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Erythroid/megakaryocytic differentiation confers
BCL-XL dependency and venetoclax resistance in
acute myeloid leukemia
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•High-throughput
screening of >500
drugs identifies BCL-XL
inhibitor sensitivity and
venetoclax resistance in
erythroid/
megakaryocytic AML.

• BCL2L1 (BCL-XL) is
highly expressed in
erythroid/
megakaryocytic AML
and is essential for their
survival based on
CRISPR screens.
1610 30 MARCH 2023 |

est on
Myeloid neoplasms with erythroid or megakaryocytic differentiation include pure
erythroid leukemia, myelodysplastic syndrome with erythroid features, and acute
megakaryoblastic leukemia (FAB M7) and are characterized by poor prognosis and limited
treatment options. Here, we investigate the drug sensitivity landscape of these rare
malignancies. We show that acute myeloid leukemia (AML) cells with erythroid or
megakaryocytic differentiation depend on the antiapoptotic protein B-cell lymphoma
(BCL)-XL, rather than BCL-2, using combined ex vivo drug sensitivity testing, genetic
perturbation, and transcriptomic profiling. High-throughput screening of >500 com-
pounds identified the BCL-XL–selective inhibitor A-1331852 and navitoclax as highly
effective against erythroid/megakaryoblastic leukemia cell lines. In contrast, these AML
subtypes were resistant to the BCL-2 inhibitor venetoclax, which is used clinically in the
treatment of AML. Consistently, genome-scale CRISPR-Cas9 and RNAi screening data
demonstrated the striking essentiality of BCL-XL-encoding BCL2L1 but not BCL2 orMCL1,
for the survival of erythroid/megakaryoblastic leukemia cell lines. Single-cell and bulk
transcriptomics of patient samples with erythroid and megakaryoblastic leukemias iden-
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tified high BCL2L1 expression compared with other subtypes of AML and other hematological malignancies, where
BCL2 and MCL1 were more prominent. BCL-XL inhibition effectively killed blasts in samples from patients with AML
with erythroid or megakaryocytic differentiation ex vivo and reduced tumor burden in a mouse erythroleukemia
xenograft model. Combining the BCL-XL inhibitor with the JAK inhibitor ruxolitinib showed synergistic and durable
responses in cell lines. Our results suggest targeting BCL-XL as a potential therapy option in erythroid/mega-
karyoblastic leukemias and highlight an AML subgroup with potentially reduced sensitivity to venetoclax-based
treatments.
Introduction
Acute myeloid leukemia (AML) with erythroid or megakaryocytic
differentiation includes acute erythroid leukemia (AEL) and
acute megakaryoblastic leukemia (AMKL), which originate from
VOLUME 141, NUMBER 13
the erythrocyte and megakaryocyte lineages arising from a
common precursor, the megakaryocyte-erythrocyte progenitor
(MEP). At the molecular level, these lineages share many reg-
ulators such as the GATA1 and GFI1B transcription factors (TFs)
and an important role of JAK-STAT signaling.1
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AEL is characterized by excessive proliferation of erythroid
lineage precursors. In the 2001 World Health Organization
classification, AEL was part of the AML classification system and
was categorized into 2 subgroups, FAB M6a and FAB M6b,
based on the proportion of erythroid and myeloid lineage
cells.2 In the revised 2016 World Health Organization classifi-
cation, AML FAB M6a was merged under the myelodysplastic
syndrome (MDS) category, whereas pure erythroid leukemia
remained the only type of acute leukemia with an erythroid
phenotype.3,4 Genetically, patients with AEL are characterized
by frequent TP53 (40.3%), STAG2 (20.1%), KMT2A (20.2%),
TET2 (16.9%), and NPM1 (14.5%) mutations and poor risk
cytogenetics.5,6 In particular, patients with TP53mutations have
a dismal outcome, and there are few viable treatment
options.5,6 Intriguingly, erythropoietin receptor (EPOR)/JAK2
gains and amplifications were recently identified in TP53-
mutated cases associated with JAK inhibitor sensitivity in pre-
clinical models.5 Moreover, targetable signaling mutations are
found in 45% of AEL cases, indicating a need for new thera-
peutic approaches for most of these patients.6

AMKL is characterized by excessive production of mega-
karyoblasts within the bone marrow (BM), extensive myelofi-
brosis, anemia, and thrombocytopenia.1 AMKL comprises the
pediatric Down syndrome-associated AMKL with a relatively
good prognosis, non–Down syndrome pediatric AMKL linked to
the RBM15-MKL1 translocation, and adult AMKL, which harbors
cytogenetic abnormalities, such as −5, −7, +8, 11q, and
mutations in the tyrosine kinases JAK2 and JAK3.7 Compared
with other adult AML, adult AMKL is characterized by poor
prognosis,8-10 frequent TP53 mutations,11 and a median overall
survival of 9 months.12

The therapeutic landscape of AML has changed rapidly recently
with the approval of new molecularly targeted therapies
including FLT3 inhibitors,13,14 IDH1/IDH2 inhibitors,15,16 a
Hedgehog inhibitor,17 and the B-cell lymphoma 2 (BCL-2)
inhibitor venetoclax.18 However, whether these or other tar-
geted agents are effective in the rare AML subtypes with
erythroid or megakaryocytic differentiation has not been
studied.

