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New mechanisms of GVHD
suppression by Tregs
Katlyn Lederer and Ivan Maillard | University of Pennsylvania Perelman
School of Medicine

In this issue of Blood, Lohmeyer et al uncover how regulatory T cells (Tregs)
affect the transcriptomic, metabolic, and functional states of pathogenic
effector T cells to blunt graft-versus-host disease (GVHD) in mouse models of
allogeneic hematopoietic cell transplantation (allo-HCT).1
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The infusion of Tregs has emerged as an
attractive approach to mitigate GVHD,
which is the main life-threatening and life-
altering immune complication of allo-HCT.
In preclinical mouse models, Tregs pre-
vent severe GVHD without eliminating
the potent graft-versus-tumor effects of
allo-HCT, a desirable pattern of immuno-
modulation that has inspired clinical
translation.2-4 Recent reports in patients
include promising strategies of early Treg
administration ahead of conventional
T cells (Tcons) that mediate GVHD, in
some cases without any pharmacological
immunosuppression.5 Yet, it remains
unknown how Tregs keep pathogenic
T cells on a tight leash to achieve
beneficial immunomodulation in vivo.
To gain new insights, Lohmeyer et al
used a well-established mouse model
of major histocompatibility complex
(MHC)-mismatched allo-HCT, deploying
a combination of transcriptional profiling
and T-cell receptor (TCR) clonality index
analysis in Tregs vs CD4+ and CD8+

Tcons purified from syngeneic or allo-
HCT recipients (see figure).1 Key com-
parisons focused on Tcons transplanted
in the presence or absence of Tregs, and
on Tregs before and after trans-
plantation. Two nonmutually exclusive
models of protection were considered: a
quantitative impact of Tregs on the
activation of alloreactive T-cell clones
and/or qualitative effects on their patho-
genic functions. The authors observed an
increased clonality index both in Tcons
and in Tregs after transplantation into
allogeneic as compared with syngeneic
hosts, consistent with alloantigen-driven
selection of a restricted TCR repertoire in
both populations. Interestingly, Treg
administration did not affect the clonality
index of Tcon populations recovered
from allo-HCT recipients. Instead, Tregs
exerted transcriptional effects on CD4+

and, to a lesser extent, CD8+ Tcons,
enhancing the expression of some anti-
inflammatory and Th2 signature genes
and favoring an oxidative phosphorylation
program at the expense of glycolysis,
among other changes. Paired tran-
scriptomic analysis showed increased
transcripts encoding interleukin-10 (IL)-10
and IL-35 components in Tregs, as well as
upregulated IL-10- and IL-35–mediated
gene expression signatures in alloreactive
Tcons exposed to Tregs in vivo, indicating
that these pathways are potential media-
tors of GVHD suppression. Treg adminis-

GVHD target organ. Importantly, Tregs
did not prevent alloantigen-driven Tcon
activation or upregulated expression of
cytotoxic effector genes essential for
T-cell–mediated antitumor activity. Alto-
gether, Lohmeyer et al made interesting
predictions about Treg activation and
functions after allo-HCTs that will need
mechanistic testing and should inspire
human investigations, particularly when
Tregs are administered without interfer-
ence from calcineurin inhibitors or other
pharmacological agents.

In terms of the 2 models of Treg-
mediated GVHD protection that the
authors intended to test, the data
were most consistent with a model
implying qualitative effects of Tregs on
Tcon pathogenic functions after trans-
plantation rather than a quantitative
impact on Tcon activation. Indeed,
Treg administration preserved overall
T-cell activation/differentiation per tran-
scriptomic criteria and did not interfere
with alloantigen-driven Tcon clonal
restriction, thus maintaining the full
breadth of the alloreactive Tcon reper-
toire. Together with the preserved
induction of cytotoxic effector gene
programs, the broad pool of alloreactive
Tcon arising in the presence of Tregs
may account for the previously reported
capacity of Treg administration to spare
beneficial graft-versus-tumor effects.2-4
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Immunomodulatory functions of Tregs to control GVHD. In a mouse GVHD model, CD4+ and CD8+ Tcons profiled
in secondary lymphoid organs were transcriptionally and metabolically altered upon Treg administration but
showed preserved activation, TCR clonal restriction, and cytotoxic gene programs.1 Treg-derived IL-10 and IL-35
emerged as candidate pathways to mediate these effects. The presence of Tregs also blunted T-cell accumulation
in the gut, which is a key GVHD target organ. OXPHOS, oxidative phosphorylation.
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In terms of Tregs, Lohmeyer et al
observed an increased clonal restriction
of the TCR repertoire after allo-HCT as
well as profound transcriptional changes
indicative of Treg activation. These
findings suggest that host alloantigen-
driven Treg activation and differentia-
tion underly the activity of Tregs after
allo-HCT, which is consistent with previ-
ous data showing that donor-derived
or third-party– but not host-derived
Tregs could prevent GVHD.6 However,
Lohmeyer et al observed only a partial
overlap in TCR sequences in donor-
derived CD4+ Tcons and Tregs, sug-
gesting that they may respond
to different pools of MHC class II
alloantigens (provided sampling and
sequencing depth captured a represen-
tative repertoire).1

Interestingly, Treg administration had a
more profound transcriptional impact on
CD4+ Tcons than on CD8+ Tcons.1 It
remains to be determined whether these
findings reflect the unique features of the
MHC-mismatched allo-HCT mouse model
used in this study, in which GVHD patho-
genesis is highly dependent on CD4+

T cells. Alternatively, it will be important to
assess whether the dominant impact of
Tregs on CD4+ Tcons extends to other
preclinical GVHD models and/or human
recipients of allo-HCT. Notably, this study
1656 6 APRIL 2023 | VOLUME 141, NUMB
focused on the interaction of Tregs with
Tcons in secondary lymphoid organs
based on the critical importance of Treg
administration at the time of T-cell priming
to confer GVHD protection, although Treg
activity during the early infiltration of
GVHD target organs cannot be dis-
counted. Among the multiple potential
molecular mechanisms of Treg-mediated
immunomodulation, Lohmeyer et al
identified IL-10 and IL-35 as the 2 prime
candidates that mediate the effects of
Tregs on Tcons in GVHD. For IL-10, past
work established that Treg-derived
IL-10 contributes to mitigate GVHD,
although other cellular sources exist.2

For the heterodimeric IL-35 cytokine, a
recently discovered member of the IL-12
family, data in mouse GVHD models are
limited, so far, to exogenous IL-35 admin-
istration, showing a protective effect.7

Assessing the impact of Treg-derived
IL-35 will require inactivation of IL-35
subunits specifically in Tregs. Interest-
ingly, clinical-grade ex vivo expanded
Tregs are enriched for IL-10 and IL-35-
expressing cells.8 Treg administration
also affects other critical processes in
Tcons, including Notch (a key patho-
genic pathway in GVHD) and cellular
metabolism (known for its complex
regulation and impact on T-cell function
after allo-HCT).9,10 More work is needed
to characterize Treg-mediated Tcon
ER 14
metabolic reprogramming beyond tran-
scriptomics, connect it mechanistically
to Treg activity, and assess its relative
importance in GVHD protection.

Altogether, Lohmeyer et al provided an
important body of work to help illuminate
the mechanisms that underlie the efficacy
of Treg administration in reducing GVHD
after allo-HCT while preserving graft-
versus-tumor effects.1 New predictions
from mouse models are timely because
clinical translation now includes protocols
in which Tregs are given without pharma-
cological immunosuppression, an attrac-
tive platform to track Treg activation,
differentiation, and function in human allo-
HCT recipients.5
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