
Regular Article
LYMPHOID NEOPLASIA
The proto-oncogene TCL1A deregulates cell cycle
and genomic stability in CLL
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KEY PO INT S

• TCL1A directly engages
CDC20 in the mitotic
checkpoint complex,
accelerating cell cycle
transit and driving
genome instability in
B cells.

•Downregulated CDC20
in CLL cells resembles
the aneuploidy
phenotype and is
associated with more
aggressive disease and
cellular features.
in.pdf 
Upregulation of the proto-oncogene T-cell leukemia/lymphoma 1A (TCL1A) is causally impli-
cated in various B-cell and T-cell malignancies. High-level TCL1A correlates with aggressive
disease features and inferior clinical outcomes. However, the molecular and cell biological
consequences of, particularly nuclear, TCL1A are not fully elucidated. We observed here in
mouse models of subcellular site-specific TCL1A-induced lymphomagenesis that TCL1A
exerts a strong transforming impact via nuclear topography. In proteomic screens of TCL1A-
bound molecules in chronic lymphocytic leukemia (CLL) cells and B-cell lymphoma lines, we
identified regulators of cell cycle and DNA repair pathways as novel TCL1A interactors,
particularly enriched under induced DNA damage and mitosis. By functional mapping and in
silico modeling, we specifically identified the mitotic checkpoint protein, cell division cycle
20 (CDC20), as a direct TCL1A interactor. According to the regulatory impact of TCL1A on
the activity of the CDC20-containing mitotic checkpoint and anaphase-promoting complexes
during mitotic progression, TCL1A overexpression accelerated cell cycle transition in B-cell
lymphoma lines, impaired apoptotic damage responses in association with pronounced
chromosome missegregation, and caused cellular aneuploidy in Eμ-TCL1A mice. Among
by guest on 02 June 2024
hematopoietic cancers, CDC20 levels seem particularly low in CLL. CDC20 expression negatively correlated with TCL1A
and lower expression marked more aggressive and genomically instable disease and cellular phenotypes. Knockdown of
Cdc20 in TCL1A-initiated murine CLL promoted aneuploidy and leukemic acceleration. Taken together, we discovered
a novel cell cycle–associated effect of TCL1A abrogating controlled cell cycle transition. This adds to our concept of
oncogenic TCL1A by targeting genome stability. Overall, we propose that TCL1A acts as a pleiotropic adapter molecule
with a synergistic net effect of multiple hijacked pathways.
Introduction
T-cell leukemia/lymphoma 1A (TCL1A) is the prototypic mem-
ber of a 3-paralogue family that further includes TCL1B and
mature T-cell proliferation 1 (MTCP1). Upregulation of TCL1A
owing to rearrangements of its gene locus on chromosome 14
is considered the initiating event in T-prolymphocytic leukemia
(T-PLL).1,2 Deregulated TCL1A is also implicated in the patho-
genesis of chronic lymphocytic leukemia (CLL).3
Both T-PLL and CLL show elevated TCL1A expression in >90% of
cases, yet at variable levels. Highest levels are associatedwithmore
complex karyotypes, high-risk (cyto)genetic aberrations, unfavor-
able clinical features, such as faster tumor cell doubling,2,4-6 and
poorer responses to chemoimmunotherapies.4-7 Analogous
observations were made in other B-cell lymphomas.8-10

The transforming capacity of TCL1A in T and B cells has been
demonstrated in transgenic (tg) mouse models. Animals
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expressing human TCL1A under the murine T-cell specific Lck
promoter or the B-cell receptor VH promoter/IGHμ enhancer
develop expansions that closely resemble human T-PLL
(Lckpr-TCL1A mice)11 or CLL (Eμ-TCL1A mice),12 respectively.