We previously found that monocytic AML cells show resistance
to BCL-2 inhibition ex vivo, consistent with increased MCL1
and decreased BCL2 expression during normal monocytic
differentiation.19 Similarly, BCL-XL is essential for effective
erythropoiesis and maintaining platelet survival.20-22 Hypothe-
sizing that the distinct lineage of AML with erythroid or
megakaryocytic differentiation may confer specific vulnerabil-
ities, we sought to identify selective dependencies in these rare
subtypes compared with other AML types. Using high-
throughput drug screens, we identify BCL-XL as a potential
therapeutic target and uncover venetoclax resistance in AML
cells differentiated along the erythroid or megakaryocytic line-
ages, corroborated by elevated gene and protein expression
and sensitivity to genetic perturbation of BCL-XL.
Methods
More detailed descriptions of the methods are available in
supplemental Methods (available on the Blood website).
BCL-XL DEPENDENCY IN ERYTHROID/MEGAKARYOCYTIC AML
Cell lines and patient samples
AML cell lines (n = 21; supplemental Table 1) were obtained from
the Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ) or the American Type Culture Collection (ATCC).

Samples from patients with AML (n = 21) collected at the time
of diagnosis, relapse, or refractory stage (supplemental Table 1)
and 2 healthy BM samples were obtained from Helsinki
University Hospital (Helsinki, Finland), MD Anderson Cancer
Center (Houston, TX), and Rigshospitalet, Copenhagen Uni-
versity Hospital (Copenhagen, Denmark) after written informed
consent. The study was approved by a local ethics committee
(Helsinki University hospital permit number 303/13/03/01/2011,
MDACC IRB protocols LAB01-473/LAB02-652 and Copenha-
gen University Hospital permit number 1705391) and abided by
the principles of the Declaration of Helsinki.

Drug sensitivity profiling
The drug library consisted of 528 approved and investigational
oncology compounds in 5 concentrations across a 10 000-fold
concentration range (supplemental Table 2). The BCL-2 family–
specific drug plate consisted of 8 different BCL-2 family inhibi-
tors in triplicate in 9 different concentrations across a 10 000-fold
concentration range (supplemental Table 3). All cells were incu-
bated with the drugs for 72 hours at 37◦C and 5% CO2 and
viability was assessed using the CellTiter-Glo assay (Promega). The
efficacy of a drug was measured as a drug sensitivity score.23 For
combination screens, 384-well drug combination plates contain-
ing five 8 × 8 combination matrices were used. Synergy, efficacy,
and integrated synergy and efficacy score were calculated using
SynToxProfiler.24

Genome-wide CRISPR and RNAi screen data
analysis
Genome-wide CRISPR screen data from the DepMap project25

and RNA interference (RNAi) screening data from the Achilles
project26 were downloaded from the DepMap portal.
Differences in gene essentiality between erythroid/megakar-
yocytic leukemia and other AML cell lines were assessed using
Welch t test on the gene effect values followed by Benjamini-
Hochberg adjustment of P values.

Western blot analysis
Extracted proteins of the 21 used cell lines were transferred
onto nitrocellulose membranes and incubated with primary
antibodies obtained from Cell Signaling Technology: anti–BCL-
2 (cat. #4223), anti–MCL-1 (#5453) and anti–BCL-XL (#2764).
Secondary infrared antibodies from LI-COR Biosciences were
used for detection and the signal was visualized with the
Odyssey imaging system.

Gene expression analysis
Hemap gene expression data27 were downloaded from
Synapse. The Cancer Genome Atlas (TCGA) AML data28 were
preprocessed as previously described.29 Cancer Cell Line
Encyclopedia (CCLE) RNA-seq30 gene expression and mutation
data (05/22) were downloaded from the DepMap portal.

Single-cell RNA sequencing (scRNA-seq)
Fresh mononuclear cells from 2 patients with AML (AML-1,
peripheral blood and AML-5, BM) were subjected to scRNA-seq
30 MARCH 2023 | VOLUME 141, NUMBER 13 1611
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using the Chromium Single Cell 3′ v3.1 Dual Index Reagent Kit
(10x Genomics). The Cell Ranger v4.0 analysis pipelines (10x
Genomics) were used to preprocess data, and the R-package
Seurat31 in R and Python library scVI32 (0.5.0) in Python (3.7.4)
were used for further scRNA-seq data analysis.

Flow cytometry–based drug sensitivity profiling
Compounds were dissolved in 100% dimethyl sulfoxide and
dispensed on a 384-well plate in a 7-dose half-log concentra-
tion series. Freshly isolated mononuclear cells were dispensed
to compound plates and incubated for 72 hours at 37◦C and 5%
CO2. After staining with monoclonal antibodies and viability
dyes, cells were analyzed with an iQue Screener Plus flow
cytometer (Intellicyt). Remaining live single cells after drug
treatment were gated using FlowJo (Treestar), and unsuper-
vised clustering was performed using the cluster function in the
CATALYST R package relying on FlowSOM33 and
ConsensusClusterPlus.34

Mouse xenograft experiments
The HEL erythroleukemia cell line was transduced with LV-
SFFV-Luc2-P2A-EmGFP lentivirus (Imanis Life Sciences). The
suspension of A-1331852 (Chemietek) was prepared as
described by Leverson et al.35 All procedures were approved by
the National Project Authorisation Board, protocol ESAVI 691.
Four million HEL-Luc-GFP cells were injected intravenously into
female nonobese diabetic/severe combined immunodeficiency
mice (Janvier Labs). Mice were divided into control (n = 5) and
treatment groups (n = 6) and treated twice a day orally with A-
1331852 (25 mg/kg) or vehicle for 2 weeks. Tumor burden was
measured twice per week using bioluminescence imaging.

