA9-independent
AML cell line (HL60) (Figure 2G). Similar to the MLL-AF9 plus
MOLM13 cell line, we could demonstrate that the depletion of
SAFB induced differentiation of HOXA9-dependent cell lines
(MV411 and OCIAML3) but had no impact on HL60 cells
(Figure 2H). The induction of apoptosis was also observed in
MV411, whereas no apoptosis was observed in OCIAML3 or
HL60 cells (Figure 2I). SAFB mRNA levels were remarkably
homogeneous across multiple AML samples/subtypes, whereas
HOXA9 levels weremore heterogenous across AML, as assessed
using whole transcriptome data from 179 primary AMLs (The
Cancer Genome Atlas Research Network) (Figure 2J).

To further identify the codependent relationship between
HOXA9 and SAFB, we analyzed the available DepMap data set
after their CRISPR perturbation in 26 AML cell lines. These data
AGRAWAL-SINGH et al
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Figure 1. HOXA9 interacts with matrix binding (S/MAR) protein SAFB. (A) Volcano plot displaying the label-free mass spectrometry (MS) quantification of HOXA9
pulldown in MOLM13 cells. The plot shows log2 ratios of averaged peptide MS intensities between HOXA9-immunoprecipitation (IP) and control-IP (IgG) eluate samples
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demonstrated that perturbation of both SAFB and HOXA9
affects the growth of AML cells with a linear relationship
between the effects of either (P = .0016, Pearson coefficient = 0.6)
(Figure 2K).

HOXA9 and SAFB drive leukemic growth in vivo
To determine whether SAFB and HOXA9 are required for leu-
kemia maintenance in vivo, we used the temporal control of a
doxycycline-inducible short hairpin RNA (shRNA) system (pLKO)
to induce knockdown after disease establishment had been
demonstrated. First, an in vitro validation showed SAFB and
HOXA9 knockdown using the shRNA (Figure 3B) phenocopied
CRISPR–editing to substantially reduce the growth of MOLM13
cells (Figure 3A), the proportion of cells in the S-phase
(supplemental Figure 3A), and induce myeloid differentiation
followed by apoptosis and a reduced methylcellulose colony
formation (Figure 3C-E; supplemental Figure 3B). Notably,
HOXA9-shRNA demonstrated knockdown only after 3 to 4 days
compared with SAFB-shRNA, which had a significant SAFB
knockdown within 48 hours (Figure 3B; supplemental
Figure 3C), likely explaining the delayed and less dramatic
phenotypes observed in the HOXA9-knockdown cells
compared with the SAFB-knockdown cells. Next, we injected
NSG mice with MOLM13-sh cells, which expressed a luciferase
reporter-gene in addition to an inducible shRNA vector to
knockdown either SAFB or HOXA9 expression (experimental
scheme Figure 3F). Three days after injection, engraftment and
disease induction were confirmed using bioluminescence
imaging, and the baseline was calculated for all the 3 cohorts of
mice (Figure 3G). In accordance with our in vitro experiments,
the knock down of HOXA9 and SAFB significantly delayed
disease progression and prolonged the survival of mice
compared with the effect of the control cells (Figure 3H-J).
Together, these data confirm a functional as well as a physical
interplay between the 2 proteins, with SAFB phenocopying the
HOXA9 function to support leukemic growth and prevent dif-
ferentiation of leukemic cells both in vitro and in vivo.

SAFB colocalizes with HOXA9 genome wide
Next, we probed the function of the putative HOXA9/SAFB
(H9SB) complex. To detail the H9SB localization on chromatin,
we performed CUT&RUN26 for HOXA9 or SAFB in MOLM13
cells. The HOXA9 antibody used here has been previously
shown to enrich endogenous HOXA9 in ChIP-seq experi-
ments,10 and both HOXA9 and SAFB antibodies gave consis-
tent results and compared favorably with ChIP-seq
(supplemental Figure 4A,C). We identified high-confidence
binding sites for HOXA9 (n = 39 777) and SAFB (n = 12 672)
Figure 1 (continued) (x-axis) plotted against the negative log10 P values (y-axis) calculat
upper values were set for the x- and y-axis to accommodate all detected proteins in the p
log2 fold. Chromatin-binding proteins, pulled down by HOXA9 are colored as indicated
Table 1. (B) Summary of proteins pulled down by HOXA9-IP, categorized based on the
rate < 0.000001. (C) Box plot represents depletion of SAFB, SATB1, and SATB2 by CRIS
(non-AML).20 (D) Western blot analyses validating the HOXA9 and SAFB interaction i
MOLM13 cells and blotted for SAFB (top) and HOXA9 (bottom). (E) As in panel D, SAFB is
(top). (F) Images showing PLA using Duolink in MOLM13 cells confirming the interactio
antibodies) and SAFB (mouse monoclonal antibodies) were used. Rabbit and mouse IgGs
cells from 2 individual patient samples. (H) Box and whisker plot shows cumulative differe
nuclei across multiple patients (n = 7). Dots observed in IgG were also counted and plot
using the paired t test (2-tailed, P < .05), *P < .05. (I) Representative western blot showin
postinduction. β-Tubulin was used as a loading control. (J) Summary table of SAFB-depen
provided in supplemental Table 1. log2 FC, log2 fold change; ns., not significant; rRNA,
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in MOLM13 cells (supplemental Figure 4B), and among those, a
subset of HOXA9 peaks specifically colocalized with the
majority of SAFB peaks (n = 10 262) (Figure 4A-B; supplemental
Figure 4D; supplemental Table 2). One-third of H9SB cobound
peaks were found at promoters, (n = 3845) with the remainder
being distal peaks (n = 6417). Motif analyses of H9SB co-
occupied loci showed strong enrichment for hematopoietic
transcription factor binding sites, including PU.1 (ETS), RUNX1,
and CEBPA (supplemental Figure 4E).