The 14 kDa beta barrel–shaped TCL1A protein lacks enzymatic
properties and does not possess DNA-binding activity. Its best
established oncogenic function is an adapter-like engagement
of induced homodimers in subplasmalemmal molecular com-
plexes with AKT, leading to nuclear translocalization and cata-
lytic augmentation of this oncogenic serine/threonine
kinase.13,14 TCL1A can also enhance NF-κB and inhibit AP-1
transcriptional activities.15 We characterized TCL1A as a
threshold-lowering sensitizer toward antigen receptor signals,
mainly mediated by an activating physical interaction with
involved cytoplasmic kinases.5,6,16 As constitutively active myr-
istoylated (myr) AKT in murine B cells does not recapitulate the
oncogenic effect of TCL1A,17 we postulate an underrecognized
target pleiotropism of TCL1A.18 In particular, the molecular
effectors of nuclear TCL1A are not well established.

We also observed a cell cycle–dependent protein expression of
TCL1A at the single-cell level in CLL and other B-cell tumors.4,9

This implicates TCL1A as an intricate component of deregu-
lated cell cycle pathways, which are central to B-cell
leukemogenesis.19-21

Generally, the checkpoints that regulate cell cycle progression
after DNA replication are the G2/M checkpoint, which ensures
DNA integrity before prophase entry, and the mitotic check-
point (also known as spindle assembly checkpoint), which pre-
vents premature cell division until all kinetochores are attached
to a spindle.22,23 The mitotic checkpoint is maintained by the
mitotic checkpoint complex (MCC), which antagonizes the
multisubunit anaphase-promoting complex (APC/C), an
E3 ubiquitin-ligase mediating the onset of the anaphase. The
cell division cycle 20 (CDC20) plays a crucial role in both
complexes. By acting as a coactivator of the APC/C
(APC/CCDC20), it promotes anaphase initiation.23 As part of the
MCC, however, it also inhibits the function of APC/CCDC20

together with mitotic arrest deficient 2 (MAD2) and the mitotic
checkpoint proteins, BUBR1 and BUB3.24

Here, we demonstrate that TCL1A perturbs cell cycle transition
and impedes an adequate DNA damage response (DDR),
resulting in genome instability. We implicate protein interac-
tions of TCL1A with components of the MCC and APC/C, such
as CDC20, to mediate these effects. Associations with aggres-
sive disease characteristics and clinical outcomes emphasize a
central role of (deregulated) CDC20 in CLL.
Materials and methods
Patient material
Peripheral blood (PB)–derived healthy donor (Institutional Blood
Bank) and CLL samples (Departmental Biorepository) were
obtained under institutional review board–approved protocols
(#11-319, #01-143, #9-1085, and #13-091) with written
informed consent according to the Declaration of Helsinki.
Ficoll-isolated PB mononuclear cells and B cells were purified
and cultured as reported.25
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Mouse experiments
Studies on Eμ-TCL1A mice12 were carried out under permission
84-02.04.2012.A394 (Regional Council, Cologne, Germany).
Preleukemic stage: white blood cell (WBC) counts <25 × 109/L
(age, 7-8 weeks) and no hepatosplenomegaly; and overt
leukemic stage: >30% CD5+/19+ population in PB and a WBC
count >50 × 109/L.

For primary murine hematopoietic stem cell and progenitor cell
(HSC/HPC) transplantations (F21/03 and FK/1050, Regional
Council, Darmstadt, Germany), bone marrow cells were isolated
from B6-SJL mice, and lineage-committed cells were depleted
as described.26 Remaining cells were retrovirally transduced
with vectors MP91-eGFP, human (h)TCL1A, myr-hTCL1A, or
nuclear localization signal (nls)-hTCL1A. After irradiation, 1 × 106

transduced cells were transplanted into C57BL/6 recipients.