Long-term drug combination assays
TF1, CMK, and HEL cells were used to assess the long-term
efficacy of A-1331852 (50 nM), venetoclax (300 nM), azaciti-
dine (500 nM), ruxolitinib (300 nM), and A-1331852 combined
with the other tested drugs. Cells were seeded at 250 000 cells
per mL, viable cells were calculated every 3 to 4 days and
reseeded in fresh medium and compounds. Cells were treated
with the compounds for 3 weeks and subsequently cultured for
2 weeks to measure the recovery of the cells after withdrawing
the drugs.

Results
High-throughput screens identify BCL-XL
inhibitors as effective against erythroid and
megakaryoblastic leukemia cell lines
To identify druggable dependencies in erythroid and mega-
karyoblastic leukemias, we screened over 500 drugs across a
10 000-fold concentration range in 4 erythroid (F36P, HEL,
OCIM1, and TF1), 2 megakaryoblastic (CMK, M07), and 3 other
AML cell lines (MOLM13, MV411, and OCIAML2). A compari-
son of the drug responses in erythroid/megakaryoblastic and
nonerythroid AML cell lines highlighted 2 apoptotic modulators
targeting BCL-XL, A-133185235 and A-1155463,36 as selectively
effective compounds in erythroid and megakaryoblastic cells
(Figure 1A-B; supplemental Table 2). In contrast, the BCL-2
inhibitor venetoclax emerged as the least effective drug in
erythroid/megakaryoblastic AML compared with others. In
addition, the RNA synthesis inhibitor plicamycin and the JAK
1612 30 MARCH 2023 | VOLUME 141, NUMBER 13
inhibitors ruxolitinib and baricitinib showed efficacy in erythroid
and megakaryoblastic leukemias. Of note, plicamycin has been
shown to inhibit the FLI1 and SP1 TFs regulating erythroid and
megakaryocytic development.37-40

BCL-XL and other BCL-2 family proteins, namely BCL-2 and
MCL-1, inhibit the initiating steps of programmed cell death by
sequestering proapoptotic proteins, such as BAX and BAK.41 To
obtain a more comprehensive view of BCL-2 family inhibitor
efficacy on AML cell lines, we conducted a focused screen using
8 BCL-2 family inhibitors in 4 erythroid, 2 megakaryoblastic, and
15 other AML cell lines (supplemental Table 3). This analysis
confirmed the selectivity of the BCL-XL inhibitors A-1331852
and A-1155463 to erythroid and megakaryoblastic cells
(Figure 1C; supplemental Figure 1). In contrast, venetoclax
targeting BCL-2 and S-63845 targeting MCL-1 were effective in
other AML subtypes (Figure 1C). Navitoclax, targeting BCL-XL,
BCL-2, and BCL-W, was broadly effective but not as potent as
the BCL-XL–selective inhibitors in erythroid and mega-
karyoblastic leukemias (Figure 1B-C).

Genome-scale CRISPR-Cas9 screens demonstrate
BCL2L1 dependency in erythroid and
megakaryoblastic leukemias
To confirm the on-target mechanism of BCL-XL inhibition, we
next evaluated the genetic dependencies of erythroid and
megakaryoblastic leukemias. First, we analyzed genome-wide
CRISPR-Cas9 loss-of-function screening data from DepMap,25

comprising 5 erythroid and 15 other AML cell lines. Strikingly,
BCL2L1 was among the top essential genes in erythroid AML
cell lines compared with other subtypes (Figure 2A-B;
supplemental Table 4). Other essential genes included GATA1
and GFI1B, which encode TFs essential in erythropoiesis and
megakaryopoiesis implicated in BCL2L1 regulation,42 but are
currently undruggable in contrast to BCL-XL. Consistent with
drug sensitivity data, erythroid cell lines were also dependent
on the ruxolitinib target JAK2. An independent CRISPR
screening data set43 confirmed the strong BCL2L1 dependency
in erythroid AML cell lines (supplemental Figure 2).

As the CRISPR screening data did not include megakaryoblastic
leukemias, we additionally analyzed RNAi screening data of 3
erythroid and 3 megakaryoblastic AML cell lines compared with
14 other AML cell lines. This analysis supported the findings
from the CRISPR data regarding erythroid AML and demon-
strated essentiality of BCL2L1 also in megakaryoblastic AML
(Figure 2C-D). Interestingly, also the erythroid blast phase
chronic myeloid leukemia cell lines LAMA84 and K562 were
sensitive to BCL2L1 knockdown, suggesting that chronic
myeloid leukemia cells differentiated along the erythroid line-
age also depend on BCL-XL (supplemental Figure 2C). In
contrast, erythroid and megakaryoblastic cells were insensitive
to silencing of BCL2 or MCL1 by either CRISPR-Cas9 or RNAi,
indicating that BCL-XL is the essential BCL-2 family prosurvival
protein in erythroid and megakaryoblastic leukemia cell lines
(Figure 2A,C).