As expected, by their SAFB binding, these cobound loci
demonstrated characteristic sequence features of S/MAR
regions, such as AT-proportion, topoisomerase II binding, and
kinked or curved DNA,27,28 with cobinding demonstrated at or
near the classic S/MAR regions of the MYC,29 TOPI, TOP2A,30

and β-GLOBIN31 genes (supplemental Figure 5A-B).
The transcriptional consequence of H9SB
depletion in leukemic cells
Transcriptional profiling of HOXA9- and SAFB-depleted
MOLM13 leukemic cells using RNA sequencing and differential
gene expression analyses demonstrated 8238 and 4362 altered
genes in HOXA9-depleted cells and SAFB-depleted cells,
respectively (P < .01) (Figure 4D). The majority of genes
affected by SAFB depletion (n = 3800, 87%) were also coordi-
nately altered because of HOXA9 depletion (Figure 4D).
Furthermore, gene set enrichment analyses of differentially
regulated genes after either HOXA9 or SAFB depletion
enriched for a HOXA9 signature (supplemental Figure 6A).
Within the overlapping genes, differential expression was
observed in both directions (threshold set to 1 ± 0.2 to measure
any significant change in the expression; overlap among upre-
gulated or downregulated genes, n = 89% or n = 78%,
respectively; P < .01) (Figure 4E-F; supplemental Table 3).

To identify direct targets of HOXA9 and SAFB, we integrated
H9SB CUT&RUN sequencing data with RNA sequencing after
H9SB perturbation. Interestingly, 58% of the commonly dys-
regulated genes (n = 1505/2572), perturbed by the loss of both
HOXA9 and SAFB, demonstrated an H9SB binding peak within
50 kilobases of their transcription start site (TSS) (Figure 4G;
supplemental Table 4). The majority of these genes (72%) were
upregulated after H9SB perturbation, keeping with our devel-
oping hypothesis of the repressive role of the putative H9SB
complex (Figure 4H). Gene ontology (GO) analyses revealed
genes associated with myeloid differentiation to be significantly
enriched in this upregulated gene set (including S100A8,
S100A9, NOTCH1, CEBPδ, CDKN1A, BCL2A1, S100A12, and
ed across the replicate data sets (1-tailed Student t test, n = 2 replicates). Maximum
lot. A dashed horizontal line marks P = .05. Vertical dashed line marks enrichment >2
, and selected protein names are shown. The full data set is given in supplemental
information of the molecular functions obtained from GO analyses; false discovery
PR in 5 AML cell lines. Dropout score was calculated by normalizing to control cells
n MOLM13 cells via coimmunoprecipitation. HOXA9 is immunoprecipitated from
immunoprecipitated from MOLM13 cells and blotted for HOXA9 (bottom) and SAFB
n between HOXA9 and SAFB in situ. Antibodies against HOXA9 (rabbit polyclonal
were used as negative controls. (G) Images show PLA, using Duolink in primary AML
ntial signal (analyzed by Arivis software) as the number of Duolink-positive dots per
ted as a negative control. Statistical significance was calculated against IgG control
g SAFB knockdown via doxycycline-inducible shRNAs in MOLM13 cells at 48 hours
dent HOXA9 interacting proteins (n = 60); false discovery rate < 0.05. Full details are
ribosomal RNA; snoRNA, small nucleolar RNA.
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Figure 2. SAFB phenocopies HOXA9 in leukemic cells. (A) Growth kinetics of MOLM13-Cas9 cells transduced with guide RNA (gRNA) (n = 3) targeting HOXA9 or SAFB. The
data are shown as the average of biological replicates (n = 3) ± standard deviation (SD). Statistical significance was calculated against nontargeting control gRNA (nontreated
[NT]) at time point days 4 and 5, using t test (2-tailed, P < .05), *P < .05, **P < .01, ***P < .001, ****P < .0001. (B) Western blot analyses showing the knockdown efficiency of
HOXA9 and SAFB gRNAs in MOLM13 cells. β-tubulin is used as a loading control. (C) Apoptosis in MOLM13-Cas9 cells transduced with gRNA targeting HOXA9 (g5 and g7) or
SAFB (g2 and g3) 5 days after transduction, as measured using annexin V and 7AAD staining. Plots are representative of 3 independent biological experiments. (D) Floating
bar graphs summarizing results from the 3 independent experiments from apoptosis measurements using 3 gRNAs targeting HOXA9 (g5, g7, and g8) and SAFB (g1, g2, and
g3) are shown. Statistical significance was calculated against NT using t test (2-tailed, P < .05), *P < .05, **P < .01, ***P < .001. (E) Flow cytometric analyses of CD11b surface
expression in MOLM13-Cas9 cells transduced with gRNA targeting HOXA9 (g5) or SAFB (g3). Contour plots shown here are representative of 3 independent biological
replicates. (F) Floating bar graphs summarizing results from the 3 independent experiments from flow cytometric analyses of CD11b surface expression using 2 gRNAs
targeting HOXA9 (g5 and g7) and SAFB (g2 and g3) are shown. Statistical significance was calculated against NT using t test (2-tailed, P < .05), *P < .05, ***P < .001. (G) Western
blot analyses showing expression of SAFB and HOXA9 in AML cell lines. β-Tubulin is used as a loading control. (H) CD11b surface expression in AML cell lines, 3 days after
transduction, with gRNA targeting HOXA9 or SAFB (mean ± SD, n = 3). Statistical significance calculated using the 2-way analysis of variance (ANOVA) test, **P < .01. (I)
Apoptosis measured via annexin V positivity in AML cell lines, 3 days after transduction, with gRNA targeting HOXA9 or SAFB (mean ± SD, n = 3). Statistical significance was
calculated using the 2-way ANOVA test, **P < .01, ***P < .001. (J) The mRNA expression of HOXA9 and SAFB in human AML primary samples (n = 179), AML The Cancer
Genome Atlas (TCGA) data set. (K) Codependency between CRISPR knockout effects of HOXA9 and SAFB in AML cell lines (n = 26) from DepMap data set. Statistical
significance was analyzed by linear regression at a 95% confidence interval (CI), P = .0016. The plot was generated using Prism. FITC, fluorescein isothiocyanate; KO, knockout.
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SERPINA1), whereas downregulated genes were enriched in
interferon response pathways (supplemental Figure 6B-C).