IPs, MS, and validations
Immunoprecipitations (IPs) with specific antibodies were carried
out using the following beads: streptavidin-coupled (bio-
tinylated proteins; Sigma-Aldrich, St. Louis, MO), Anti-FLAG M2
magnetic beads (FLAG-tagged proteins, Sigma), Ni2+ resins
(his-tagged proteins, Sigma), and Protein G Sepharose (Sigma)
or magnetic Dynabeads Protein G (Invitrogen, Waltham, MA).
Eluates and input samples were analyzed by immunoblots.
Samples and mass spectrometry (MS) protocols, as well as
details on the proximity ligation assay (PLA) and the protein
complementation assay are provided in the supplemental Data,
available on the Blood website.

Cell cycle analysis
Cells were synchronized via nocodazole (Sigma) at 100 ng/mL for
16 hours or with RO-3306 (Selleckchem, Houston, TX) at 9 μM for
20 hours. Cells were washed, released into full medium, and
harvested at indicated time points. Cellular DNA content was
measured by Hoechst 33258 (Sigma) staining in the presence of
RNase A (Invitrogen) using the IntraPrep Permeabilization kit
(Beckman Coulter, Brea, CA). Analysis on the Gallios flow
cytometer used the Kaluza software (both Beckman Coulter).

Profiling experiments
Array-based gene expression profiles (GEPs) were performed
on tumor cell suspensions (>70% B-cell content) from spleens of
recipients of HSC/HPC, transduced with site-targeted TCL1A
versions or with enhanced green fluorescent protein (eGFP)
(CD19+GFP+ cells at day 100). Gene set enrichment analysis
(GSEA) used the GSEA_4.0.3 software (Broad Institute, Cam-
bridge, MA). Microarray GEP of 337 human CLL8 trial samples
and data analyses are outlined in the supplemental Data and in
Hallek et al.,27 Vasyutina et al.,28 and Bloehdorn et al.29 For
single-cell RNA sequencing of splenocytes of Eμ-TCL1A mice
see Kohlhaas et al.30 and supplemental Data.

Results
TCL1A exerts a strong oncogenic impact via its
nuclear localization
TCL1A is expressed in the cytoplasm and in the nucleus of CLL
cells (supplemental Figure 1A). To refine the concept of
subcellular site-specific leukemogenic effects of TCL1A, we
transduced murine HSC/HPC with 3 human TCL1A variants:
STACHELSCHEID et al
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wild-type (WT), membrane-targeted myr-TCL1A, and nuclear-
localized nls-TCL1A (Figure 1A). Localization of these TCL1A
forms was validated in HEK293T cells and in situ (spleens of
induced lymphomas) (Figure 1B; supplemental Figure 1B). Mice
transplanted with cells expressing nls-hTCL1A had a signifi-
cantly shorter lymphoma-specific survival than mice with
WT-TCL1A–induced tumors (median, 349 days vs 388 days,
respectively; Figure 1C), despite similar disease characteristics
and histologies (supplemental Figure 1C). All 3 groups devel-
oped mostly B-cell leukemias/lymphomas and less frequently
CD4/CD8 double-positive/negative T-cell leukemias/
lymphomas (supplemental Table 1). GSEA of GEP data from the
B-cell tumors identified nuclear pathways including DNA repair,
cell cycle, and mitotic spindle to be enriched in the nls-hTCL1A
vs WT-TCL1A–induced lymphomas (Figure 1D-E; supplemental
Table 2). These pathways were also enriched in all TCL1A
A
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Figure 1. Pronounced oncogenic function of nuclear TCL1A. (A) Experimental setup o
donor mice, were retrovirally transduced with vectors expressing different variants of hT
TCL1A expression; nls-hTCL1A: nuclear enrichment of TCL1A. After transduction, cells
images of HEK293T cells retrovirally transduced with 3 different TCL1A variants, validatin
using an Axio Scope.A1 fluorescent microscope (Zeiss, Germany). For subcellular distribut
Meier curves of mice transplanted with HSC/HPC, expressing generic hTCL1A (orange,
showed a significantly shorter survival of nls-hTCL1A than the hTCL1A-recipient mice.
Table 1, and for histology of organs, see supplemental Figure 1C. (D) Gene expression
analyzed via microarrays. GSEA identified several deregulated pathways between lymp
Identified nuclear pathways are upregulated in tumor cells from nls-hTCL1A recipients. D
are displayed in supplemental Figure 2. (E) Enrichment plots of significantly deregulated p
expressing cells. IFNγ, interferon γ; IL2, interleukin 2; IRES, internal ribosomal entry site; L
virus post-transcriptional regulatory element.

CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
conditions compared with GFP control B cells (supplemental
Figure 2). We concluded a preferential B-cell oncogenic func-
tion of TCL1A in the nuclear compartment, especially in the
context of DNA repair and cell cycle regulation.

TCL1A is part of protein complexes that regulate
DDR and cell cycle
To characterize TCL1A’s interactome in a more unbiased
fashion, MS analyses of TCL1A-IPs were performed in human
CLL samples (N = 11 [supplemental Table 3]; divided into IGHV-
unmutated CLL (U-CLL) and IGHV-mutated CLL (M-CLL)
[Figure 2A] or into 3 cytogenetic/clinical-risk categories
[supplemental Figure 3]) and in tonsillar B cells (N = 3). In total,
889 and 459 TCL1A-interacting proteins were identified in
tonsillar B cells and CLL cells, respectively (groups vs IgG
control; fold change (FCh) >2, FDR q < 0.05; supplemental
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CL1A (bottom). hTCL1A: unrestricted WT TCL1A; myr-hTCL1A: membrane-targeted
were injected into bone marrow–depleted C57BL/6 mice. (B) Immunofluorescence
g their subcellular localization. Images were captured at original magnification ×60
ion of TCL1A in the lymphomatous spleens, see supplemental Figure 1B. (C) Kaplan-
N = 5), myr-hTCL1A (green, N = 16), and nls-hTCL1A (red, N = 15). Log-rank test
For an overview of disease characteristics of transplanted mice, see supplemental
of splenocytes from mice with B-cell malignancies (>70% tumor cell content) was

homas of nls-hTCL1A- vs hTCL1A-recipient mice (false discovery rate [FDR] <0.05).
eregulated pathways for TCL1A variants vs GFP only and myr-hTCL1a vs nls-TCL1A
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Table 4). The interactome of TCL1A was independent of dis-
ease subset, as most interacting partners overlapped across the
genetic and clinical categories (Figure 2B; supplemental
Figure 3B). ORA identified a variety of pathways within the
TCL1A interactome in CLL, suggesting a pleiotropic perturba-
tion of cellular processes by TCL1A. Among them, several
nuclear pathways were identified, including ‘cell cycle’ as the
third largest functional network cluster identified in the TCL1A
interactome, further emphasizing the relevance of nuclear
TCL1A (Figure 2C-D; supplemental Figure 4; supplemental
Table 5). It included important proteins regulating cell cycle
transition, such as the protein kinase ATM (G2/M checkpoint,
DNA repair),32 MCM proteins (DNA replication checkpoint),33

and NEK9 (mitotic checkpoint)34 (Figure 2E-F). These findings
suggest an important role of TCL1A in the regulation of the
DDR and cell cycle transition.

TCL1A interacts with proteins of the MCC
This novel pronunciation of nuclear effectors of TCL1A
prompted us to analyze the interactome of TCL1A after specific
activation signals, that is, genotoxic stress and mitosis induc-
tion, in the B-PLL–derived cell line JVM3 (hardly expresses
TCL1A). Stable overexpression of TCL1A (JVM3TCL1A) conferred
a phenotype of resistance to the classical DNA-targeting
chemotherapeutics: doxorubicin, cyclophosphamide, and
etoposide (supplemental Figure 5). MS analysis of TCL1A pull-
downs from JVM3TCL1A vs JVM3GFP cells that were left
1428 23 MARCH 2023 | VOLUME 141, NUMBER 12
untreated, exposed to DNA damage induction (etoposide), or
synchronized in enforced mitosis (nocodazole) identified a total
of 962 TCL1A-interacting proteins (FCh >2, FDR q < 0.05;
Figure 3A-B; supplemental Tables 6 and 7), with a marked
increase after genotoxic or mitotic stimulation (a total of 76
interactors in the untreated condition vs 245 under genotoxic
stress vs 736 in enforced mitosis) (Figure 3B). Most TCL1A-
interacting proteins were exclusively detected in mitosis (N =
674), whereas 164 proteins specifically bound to TCL1A under
genotoxic stress.