High BCL2L1 expression in erythroid and
megakaryocytic leukemias
We next assessed whether increased expression of BCL2L1 or
other factors underlie the functional dependency on BCL-XL.
KUUSANMÄKI et al
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Figure 1. High-throughput screening identifies BCL-XL inhibitors with selective efficacy against erythroid and megakaryoblastic leukemias. (A) Schematic of the high-
throughput drug sensitivity and resistance testing experiments. Four erythroid (F36P, HEL, OCIM1, and TF1), 2 megakaryoblastic (CMK and M07), and 3 other AML cell lines
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Erythroid and megakaryoblastic AML cell lines expressed
elevated levels of BCL2L1 compared with other subtypes
(Figure 3A). These cell lines also expressed TFs characteristic of
the erythroid and megakaryocytic lineages, suggesting an
association of BCL2L1 with the erythroid/megakaryocytic tran-
scriptional program. GFI1B knockdown in the K562 eryth-
roleukemia cells44 reduced BCL2L1 levels, supporting the role
of erythroid/megakaryocytic TFs such as GFI1B in promoting
BCL2L1 expression (supplemental Figure 2D). The observed
druggable antiapoptotic protein dependencies were also
BCL-XL DEPENDENCY IN ERYTHROID/MEGAKARYOCYTIC AML
reflected in the protein levels of BCL-XL together with the
relatively low BCL2 in erythroid/megakaryoblastic cell lines
(Figure 3A). Of note, MCL1 protein levels did not markedly
differ between the erythroid/megakaryoblastic and other cell
lines, although the erythroid/megakaryoblastic cells showed
lower MCL-1 inhibitor sensitivity (supplemental Figure 1).

The M6/M7 AML cell lines frequently harbored TP53 mutations
(Figure 3A), consistent with patient data.5,6 Because TP53 loss
has been linked to venetoclax resistance and compensatory
30 MARCH 2023 | VOLUME 141, NUMBER 13 1613
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BCL-XL upregulation,45 we tested whether TP53 loss drives
sensitivity to BCL-XL inhibition. Erythroid/megakaryoblastic cell
lines were more sensitive to BCL-XL inhibition even when
compared only to TP53-mutated cell lines (supplemental
Figure 3). Furthermore, CRISPR-mediated TP53 knockout in
the TP53 wild-type cells MOLM13, MV411, and OCIAML2
reduced their sensitivity to venetoclax, whereas BCL-XL inhibi-
tor sensitivity was not affected (Figure 3B). Differences between
both BCL-XL inhibitors and venetoclax remained significant
between the erythroid/megakaryoblastic cell lines and the TP53
knockout lines representing other AML types (Figure 3B). Thus,
although venetoclax resistance appears to be driven jointly by
erythroid/megakaryoblastic differentiation and by TP53 muta-
tions, sensitivity to BCL-XL inhibition does not seem directly
linked to TP53 status but more likely to erythroid/mega-
karyoblastic differentiation.

In patients with AML, BCL2L1 was overexpressed in erythroid
(FAB M6) and megakaryocytic (FAB M7) AML in the TCGA
cohort (Figure 3C). In contrast, BCL2 was more prominently
expressed in less differentiated (FAB M0-M1) AML subtypes
and acute promyelocytic leukemia (FAB M3), and MCL1 in
monocytic AML (FAB M4-M5), as reported previously.19,46 To
compare the expression of BCL2L1 in erythroid/mega-
karyoblastic leukemias relative to other hematological cancers,
we used a resource of transcriptomic data sets aggregated
across hematological malignancies.27 BCL2L1 was strikingly
overexpressed in the M6 AML FAB subtype compared with
other cancer types, whereas M7 samples did not show elevated
BCL2L1 expression in this data set (Figure 3D; supplemental
Figure 4A; supplemental Table 4). In contrast, BCL2 and
MCL1 were not overexpressed in erythroid or megakaryoblastic
leukemias, whereas BCL2 was highly expressed in chronic
lymphocytic leukemia (supplemental Figure 4B-C), consistent
with the strong BCL-2 dependency and venetoclax sensitivity of
this leukemia type.47