We further sought to reconcile any relationship of the H9SB
complex with MEIS1 by assessing whether HOXA9 simulta-
neously binds to MEIS1 and SAFB or whether the binding is
mutually exclusive. We compared the H9SB targets (n = 1505)
with HOXA9-MEIS1 targets (n = 250, identified in MOLM13
cells) by integrating differential gene expression data from
MEIS1 perturbation and genomic binding, shown in
supplemental Figure 7. Interestingly, only 6% of H9SB target
genes are shared by MEIS1 in these cells (99/1505) (Figure 4I).
Moreover, the correlation with the expression data about
MEIS1-perturbation suggests that the HOXA9-MEIS1complex
coordinately acts as a transcriptional activator because the
majority of genes are repressed in the absence of MEIS1, in
contrast to the predominant repression associated with the
HOXA9-SAFB-MEIS1 complex (Figure 4J-K).

To further examine any relationship between the H9SB and
HOXA9-MEIS1 complexes, we similarly analyzed DepMap data
after HOXA9 and MEIS1 perturbation across 26 AML cell lines.
Although we could confirm a trend for correlation of their gene
effects, unlike that for HOXA9 and SAFB, this was not significant
(P = .086, Pearson coefficient = 0.343, data not shown). These
data suggest that the H9SB complex predominantly functions
independently of MEIS1.

Further corroboration in primary cells from patients with AML
(n = 5) identified a significant number of high-confidence peaks
for HOXA9 and SAFB using the CUT&RUN method, many
demonstrating genomic coenrichment. We observed a signifi-
cant overlap, ~40% to 60% of SAFB-bound regions were also
co-occupied by HOXA9 in primary AML cells (supplemental
Figure 8A), which is in consonance with the data found for
MOLM13 cells. Comparative analyses32 revealed significant
1742 6 APRIL 2023 | VOLUME 141, NUMBER 14
overlap within AML samples, with 1542 unique peaks shared
between 3 AML samples (supplemental Figure 8A). The overlap
between MOLM13 and primary AML samples revealed that
>1000 peaks were shared between MOLM13 and at least 2
AML samples (supplemental Figure 8A). Of the 2572 genes
differentially expressed after the experimental knock down of
HOXA9 and SAFB in MOLM13, 1062 (41%) were also bound by
HOXA9 and SAFB in MOLM13 cells and a minimum of 3 in
samples from patients with AML (Figure 5A; supplemental
Table 4). These data suggest that these genes are directly
regulated by the H9SB transcriptional complex. GO analyses of
these genes enriched for terms associated with myeloid differ-
entiation, as we previously observed (Figure 5B).

NOTCH1 and CEBPδ are the targets of the H9SB
repressive complex
The NOTCH1 and CEBPδ genes were derepressed upon
HOXA9 or SAFB perturbation, and co-occupancy of H9SB was
observed proximal to their loci (Figure 5C,H). Similar relation-
ships were also observed for the CDKN1A, S100A8, S100A9
S100A12, and BCL2A1 genes (supplemental Figure 9A).