The functional pathway clusters within these TCL1A inter-
actomes identified by ORA were highly dependent on the
condition (Figure 3C-D; supplemental Tables 8-10). Under
genotoxic stress and mitosis, cell cycle and cell cycle
checkpoints were highly prominent recurrent pathways, with
cell cycle being the second biggest cluster in the TCL1A
interactome of JVM3 cells synchronized in mitosis
(Figure 3C). Importantly, proteins involved in the regulation
of the APC/C, as components of the MCC (eg, CDC20
and MAD2) or subunits of the APC/C (eg, CDC27), were
specifically present in the mitotic condition, suggesting a
function of TCL1A in the composition and regulation of
the mitotic checkpoint (Figure 3E). We confirmed the
interaction of TCL1A with CDC20, MAD2, and CDK1 in B
cells of Eμ-TCL1A mice and in human CLL cells via co-IP
(Figure 4A-B).
STACHELSCHEID et al
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Figure 2. Proteins involved in the DNA repair and the cell cycle pathways are common interaction partners of TCL1A. (A) Experimental setup: TCL1A coimmuno-
precipitations (co-IPs) were performed from lysates of primary CLL cells, divided into 2 subgroups based on their IGHV gene mutation status. Primary B cells isolated from
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Figure 2 (continued) (C) Overview of enriched pathway clusters within the TCL1A interactome identified by overrepresentation analysis (ORA) using the Cytoscape plug-in
ClueGO (version 2.5.8, Reactome database), indicating the percentage of terms per cluster. Supplemental Figure 4 shows the associated functional networks of all enriched
pathways identified by ClueGO. (D) Bar graph of selected pathways identified in panel C illustrating the percentage of associated proteins from the TCL1A interactome within
each pathway. Heat map of TCL1A interactors belonging to the cell cycle pathway (E) and the DNA repair pathway (F) as identified by ORA using ClueGO. BCR, B-cell
receptor; HCMV, human cytomegalovirus; mRNA, messenger RNA; SARS-CoV, severe acute respiratory syndrome coronavirus.
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TCL1A accelerates cell cycle transition
of mitotic B cells
Investigating the impact of TCL1A on mitotic progression, we
observed that the TCL1A-positive variants of JVM3, DoHH2,
MEC1, and HEK293T cells had transitioned faster through
mitosis already 3 to 5 hours after release from G2 synchroni-
zation as compared with TCL1A-negative controls (Figure 4C-E;
supplemental Figure 6A). Protein levels of the APC/C targets,
cyclin A and CDC20, degraded faster in TCL1A-positive cells.
Furthermore, phosphorylation of central regulators of the G2/M
checkpoint, including CDK1, that decline along the course of
mitosis,22,35 showed lower levels after release in TCL1A-positive
cells (Figure 4E; supplemental Figure 6B). Phosphorylation of
Aurora A/B/C, all involved in the mitotic checkpoint, was not
markedly altered by TCL1A overexpression (supplemental
Figure 6C-D).