Reflecting the expression pattern in malignant samples, scRNA-
seq data from the Human Cell Atlas48 showed that in normal
hematopoiesis, cells of the erythroid/megakaryocytic lineages
highly express BCL2L1, whereas BCL2 expression is more
pronounced in hematopoietic progenitors and the lymphoid
lineage and MCL1 in the monocytic lineage (Figure 3E).
Consistent with the expression patterns, BCL-XL inhibitor treat-
ment of healthy BMmononuclear cells reduced colony formation
of the erythroid progenitors (burst-forming unit BFU-E and
colony-forming unit [CFU]-E) but did not substantially affect the
common myeloid progenitors (CFU-GEMM) or the granulocyte-
macrophage progenitors (CFU-GM) (Figure 3F; supplemental
Figure 3. High BCL-XL expression in erythroid and megakaryoblastic leukemia unde
BCL-XL, BCL-2, and MCL-1 in 21 AML cell lines. FAB subtype, expression of BCL-2 family g
data not available), drug sensitivity scores of BCL-2 family inhibitors, and TP53 mutation
mediated TP53 knockout (TP53 KO) variants of MOLM13, MV411, and OCIAML2 cell l
cytic AML cell lines are shown as a comparison. P values were obtained using paired W
indicate mean, error bars indicate standard deviation, and dots indicate individual cell lin
In the box plot, the horizontal line indicates the median, boxes indicate the interquartile
interquartile range from the hinge. (D) BCL2L1 (BCL-XL) expression across hematological
other samples using Wilcoxon rank-sum test is shown. Box plot as in panel C. (E) UMAP plo
annotations based on the reference-based method SingleR and BCL2L1, BCL2, and MCL
plots. (F) Colony-forming potential of healthy BM mononuclear cells after 24 hours pretre
replicate and number of colonies were normalized to control after culturing the cells for 2
HCA, Human Cell Atlas; KO, knockout; WT, wild-type.
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Figure 5). The effects of A-1331852 on normal erythropoietic
precursors at a concentration highly effective against leukemic
cells were similar or less pronounced than those of navitoclax.
Taken together, these data show that BCL2L1, which encodes
BCL-XL, is highly expressed in acute erythroid/megakaryoblastic
leukemias and their normal counterparts, providing a basis for
the observed sensitivity to BCL-XL inhibition.
BCL-XL inhibition is effective ex vivo against AML
patient cells with erythroid or megakaryocytic
differentiation
To evaluate whether BCL-XL–selective inhibition would be
effective against primary AML cells with erythroid or megakar-
yocytic differentiation, we tested the focused set of BCL-2
family inhibitors in BM samples of 21 patients with AML,
including 5 with erythroid and 3 with megakaryocytic differen-
tiation (clinical characteristics in supplemental Table 1), and 2
healthy donors. The samples with erythroid/megakaryocytic
differentiation showed pronounced sensitivity to A-1331852
(P < .01) and reduced sensitivity to venetoclax (P = .12) except
patients with mutant IDH2 or SRSF2 reported to be dependent
on BCL-218,49 (Figure 4A-B; supplemental Figure 6A-B).
Importantly, 4 of these patients received treatment with ven-
etoclax and hypomethylating agent but were refractory
(supplemental Methods). Notably, TP53-mutated erythroid/
megakaryoblastic AML samples were particularly resistant to
BCL-2 inhibition but sensitive to BCL-XL inhibition. Intriguingly,
a FAB M1 sample expressing high levels of erythroid lineage-
specific TFs and harboring an EPOR frameshift mutation lead-
ing to the elimination of negative regulatory domains
(supplemental Figure 6C) was also highly sensitive to BCL-XL
inhibition. Similar EPOR truncating mutations are recurrent
driver mutations in erythroleukemia,5 Ph-like ALL,50 and eryth-
rocytosis.51 Although A-1331852 was the most selectively
effective against AML with erythroid or megakaryocytic differ-
entiation, these samples also showed sensitivity to the BCL-2/
BCL-XL inhibitor navitoclax (Figure 4A).
Integrated single-cell transcriptomics and
phenotype-based ex vivo drug profiling
demonstrate blast specificity of BCL-XL inhibition
Drug sensitivity and gene expression profiling of patient sam-
ples using bulk methods are unable to distinguish whether the
BCL-XL inhibitor sensitivity or BCL2L1 expression primarily
reflect blasts or more terminally differentiated cells. To better
understand the drug sensitivity and gene expression profiles of
the blasts, we performed integrated scRNA-seq and ex vivo
rlies sensitivity to BCL-XL inhibition. (A) Protein levels of BCL-2 family members of
enes and erythroid lineage TFs in AML cell lines from the CCLE data set (gray color,
s are shown below as heatmaps. (B) Sensitivity of parental (TP53 WT) and CRISPR-
ines to A-1331852 and venetoclax as drug sensitivity scores. Erythroid/megakaryo-
elch t tests (KO vs WT) and Wilcoxon rank-sum tests (M6/M7 vs others). Bar heights
es. (C) Expression of BCL-2 family genes in AML FAB subtypes in the TCGA data set.
range, and whiskers extend from the hinge to the smallest/largest value, at most 1.5
malignancies in the Hemap data set. P value for AML M6 samples compared with all
ts of single-cell RNA-seq data of normal hematopoiesis from the HCA, with cell type
1 expression levels as normalized and scaled log-transformed counts colored on the
atment of the indicated compounds in cell culture. Each dot represents a technical
weeks in semisolid medium. Bar heights indicate mean and error bars indicate range.
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phenotype-based drug sensitivity profiling of 1 erythroid and
1 megakaryocytic AML.

We first performed scRNA-seq on BM mononuclear cells of a
patient with essential thrombocythemia transformed to
erythroid AML (Figure 5A). Out of 8834 cells, we identified 3
clusters representing the malignant erythroid cells at differing
phenotypic stages based on expression of erythroid markers
(GYPA, TFRC, HBA1, and HBB) and TFs (NFE2, GATA1, TAL1,
KLF1, and GFI1B) and detection of clonal copy-number alter-
ations (Figure 5B; supplemental Figures 7 and 8; supplemental
Table 5). Most of the malignant erythroid cells highly expressed
BCL2L1, lymphocytes expressed BCL2, and normal common
myeloid progenitors (CMPs) and multipotent progenitors
(MPPs) expressed MCL1.

We then performed scRNA-seq on peripheral blood mononuclear
cells from a patient with MDS progressed to megakaryocytic AML,
refractory to induction chemotherapy and venetoclax combined
with azacitidine. Of 6709 cells, 49.2% were classified as MEPs or
BCL-XL DEPENDENCY IN ERYTHROID/MEGAKARYOCYTIC AML
megakaryocytes by the reference-based method SingleR
(Figure 5C-D; supplemental Figure 9). Supporting megakaryocytic
differentiation, the MEP-like blasts expressed megakaryocyte
markers (CD41, CD42, CD61, and TFRC) and megakaryocytic
lineage TFs (NFE2, GATA1, RUNX1, TAL1, and FLI1) (Figure 5D).
The MEP, megakaryocyte, and erythrocyte populations primarily
expressed BCL2L1, whereas BCL2 was expressed by lymphocytes
and MCL1 by monocytes, as expected (Figure 5D).