Next, we sought to link the derepression of specific genes and
the activation of the differentiation program with the abrogation
of the leukemia maintenance phenotype. Upon obtaining a
retroviral expression of an activated form of NOTCH1
(NOTCH1-ICN) in MOLM13 cells, we saw a strong impairment
of growth/proliferation and clonogenic potential, accompanied
by a marked increase in apoptosis (Figure 5D-F). Furthermore,
gene set enrichment analyses on a preranked list of differen-
tially expressed genes from H9SB-depleted MOLM13 cells
demonstrated a striking correlation with NOTCH signatures
(Figure 5G). To further extend our paradigm, we also assessed
the effects of re-expressing CEBPδ in MOLM13 cells using an
inducible system (Figure 5I). Similarly, CEBPδ expression
attenuated MOLM13 cell growth and inhibited clonogenic
AGRAWAL-SINGH et al
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Figure 3. HOXA9 and SAFB drive leukemic growth in vivo. (A) Cumulative growth of MOLM13 cells, lentivirally expressing shRNA against HOXA9 (blue), SAFB (red),
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growth in a semisolid methylcellulose medium (Figure 5J-K).
Moreover, analyses of 179 patients with primary AML across all
major subtypes revealed a negative correlation between
NOTCH1 or CEBPδ and HOXA9 mRNA expression level
(Figure 5L-M) with this paradigm extending to other H9SB-
repressed genes (supplemental Figure 9B).

Taken together, these data demonstrate that in concert with
SAFB, HOXA9 mediates repression of NOTCH1, CEBPδ, and
other myeloid differentiation–associated genes to actively
maintain the differentiation block associated with AML.

H9SB forms a repressive complex on chromatin
with NuRD and HP1γ
To determine the mechanism of gene repression mediated by
the H9SB complex, we performed further proteomic analyses to
identify chromatin-associated protein interactors of the com-
plex using RIME.19 Considering only high-confidence proteins
present in all replicates from both immunoprecipitants
(supplemental Figure 10), we identified 79 proteins shared
between SAFB and HOXA9 RIME (Figure 6A; details are pro-
vided in “Methods”; the complete list of H9SB-interacting
proteins is provided in supplemental Table 1). String network
analyses (https://string-db.org/) functionally annotated these
proteins33 to be highly enriched for negative regulation of gene
expression (47/79 proteins; false discovery rate = 1.33e-27).
Clustering these proteins based on their molecular function
resulted in 3 distinct clusters: RNA binding or splicing proteins
(cluster 1), ribosomal proteins (cluster 2), and chromatin-
associated proteins (cluster 3) (supplemental Figure 11A).
Cluster 3 included members of the nucleosome remodeling and
histone deacetylase (NuRD) complex (MTA2 and GATAD2A)
and heterochromatin protein CBX3 (also known as HP1γ)
(Figure 6B-C; supplemental Table 1). All 3 proteins showed
specific enrichment, compared with that observed in the IgG
controls, using the MaxLFQ approach34 (Figure 6B). Moreover,
the interaction of HOXA9 with MTA2 and HP1γ seemed to be
dependent on SAFB (Figure 1J; supplemental Table 1). We
further validated the physical association of H9SB with NuRD
complex members via coimmunoprecipitation, implying the
formation of a HOXA9-repressive complex in AML cells
(Figure 6C).

Assessing the genome-wide binding of the NuRD complex and
HP1γ, via the CUT&RUN method, in MOLM13 cells further
demonstrated that NuRD complex members (MTA2 and
GATAD2A) exhibited considerable genome-wide overlap with
H9SB cobound genomic regions (7657 overlapping regions out
of 10 262 [75%] H9SB-cobound regions) (Figure 6D-F;
supplemental Figure 11B). Although HP1γ enrichment was
more modest, we observed a clear signal in the proximity of
Figure 3 (continued) control. The HOXA9 knockdown after 7 and 10 days of doxycycline i
CD11b surface expression via flow cytometry 5 days after induction with doxycycline. Dat
calculated using the 2-way ANOVA test, *P < .01. (D) Percentage of annexin V– and 7AAD
n = 4. Two-way ANOVA test, **P < .001. (E) Colony-forming assay of MOLM13 cells expres
The bar graph shows the average value of 3 independent experiments ± SD, 2-way ANOV
(G) Bioluminescent radiance 3 days after injection and before shRNA induction (baselin
underwent transplantation with luciferase-labeled shRNA-expressing MOLM13 cells at
progression over time. Statistical significance was calculated using the 2-way ANOVA w
.0004; shEV-SAFB-sh at day 11, ****P < .0001). (J) Kaplan-Meier plot showing the surviv
shRNA. A log rank test was performed (**P < .01, ***P < .001). H9, HOXA9sh; Max, max
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H9SB-bound genomic regions, with distal regions showing
higher enrichment compared with promoter-bound regions
(Figure 6D,F; supplemental Figures 12E-H and 13). Further
analyses revealed that 2477 of 7657 (32%) NuRD-H9SB over-
lapping regions also harbored HP1γ binding (Figure 6F;
supplemental Figure 12E-H; supplemental Table 4). Moreover,
perturbation of HOXA9 and SAFB commonly affected the
expression of 635 genes (differentially expressed) annotated at
these peaks (within 50 kilobases), with 444 (70%) of these
upregulated genes (supplemental Figure 13A). Notably, the
upregulated genes again demonstrated the association with
myeloid differentiation in GO analyses (Figure 6F; supplemental
Figure 12D).