To specifically dissect the effect of TCL1A on mitotic transit,
we performed in vivo BrdU S phase–labeling experiments in
leukemic Eμ-TCL1A vs WT mice. Splenocytes were isolated
20 hours after BrdU injection and stained for incorporated
BrdU and pH3, as a marker for active mitosis. Eμ-TCL1A
splenocytes showed significantly increased proliferation over
WT splenocytes, indicated by a higher number of BrdU+

(P = .009) and pH3+ (P = .012) cells. A larger proportion of
Eμ-TCL1A cells had exited mitosis within 20 hours after
injection (BrdU+/pH3− cells, P = .01). There were also
significantly more BrdU−/pH3+ cells (P = .01) in the
Eμ-TCL1A group after the BrdU pulse (Figure 4F). According
to these data, TCL1A-positive B cells enter and exit the cell
cycle more frequently, suggesting abnormal cell cycle
passaging.
CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
Aberrant DDR and aneuploidy in TCL1A-driven
leukemia
We next investigated the impact of aberrant TCL1A expression
on central regulators of the DDR, that is, ATM and p53. In pri-
mary CLL cells, high TCL1A levels (by quantitative reverse
transcription polymerase chain reaction) correlated with
reduced levels of phosphoactivated and cleaved ATM upon
genotoxic stress (Figure 5A-B). Furthermore, B cells from
Eμ-TCL1A mice show reduced p53 levels accompanied by an
accumulation of TUNEL-positive double-strand breaks as
compared with B cells from age-matched WT mice (Figure 5C).

Considering the observed protein interactions of TCL1A with
MCC components, we investigated whether TCL1A negatively
affects mitotic spindle formation and segregation, leading to
increased chromosomal aberrations. Indeed, TCL1A-positive
JVM3 and DoHH2 cells showed a higher frequency of multi-
polar spindles than their TCL1A-negative controls (P = .032 and
P = .029, respectively), which was corroborated by shRNA-
mediated TCL1A knockdown in MEC1 cells (P = .041)
(Figure 5D). Moreover, we identified a higher number of poly-
ploid cells in the DoHH2TCL1A and JVM3TCL1A lines compared
with EV controls (P = .006 and P = .005, respectively; Figure 5E),
alongside a trend to more complex karyotypes (Figure 5F).

In line with these findings, chromosomal aberrations were
frequently detected in B cells from Eμ-TCL1A mice (Figure 5G),
with aneuploidy already present at the preleukemic phase
(P = .03) and even more pronounced at the overt leukemic
stage (P < .0001; Figure 5H). These data implicate overex-
pressed TCL1A to perturb genomic integrity via impaired DDRs
and aberrant spindle formation (chromatid segregation).
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pH3+ cells in the Eμ-TCL1A cohort also suggests that they re-enter the cell cycle more frequently.
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TCL1A and CDC20 directly interact during mitosis
To assess the involvement of TCL1A in the MCC, we investi-
gated the interaction of TCL1A with selected targets. PLAs
identified interactions of TCL1A with CDC20, MAD2, and the
G2/M checkpoint protein CDK1 in the cytoplasm as well as
along the spindles of MEC1 cells (Figure 6A; supplemental
Figure 7A-B). The TCL1A-CDC20 interaction increased from
interphase to prophase and persisted during mitosis (Figure 6B;
supplemental Figure 7C-D).

As CDC20 is one of the key proteins controlling mitotic
checkpoint transition, we validated the interaction of TCL1A
with CDC20 by split-reporter protein complementation assay,38

which facilitate intracellular detection of direct protein-protein
interactions based on complementation of N/C-terminal YFP
components (Figure 6C). Immunofluorescence microscopy of
HeLa cells harboring TCL1A-YFPN and CDC20-YFPC constructs
demonstrated a direct TCL1A-CDC20 interaction, which accu-
mulated at the mitotic plate and dispersed during anaphase
(Figure 6D). Homodimerization of TCL1A was not a prerequisite
for this interaction, as WT TCL1A and the dimerization-defective
mutant PLT3A equally bound to CDC20 (supplemental
Figure 7E).