For the phenotype-based drug sensitivity profiling, the mono-
nuclear cells were cultured in the presence of BCL-2 family
inhibitors for 3 days and analyzed using a 9-color flow cytometry
readout. Unsupervised clustering of the pooled drug-treated
and control cells identified clusters representing the blasts
based on clinically reported immunophenotypes and similarity
to populations identified in scRNA-seq (Figure 5E-F). These
included the cells from patients with erythroid AML expressing
CD117 and the cells from patients with megakaryocytic AML
expressing the progenitor markers CD34, CD117, and CD38
(supplemental Figure 10). Other major clusters represented
30 MARCH 2023 | VOLUME 141, NUMBER 13 1617
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lymphocytes, monocytes, and erythrocytes or small debris
based on CD45 expression, reflecting the cell populations
identified using scRNA-seq. In both patients, the blasts were
highly sensitive to A-1331852 and showed substantial sensitivity
to navitoclax (Figure 5G-H; supplemental Figure 10). In
contrast, the blasts were insensitive to venetoclax, in line with
the venetoclax resistance observed clinically with the patient
with megakaryocytic AML (Figure 5G-H). Of note, lymphocytes
were sensitive to venetoclax and navitoclax, reflecting the high
BCL2 expression observed in scRNA-seq (Figure 5G-H). These
findings confirm the BCL-XL dependency and venetoclax
resistance of the blasts with erythroid/megakaryocytic differ-
entiation suggested by the bulk drug sensitivity profiling.

Finally, we sought to compare the expression of BCL-2 family
genes specifically in blasts between different types of AML.
Using scRNA-seq data, we integrated the blasts from the
patients with AML with erythroid/megakaryocytic differentiation
with the blasts and monocytes from 3 patients with AML whose
disease did not show erythroid or megakaryocytic differentia-
tion52 (Figure 6A). The blasts with erythroid/megakaryocytic
differentiation clustered separately from other blasts and
expressed higher levels of BCL2L1 compared with the other
samples, whereas expression of BCL2 or MCL1 was low
(Figure 6B-D). The GMP-like and CMP-like blasts highly
expressed MCL1, and the CMP-like blasts showed substantial
BCL2 expression (Figure 6B-D). The selective expression of
BCL2L1 in blasts with erythroid/megakaryocytic differentiation
observed at the single-cell level therefore provides a basis for
the observed ex vivo drug responses.

Exploring the translational potential of BCL-XL
inhibition in murine and in vitro long-term
combination treatment models
To explore how the BCL-XL dependency of erythroid/megakar-
yocytic AML could be best exploited therapeutically, we tested
BCL-XL inhibition in a mouse xenograft model. We transplanted
4 million luciferase-expressing HEL erythroleukemia cells intra-
venously into nonobese diabetic/severe combined immunode-
ficiency mice. After establishment of systemic disease at 24 days,
we initiated treatment with the BCL-XL inhibitor A-1331852 twice
a day, orally (Figure 7A). A-1331852 effectively reduced tumor
burden as measured by bioluminescence imaging (Figure 7B-C).
However, in some animals, the tumor cells persisted through
treatment and continued to grow after drug withdrawal at 2
weeks (Figure 7B; supplemental Figure 11).
Figure 5. Integrated single-cell transcriptomics and phenotype-based ex vivo dru
Approximation and Projection (UMAP) plot of scRNA-seq data of AML with erythroid diff
the help of the reference-based cell type classification method SingleR. (B) Dot plot of exp
tiation, proliferation and progenitor markers, and BCL-2 family genes in the indicated cell t
names are shown in gray. Dot size indicates the percentage of cells of a cell type express
transformed counts. Bar plot above shows the percentage of each cell type out of all c
(patient AML-1). Cell types identified using the reference-based method SingleR are colored
“Other.” (D) Dot plot of expression of selected megakaryocyte differentiation markers, TFs re
the indicated cell types in the scRNA-seq data of AML with megakaryocytic differentiation (A
profiling in the patient with AML with erythroid differentiation (AML-5). Cells from control (DM
cells sampled from each condition. (F) UMAP plots of cells analyzed using flow cytometry-ba
Cells from control (DMSO) and BCL-XL inhibitor-treated (A-1331852, 125 nM) conditions are s
cells compared with DMSO control) of the clusters representing different cell types in the
concentrations of A-1331852 and venetoclax were analyzed using flow cytometry-based dru
compared with DMSO control) of the clusters representing different cell types in the patien
concentrations of A-1331852 and venetoclax analyzed using flow cytometry-based drug pro

BCL-XL DEPENDENCY IN ERYTHROID/MEGAKARYOCYTIC AML
To find treatment regimens enabling long-term disease control,
we explored potential combination treatments by testing 5
other compounds with the BCL-XL inhibitor A-1331852 in 8 × 8
concentration matrices (Figure 7D). We selected as combina-
tion candidate drugs used clinically in AML treatment (ven-
etoclax, azacitidine, and idarubicin), drugs that showed high
efficacy in erythroid/megakaryocytic AML in our screens (the
JAK inhibitor ruxolitinib), and drugs targeting other members of
the BCL-2 family (the MCL-1 inhibitor S-63845). Combining
BCL-XL inhibition with ruxolitinib, venetoclax, or azacitidine
showed potent efficacy and synergy across the studied 4
erythroid and 2 megakaryoblastic AML cell lines in the 3-day
assay (Figure 7D-E; supplemental Figure 12; supplemental
Table 6).