A higher enrichment of repressive histone modifications
(H3K27me3, H3K9me2, and H3K9me3) was observed, particu-
larly at nonpromoter bound peaks, in H9SB co-occupied loci
compared with HOXA9-only occupied loci (supplemental
Figure 12A-C). However, these loci also exhibited an enrich-
ment of H3K4me3, although, as expected, enrichment
was more prominent at promoter regions (supplemental
Figure 12B-C). Exemplar loci are shown in Figure 6E and
supplemental Figure 12E-H. The global gene expression
changes in the nearest genes associated with NuRD or HP1γ co-
occupancy in the H9SB complex are shown in the heat maps in
supplemental Figure 13, and the list of genes is provided in
supplemental Table 4.

To corroborate these findings in primary samples, we also
performed CUT&RUN for NuRD (MTA2 and GATAD2A) and
HP1γ in primary AML cells (n = 5) and intersected the NuRD/
HP1γ-bound regions with H9SB. Interestingly, for a very sig-
nificant fraction of the H9SB cobound regions, we could also
document the binding of the NuRD and HP1γ repressors
(Figure 6G). Taken together, these data also confirm the pres-
ence of an H9SB-repressive complex in primary AML cells.
Exemplar loci are shown in Figure 6H.

SAFB is required for NuRD and HP1γ recruitment
at H9SB-bound loci
Our proteomic data suggested that HOXA9 protein interaction
with NuRD and HP1γ requires the presence of SAFB (Figure 1J;
supplemental Table 1). To test this genome wide, we per-
formed SAFB knockdown using shRNA in MOLM13 cells and
analyzed the genomic occupancy of NuRD and HP1γ at H9SB-
bound genomic loci via the CUT&RUN method. We observed
an obvious and clear reduction in the enrichment of NuRD
complex members (MTA2 and GATAD2A) and HP1γ at these
loci (Figure 6I). Selected exemplar tracks are shown to visually
demonstrate this at critical loci (Figure 6K). These data sup-
ported our earlier finding that HOXA9-mediated repression via
nduction in MOLM13 cells is shown (bottom). (C) Myeloid differentiation accessed by
a shown are the averages of biological replicates (n = 4) ± SD. Statistical significance
-positive MOLM13 cells 5 days after doxycycline treatment (1.5 μg/mL). Mean ± SD,
sing HOXA9- or SAFB-shRNA in the presence or absence of doxycycline (1.5 μg/mL).
A test **P < .001, ***P = .0001. (F) Schematic of xenotransplant experimental design.
e) in all 3 cohorts in all animals. (H) Serial bioluminescence imaging of mice that
indicated time points. (I) Bioluminescence at indicated time points shows disease
ith multiple comparisons (95% CI) against shEV, (shEV-HOXA9-sh at day 11, ***P =
al of mice that received transplantations with MOLM13 cells expressing indicated
imum; Min, minimum; Scr, scrambled.
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NuRD/HP1γ requires the presence of SAFB. In addition, we
assessed whether the loss of repression, related to the pertur-
bation of SAFB, had any impact on H3K27ac at H9SB genomic
loci or for the recruitment of activator proteins such as p300 and
BRD4. Interestingly, we observed an increase in H3K27Ac and
an increase in enrichment of p300 and BRD4 at the H9SB
cobound loci on SAFB knockdown (Figure 6J,K). These data
further document the dynamics of complex formation and
histone-modification state at H9SB-bound loci, where the loss
of SAFB-mediated repression allows reactive changes,
including the recruitment of activator complex members and
their associated histone marks.

NuRD and HP1γ inactivation phenocopies H9SB at
the functional and transcriptional level
To determine the functional relevance of NuRD complex and
HP1γ co-occurrence at H9SB-bound genomic regions, we
1746 6 APRIL 2023 | VOLUME 141, NUMBER 14
targeted them genetically and via the pharmacological inhibi-
tion of their obligate/recruited catalytic components. The NuRD
complex contains obligate histone deacetylase activity, and
HP1γ binds to the H3K9me3 mark deposited by the SUV39H1
protein. By treating the AML cell lines with a combination of a
specific inhibitor of SUV39H1 (chaetocin) and a pan-HDAC
inhibitor (panobinostat), we sought to further dissect mecha-
nisms underlying H9SB-mediated gene repression. Notably,
both chaetocin and panobinostat have already been reported
to inhibit the growth of AML cells alone or more potently in
combination;35-37 however, the gene expression programs and
the chromatin-associated mechanisms that underlie these
findings have not been elucidated.

Remarkably, we could demonstrate that cotreatment with
panobinostat and chaetocin, at noncytotoxic concentrations in
AML cell lines,36,37 could indeed phenocopy perturbation of
AGRAWAL-SINGH et al
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Figure 5. NOTCH1 and CEBPδ are targets of the H9SB repressive complex. (A) The Venn diagram shows the overlap between genes commonly dysregulated upon
HOXA9 and SAFB perturbation in MOLM13 cells (green) and genes that are linked to H9SB co-occupied genomic regions in primary AML cells and MOLM13 cell line (gray). A
list of these genes is provided in supplemental Table 4. Hypergeometric test P < 2.115e-56. (B) GO analyses for target genes responded to HOXA9 or SAFB perturbation in
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HOXA9 or SAFB. The combination treatment caused a signifi-
cant reduction in cell growth, along with the induction of
apoptosis and differentiation, compared with the cells treated
with single agents or a vehicle (Figure 7A-C,E-G [MOLM13 and
OCIAML3, respectively]; supplemental Figure 14). Because the
inhibition of HDAC and SUV39H1 activity is likely to have
widespread transcriptional consequences, we specifically
assessed the ability of the inhibitors to derepress the expression
of 9 candidate H9SB-repressed genes using quantitative
reverse transcription polymerase chain reaction (qRT-PCR) and
found similar derepression of these genes as was observed
upon HOXA9 or SAFB knockdown (Figure 7D,H; supplemental
Figure 14C,E). To further corroborate these findings, we also
performed genetic perturbation of NuRD subunits (MTA2 and
GATAD2A) and HP1γ via CRISPR-mediated knockout in
MOLM13 and OCIAML3 cell lines. Genetic loss of these pro-
teins also induced myeloid differentiation and apoptosis in both
AML cell lines (supplemental Figure 15). qRT-PCR demon-
strated derepression of the majority of H9SB-repressed genes
after perturbation (supplemental Figure 15C,F).

Next, we tested the ability of these inhibitors to abrogate cell
viability and derepress similar gene expression programs in
samples from patients with AML. As often observed with primary
AML samples, we observed a heterogeneous response pattern in
the tested AML group (n = 10). However, 7 out of 10 samples
showed reduced viability when treated with both inhibitors in
combination (Figure 7I; supplemental Figure 16A,C). We also
assessed the transcriptional changes in these primary samples by
qRT-PCR on selected target loci after treatment with both
inhibitors and found an excellent correlation between the
observed phenotypic changes in viability and the degree of
derepression of specific H9SB-repressed genes (Figure 7J;
supplemental Figure 16B).
blood_bld-2022-016528r1-m
ain.pdf by guest on
Discussion
The function of HOXA9 as an oncogene in AML has been
almost solely attributed to its ability to activate gene programs
associated with leukemia.15 However, repressive functions have
previously been associated with HOXA9 for genes including the
p16INK4a/p19ARF locus, although mechanistic detail has been
lacking.17,18 We provide evidence that the maintenance of the
leukemic phenotype is dependent on the repressive effects of
HOXA9 and that this repressive function requires the SAFB
Figure 5 (continued) MOLM13 cells and are common in primary AML cells and MOLM1
significant P value. A bar that represents the color code is shown on the right side of the
SAFB (red) at the representative NOTCH1 locus in the Hg38 genome obtained from CUT
the expression of NOTCH1 to be upregulated in HOXA9-Cr (overlain blue) and SAFB-Cr (
NOTCH1-ICN or MOLM13-MSCV-control cells was measured using annexin V– and 7A
pendent replicates. (E) Competition assay between green fluorescent protein (GFP)–p
MOLM13 cells. Equal numbers of GFP-positive cells were seeded at day 0, and the GFP
normalized to the average percent from EV control and plotted as a line graph. Data sho
positive MOLM13-NOTCH1-ICN or MOLM13-MSCV-control cells. The bar graph shows
analysis for H9SB commonly regulated genes (n = 2440) enriches for NOTCH signature.
details are as described for panel C. (I) Western blot showing the expression of CEBPδ
loading control. (J) Cumulative cell growth of MOLM13 cells in CEBPδ overexpressing
replicates obtained from 2 independent clones. Error bars represent ± SD. Statistical si
against EV-Dox, (EV-Dox-CEBPD-Dox at day 11, ****P < .0001; EV-No Dox-CEBPD-No D
control cells ± doxycycline. Photomicrographs showing representative plates (top). The
(bottom). Statistical significance was calculated using 2-way ANOVA with multiple compa
and NOTCH1 mRNA expression in human AML primary samples (n = 165, TCGA data s
primary samples (n = 165, TCGA data set).
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protein. SAFB was first described based on its ability to bind
scaffold attachment region DNA elements and the nuclear
matrix. This S/MAR protein (1) binds to both DNA and RNA,38

(2) stabilizes pericentromeric heterochromatin via interactions
with major satellite RNA,39 (3) regulates DNA damage, and (4)
interacts with proteins and complexes involved in chromatin
architecture and regulates transcriptional activation and
repression via poorly-understood mechanisms.40-42 Our data
suggest that HOXA9 and SAFB, in turn, recruits the NuRD and
HP1γ corepressor complexes to repress the induction of genes
critical for normal myeloid differentiation, including NOTCH1,
CDKN1A, CEBPδ, S100A8, and S100A12. Suppression of
NOTCH signaling has been previously described as a require-
ment for AML, although the mechanism underlying this
repression was previously unknown. Similar to NOTCH1 and
NOTCH2 reactivation in MLL-rearranged leukemias,43,44 we
could demonstrate that the restoration of NOTCH1 and other
targets such as CEBPδ, via either the exogenous overexpression
or the knock down of HOXA9 or SAFB, could inhibit the growth
of leukemia cells and induce differentiation and cell death.