To test the potential of these combinations in achieving long-
term disease control, we performed drug treatment assays,
spanning over a month, in 2 erythroid (TF1, HEL) and a
megakaryoblastic AML cell line (CMK) (Figure 7F). The combi-
nations of A-1331852 with azacitidine or venetoclax achieved
complete elimination of leukemia cells in individual cell lines
(HEL), but not in all. Strikingly, the combination of BCL-XL and
JAK inhibition resulted in the complete elimination of the tumor
cells in all cell lines and a lack of outgrowth of the cells even
after drug withdrawal.
Discussion
Here, we demonstrate that erythroid and megakaryoblastic
AML cell lines and primary samples are highly dependent on
the antiapoptotic protein BCL-XL but not on BCL-2 or MCL-1.
Targeting BCL-XL in AML with erythroid or megakaryocytic
differentiation represents a strategy exploiting the specific
vulnerabilities of these lineages. In the healthy BM, BCL-XL is
essential for effective erythropoiesis, particularly at the terminal
stages of erythroblast differentiation,20,21 and for preventing
apoptosis by restraining the proapoptotic proteins, BAX and
BAK.53 BCL-XL expression is strongly increased during
erythroid differentiation, and a lack of BCL-2 is characteristic of
erythroblasts.20 BCL-XL also maintains platelet survival54 and
contributes to the function and survival of megakaryocytic
progenitors.55 Conditional BCL-XL knockout in hematopoietic
progenitors in mice leads to severe anemia and thrombocyto-
penia.56 The essential role of BCL-XL in normal erythropoiesis
and megakaryopoiesis provides a rationale for the observed
BCL-2 family dependencies of their leukemic counterparts.
g profiling in AML with megakaryocytic differentiation. (A) Uniform Manifold
erentiation (patient AML-5). Cells are colored based on clusters, which are named with
ression of selected erythroid differentiation markers, TFs regulating erythroid differen-
ypes in the scRNA-seq data of AML with erythroid differentiation (AML-5). CD marker
ing the given gene, and average expression is shown as normalized and scaled log-
ells. (C) UMAP plot of scRNA-seq data of AML with megakaryocytic differentiation
as indicated in panel D. Cell types comprising less than 1% of total cells are labeled as
gulating megakaryocytic differentiation, progenitor markers, and BCL-2 family genes in
ML-1) as in panel B. (E) UMAP plots of cells analyzed using flow cytometry-based drug
SO) and BCL-XL inhibitor-treated (A-1331852, 300 nM) conditions are shown, with 1000
sed drug profiling in the patient with AML with megakaryocytic differentiation (AML-1).
hown, with 1000 cells sampled from each condition. (G) Viabilities (percentage of viable
patients with AML with erythroid differentiation (AML-5) after treatment with indicated
g profiling. Clusters are colored as in panel E. (H) Viabilities (percentage of viable cells
t with AML with megakaryocytic differentiation (AML-1) after treatment with indicated
filing. Clusters are colored as in panel F. DMSO, dimethyl sulfoxide.
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In contrast to differentiating erythroid cells and reticulocytes,
BCL-XL is not essential for normal early-stage mouse erythro-
blasts.21,57 In our AEL and AMKL index cases, scRNA-seq
demonstrated elevated BCL2L1 in major blast populations
(MEPs and erythroblasts), accompanied by a lack of BCL2
expression, sensitivity to BCL-XL inhibition, and venetoclax
resistance compared with other AML subtypes. Whether het-
erogeneity in the differentiation stage of the blasts in erythroid/
megakaryoblastic leukemia or the myeloblastic compartment
present commonly in erythroleukemia affects the BCL-XL
dependence warrants further investigation.

Dependence on BCL-XL has been previously suggested as a
mechanism driving venetoclax resistance in AML.58-60 Our find-
ings suggest that erythroid/megakaryocytic differentiation may,
in some cases, explain the dependence on BCL-XL as opposed
to BCL-2. In our cohort, 6 out of 8 primary erythroid/mega-
karyoblastic leukemia samples were resistant to venetoclax
ex vivo. The 2 venetoclax-sensitive patients harbored IDH2 and
SRSF2 mutations, known markers for good venetoclax
responses.18,49 In contrast, all 4 TP53-mutated patients were
resistant to venetoclax and sensitive to BCL-XL inhibition.
Importantly, 3 of these patients were treated with venetoclax
plus hypomethylating agent with no clinical responses observed.
TP53 loss/mutation has been linked to decreased BCL-2
expression,61-63 venetoclax resistance in AML,64,65 and poten-
tially increased BCL-XL dependency.45 In our experiments, TP53
knockout significantly reduced sensitivity to venetoclax but did
not induce BCL-XL sensitivity. Mutant TP53 thus appears to
mediate resistance to BCL-2 but not to BCL-XL inhibition.
Definitive understanding of whether erythroid/megakaryocytic
differentiation confers venetoclax resistance in the clinical
setting and how mutation profiles influence responses will
require larger clinical cohorts of these rare AML subtypes.