In Hoxa9/Meis1-transformed murine AML, Hoxa9 binding to
intergenic regions facilitates the establishment of de novo
enhancers, in conjunction with Cebpα and the Mll3/4 complex,
leading to the expression of leukemia-specific genes.15 How-
ever, here we focused on the HOXA9 binding sites that over-
lapped with SAFB in human leukemic cells. One-third of these
regions were in distal rather than promoter elements and the
majority H9SB binding was associated with gene repression.
S/MAR regions have been shown to flank enhancers, so that
they may provide boundary function and/or localize cis-
regulatory elements to specific regions of the nucleus.45,46

Interestingly, H9SB cobound regions possessed sequence
characteristics of S/MAR and modifications characteristic of
both repressive (H3K9me2, H3K9me3, and H3K27me3) and
activated chromatin (H3K4me3 and increased accessibility).47

The genes linked to these regions are also known to be
readily activated during myeloid differentiation. We speculate
that when bound by HOXA9 and SAFB, NuRD and HP1γ are
recruited to these elements to mediate repression and that this
cellular state is enforced in AML cells. However, upon the loss
of HOXA9 expression, which occurs during normal myeloid
differentiation, we hypothesize that the elements are poised for
subsequent rapid activation facilitating further maturation
(illustrated in supplemental Figure 17).
3 cells. The gene ratio is plotted on the x-axis. The colors on the bar represent the
plot. (C) Genome browser tracks demonstrate the enrichment of HOXA9 (blue) and
&RUN sequencing in MOLM13 cells. The lower 2 tracks show the RNA-seq data and
overlain red) compared with that in the NT control (gray). (D) Apoptosis in MOLM13-
AD-positive cells by flow cytometry. Plots are representative of 3 biological inde-
ositive NOTCH1-ICN or murine stem cell virus (MSCV) control vector expressing
percentage was measured 3 and 5 days later via flow cytometry. The values were