BCL-XL inhibition may result in adverse effects such as throm-
bocytopenia, as observed in navitoclax-treated patients.66

Consistently, A-1331852 results in a reduction of circulating
platelets similar to navitoclax in rats.35 However, this may not
preclude the use of BCL-XL inhibitors in the setting of acute
leukemia, where such adverse effects are often accepted in
standard chemotherapy regimens. Supporting the feasibility of
BCL-XL inhibition in patients, a recent trial found navitoclax in
combination with ruxolitinib tolerable in patients with myelofi-
brosis, although thrombocytopenia was reported as the most
common adverse effect.67 In AML, BCL-XL inhibition could
potentially be used as a bridge therapy to allotransplantation,
making it possible to administer platelet transfusions for the
limited treatment period with a BCL-XL inhibitor. Other strate-
gies to circumvent the adverse effects on normal thrombopoi-
esis could include a platelet-sparing BCL-XL agent such as a
proteolysis-targeting chimera.68 Although BCL-XL inhibition
and navitoclax reduced the colony formation of normal
Figure 7. Efficacy of BCL-XL inhibition in a xenograft mouse model and in long-t
performed using HEL erythroleukemia cells. (B) Line graph showing tumor burden based
Dashed line indicates stopping of the drug treatment. (C) Comparison of changes in tum
relative to the start of treatment (day 0) based on bioluminescence imaging. P value
combination screens and bar plot showing the synergy and efficacy score values of the
highest to lowest on average. (E) Heatmaps of drug sensitivity in HEL erythroleukemia c
across the tested concentration matrices. Percent inhibition values are indicated in the
(megakaryocytic AML), and HEL-Luc (erythroid AML, used in mouse studies) cells. Gray-

1622 30 MARCH 2023 | VOLUME 141, NUMBER 13
erythroid progenitors in our colony-forming assay, severe ane-
mia has not been reported as common in patients treated with
navitoclax.69

The combination of BCL-XL and JAK inhibition showed synergy
and produced durable responses in vitro. Erythropoietin and
thrombopoietin promote erythropoiesis70 and thrombopoi-
esis,71 respectively, by activating JAK-STAT signaling, which
can drive BCL-XL expression.72-75 Indicating the importance of
the JAK-STAT pathway also in malignancies arising from these
lineages, JAK2/3 is commonly mutated in AMKL,7 and EPOR/
JAK2 amplifications are frequent in AEL.5 Combined BCL-XL/
JAK inhibition may therefore effectively exploit the character-
istic dependencies of malignant erythroid/megakaryocytic cells.
BCL-XL dependency of individual AML cell lines has been
previously attributed to the JAK2 V617F mutation.35,76 In line
with a previous report,77 our data suggest erythroid/megakar-
yocytic differentiation as a driver of BCL-XL dependency more
broadly. In some cases, genetic alteration of JAK-STAT
signaling may act as one of the possible mechanisms, as sug-
gested by the BCL-XL-dependent FAB M1 patient sample
harboring an EPOR mutation in our cohort.

AML cells with monocytic differentiation have reduced sensi-
tivity to BCL-2 inhibition ex vivo, which is associated with
increased MCL1 and decreased BCL2 expression during
normal monocytic differentiation.19,78 This observation was
consistent with the clinical data demonstrating decreased
venetoclax efficacy in patients with monocytic AML, but
further clinical data is warranted to validate these findings.46

The observation of BCL-XL sensitivity in AML of erythroid or
megakaryocytic lineage provides further evidence that, in
addition to the mutation profile, the differentiation stage may
influence sensitivity to BCL-2 family inhibitors in AML. As
pathological erythropoiesis and megakaryopoiesis can occur
not only in erythroid/megakaryoblastic AML but also in MDS
and myeloproliferative neoplasms (MPN), the sensitivity to
BCL-XL inhibition could potentially apply to these diseases.
Supporting this hypothesis, MPNs such as polycythemia vera
have been found to highly express BCL-XL.79 The sensitivity of
MPNs to BCL-XL inhibition in combination with JAK inhibitors
has been suggested previously in JAK2 mutation-driven
malignancies76,80 and is currently investigated in myelofi-
brosis (#NCT03222609).67 In contrast, treatments based on
the BCL-2 inhibitor venetoclax may not be effective in malig-
nancies with erythroid or megakaryocytic differentiation
because of their dependence on BCL-XL. Indeed, poor
response rates were reported in AML evolved from MPN
treated with venetoclax-containing regimens.81 In conclusion,
given the poor prognosis associated with erythroid and meg-
akaryoblastic leukemias and the limited targeted therapy
options, we propose BCL-XL as a viable target for further
exploration in the treatment of these leukemia subtypes.
erm combination treatments. (A) Schematic of the mouse xenograft experiment
on bioluminescence imaging for each mouse relative to start of treatment (day 0).
or burden between BCL-XL inhibitor and vehicle treatment on day 4 of treatment

was obtained using one-sided Wilcoxon rank-sum test. (D) Schematic of the drug
combinations indicating combined efficacy and synergy in all cell lines ranked from
ells with the combinations of A-1331852 with ruxolitinib, venetoclax, and azacitidine
heatmaps. (F) Long-term drug treatment assays using TF1 (erythroid AML), CMK

row shaded areas indicate duration of drug treatment.
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