wn are the averages of 3 biological replicates ± SD. (F) Colony-forming assay of GFP
the average value of 3 independent experiments ± SD. (G) Gene set enrichment
(H) Genome browser track representation of another exemplar locus (CEBPδ). Track
in MOLM13 cells upon doxycycline treatment for 2 days. β-Tubulin was used as a
cells ± doxycycline. The experiment shown here is an average of 3 independent
gnificance was calculated using 2-way ANOVA with multiple comparisons (95% CI)
ox at day 11, **P = .009). (K) Colony-forming assay of MOLM13-CEBPδ or MOLM13-
scatter plot shows 3 independent experiments in duplicates, showing median ± SD
risons (95% CI) EV-Dox-CEBPD-Dox, ****P < .0001. (L) Correlation between HOXA9
et). (M) Correlation between HOXA9 and CEBPδ mRNA expression in human AML
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Figure 6. H9SB forms a repressive complex on chromatin with NuRD and HP1γ. (A) Volcano plot displaying the label-free quantitative MS result of HOXA9 and SAFB
immunoprecipitation by RIME in MOLM13 cells. The plot shows the log2 ratio of averaged peptide MS intensities between HOXA9-IP vs IgG (left) or SAFB IP vs IgG (right)
samples (x-axis), plotted against the negative log10 P values (y-axis) calculated across the triplicate data sets. Student t test, n = 3 technical replicates. The dashed black line
marks 1.5 log FC. Chromatin-associated proteins enriched in HOXA9 or SAFB pulldowns are marked as red dots. The complete list of SAFB-HOXA9 commonly enriched
proteins is given in supplemental Table 1. (B) Bar graph displays the enrichment (label-free quantification [LFQ] values) of NuRD complex members (MTA2 and GATAD2A) or
heterochromatin protein HP1γ in HOXA9 or SAFB or IgG immunoprecipitated samples. The data shown here are intensities from LFQ values obtained via mass spectrometric
analyses of all replicates for IgG (n = 3), SAFB (n = 3), and HOXA9 (n = 2) pull downs, average ± SD. The program does not plot for zero values. (C) Western blots showing
HOXA9 interaction with SAFB, MTA2, and GATAD2A via coimmunoprecipitation of endogenous HOXA9 pulldown in MOLM13 cells. (D) Heat maps of HOXA9, SAFB, MTA2,
GATAD2A, and HP1γ signal (relative to Input) on H9SB co-occupied genomic regions measured by the CUT&RUN method in MOLM13 cells. The y-axis represents individual
regions centered at H9SB-bound genomic regions (± 10 kilobases). Regions were sorted based on the increasing distance to TSS. The relationship between coloring and
signal intensity is shown in the bar (bottom of the plot). (E) Exemplar loci demonstrating co-occurrence of NuRD, HP1γ, and repressive histone modifications with H9SB that
correlated with derepression of the associated genes upon H9SB perturbation are shown in the genome browser track on selected loci S100A8 in the Hg38 genome, obtained
from CUT&RUN sequencing in MOLM13 cells. The upper 2 tracks show the transcripts signal obtained from RNA-seq in MOLM13 cells after HOXA9 (blue) or SAFB (pink)
perturbation. Transcripts signal for HOXA9- or SAFB-CRISPR samples are shown relative to the nontargeting control (gray). (F) Venn diagram showing the overlap of high-
confident NuRD (GATAD2A + MTA2) and HP1γ peaks with H9SB-cobound genomic regions in MOLM13 cells. The numbers represent the genomic regions. The
differentiation-associated target genes of the H9SB-repressive complex that were also upregulated upon H9SB perturbation are highlighted; the top box shows gene targets
of HOXA9/SAFB/NuRD; the lower box shows gene targets of HOXA9/SAFB/NuRD/HP1γ. (G) Heat maps show genomic coenrichment of HOXA9 and SAFB in primary
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Earlier studies describing the role of epigenetic repressors
(SUV39H1 and G9A, which also deposits H3K9me2 and can
recruit HP1γ) in mixed-lineage leukemia11,48 are distinct from
our work. First, in these reports, the analyzed gene sets are
HOXA9-MEIS1 regulated and are obviously different from the
genes that we have identified to be regulated by H9SB to
suppress differentiation. Second, our data demonstrate that
MEIS1-HOXA9, when cobound in the absence of SAFB, func-
tion together predominantly as a transcriptional activator
complex for genes associated with proliferation and the cell
cycle, whereas when bound together with SAFB, HOXA9 fulfills
the role of a transcriptional repressor to reduce the expression
of differentiation genes.
1750 6 APRIL 2023 | VOLUME 141, NUMBER 14
Studies in Safb-deficient mice suggest that it may have a role in
hematopoiesis. Homozygous deletion of Safb resulted in
increased prenatal and postnatal lethality, related to multiple
developmental defects during embryogenesis, including
reduced erythropoiesis.49 However, mice did survive to term,
albeit with severe growth retardation. Our study identifies the
H9SB axis to be important for the maintenance of the differ-
entiation block in AML. Because of the central role of HOXA9 in
normal hematopoiesis and hematopoietic stem cell function,
we expect that it cannot be safely therapeutically targeted.
Targeting the NuRD and HP1γ catalytic activity recruited by
H9SB or specifically targeting the H9SB interaction in AML cells
may be possible. However, further work will be necessary to
AGRAWAL-SINGH et al
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Figure 7. NuRD and HP1γ inactivation phenocopy H9SB at the functional and transcriptional level. (A) Growth kinetics of MOLM13 cells treated with panobinostat
(Pano; 4 nM), chaetocin (Ch) (40 nM) alone, or in combination. The data are shown as the averages of biological replicates (n = 3) ± SD. Two-way ANOVA test, *P < .01
comparing NT vs treatments at 72 hours. (B) The bar graph shows the differentiation measured with CD11b-CD15 surface expression in MOLM13 cells after treatment with
Pano (4 nM), Ch (40 nM) alone, or their combination, over the time course. Data shown are the averages of 3 biological replicates ± SD. Two-way ANOVA test, *P < .001.
(C) The histogram shows flow cytometric analyses of annexin V–positive MOLM13 cells 72 hours after treatment with Pano (4 nM), Ch (40 nM) alone, or their combination.
Representative plots of 3 independent biological replicates are shown. (D) qRT-PCR expression levels of selected target genes in MOLM13 cells treated with drugs alone or in
combination for 48 hours. The data shown are representative of 3 independent biological replicates. (E) Growth kinetics of OCIAML3 cells treated with Pano (4 nM), Ch (40 nM)
alone, or their combination. Fifty thousand cells were seeded followed by daily counting. The data are shown as the averages of 3 biological replicates ± SD. Statistical
significance calculated using the 2-way ANOVA test, *P < .01. (F) The bar graph shows differentiation measured by CD11b-CD15 surface expression in OCIAML3 cells after
treatment with Pano (4 nM), Ch (40 nM) alone, or their combination, for the time course. Data shown are the averages of 3 biological replicates ± SD. Statistical significance
calculated using the 2-way ANOVA test, **P < .001. (G) The histogram shows flow cytometric analyses of annexin V–positive OCIAML3 cells 72 hours after treatment with Pano
(4 nM), Ch (40 nM) alone, or their combination. Representative plots of 3 independent biological replicates are shown. (H) qRT-PCR expression levels of selected target genes
in OCIAML3 cells treated with drugs alone or in combination for 48 hours. The data shown here are representative of 3 independent biological replicates. (I) Percent viability
determined via annexin V/7AAD staining in primary AML cells after treatment with a combination of Pano (4 nM) + Ch (40 nM) or dimethyl sulfoxide (DMSO). (J) qRT-PCR
expression levels of selected target genes in primary AML cells treated with drugs in combination or DMSO for 48 hours. The data shown here are the averages of tripli-
cates of quantitative PCR values.
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determine the role of the H9SB interaction in normal hemato-
poiesis and elucidate the stoichiometry and structure of this
interaction to check whether it is amenable to intervention.

A prominent role of liquid-liquid phase separation (LLPS) has
recently been described in transcriptional regulation.50 Notably,
2 of the proteins in our putative repressive complex, SAFB and
HP1 have recently been demonstrated to form biological con-
densates via LLPS.51-53 SAFB and HP1 liquid condensates pro-
mote and stabilize the formation of heterochromatin, and it is
tempting to speculate that NuRD and HP1γ are not classically
recruited to these loci by H9SB, but form cocondensed com-
plexeswithin liquid condensates at cis-regulatory regions. Again,
future work will be required to determine any relationship
between the repressive complex and LLPS.

In summary, our study suggests that the maintenance of differ-
entiation blockade is an active process that is critical for the
leukemic state. We further demonstrate that this differentiation
block is, at least in part, mandated by a novel repressive HOXA9
complex, thereafter detailing the molecular mechanisms that
underlie the function of this H9SB complex (supplemental
Figure 17). Finally, our study suggests that either the H9SB
1752 6 APRIL 2023 | VOLUME 141, NUMBER 14
complex or its recruited effector proteins may be potential
therapeutic targets.
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