Defined sites in CDC20 are involved in the
interaction with TCL1A
CDC20 activity is controlled by several regulatory sequences
such as the KEN- and CRY-boxes, which are targets of phos-
phorylation and which engage APC/C substrates.23,39,40 The
C-boxes facilitate interaction with the APC/C,40 whereas the
MIM is required for the interaction with MAD2. To identify
functional motifs of CDC20 involved in the interaction with
TCL1A, we generated 5 CDC20 mutants: (1) del97-169 lacking
CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
KEN-, MIM-, and CRY-box; (2) RCRY4A: R132>A and CRY165-
167>AAA (inactivating MIM- and CRY-box); (3) RA: R132>A
(inactivating MIM-box); (4) CRY3A: CRY165-167>AAA (inacti-
vating CRY-box); (5) KEN3A: KEN97-99>AAA (inactivating KEN-
box) (Figure 6E). The mutations in the KEN, CRY, and MIM
motifs are described as not altering the protein structure of
CDC20.41

Expression vectors encoding TCL1A were cotransfected into
HEK293 cells alongside one of the CDC20 mutants or
CDC20WT constructs. Subsequent co-IPs revealed that muta-
tions in the KEN sequence (KEN3A) did not affect the CDC20-
TCL1A interaction. Mutations in the CRY-box (CRY3A) led to a
slightly reduced CDC20-TCL1A interaction. Interestingly, aa
substitutions in the MIM sequence (R132A; RA) resulted in a
significantly impaired CDC20-TCL1A interaction. A simulta-
neous mutation of MIM and CRY sequences (RCRY4A) or a
deletion of the KEN, MIM, and CRY sequences (del97-169)
almost completely abolished the interaction (Figure 6E).

In silico modeling resolves the CDC20-TCL1A
complex structure
To refine and validate our model derived from this functional
motif mapping, we performed a thorough in silico prediction of
the CDC20-TCL1A complex based on published experimental
protein structures of CDC20 (pdb ID 4GGA) and TCL1A (pdb ID
1JSG) using CPORT and HADDOCK 2.2.37,42 CDC20 contains a
central core of a 7-bladed β-propeller and 2 mobile extensions
at the N and C termini.43 Importantly, the 4 aa that were
involved in the interaction with TCL1A (C165, R166, Y167, and
R132) are located at the N terminus of CDC20, creating a joint
interface. In accordance with the X-ray structure, the R166 side
chain of the CRY-box rotates toward the core of CDC20 through
23 MARCH 2023 | VOLUME 141, NUMBER 12 1433
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a stable interaction with the negatively charged residue E413
(2.7 Å). This conformation of the CRY-box preserves a favorable
docking interface for TCL1A. Substitution of R166 by alanine
(CRY3A) results in the loss of the stabilizing salt bridge, thereby
weakening the TCL1A-CDC20 interaction (supplemental
Figure 7F).

The HADDOCK 2.2 algorithm predicted 2 models that involve
interactions of key aa of TCL1A (E9, E40, K42, R93, and Y96)
which are prone to forming hydrogen bonds (or salt bridges)
with respective residues of CDC20 (K440, E438, D173, and
Y167; Figure 6F; supplemental Table 12). The predicted resi-
dues of TCL1A would get near the aa CRY165-167 of CDC20.
The residues E40, K42, and Y96 of TCL1A are expected to
stabilize the TCL1A-CDC20 interaction in model A, whereas E9,
R93, and Y96 would promote this interaction in model B. For
each model, HADDOCK statistics are displayed in
supplemental Table 13. To validate these in silico models, we
generated 2 TCL1A mutants fused to a FLAG-tag and stably
overexpressed them in JVM3 cells: (1) EKYSAE: E40S, K42A,
Y96E (model A) and (2) ERYKDE: E9K, R93D, Y96E (model B)
(Figure 6G). The ERYKDE aa substitutions did not affect the
TCL1A-CDC20 interaction, whereas EKYSAE nearly abolished it,
supporting in silico model A. Overall, these in silico models
together with the IP data on CDC20 and TCL1A mutants
confirm and provide the structural basis for the direct TCL1A-
CDC20 interaction. This, in turn, corroborates the concept of
a modulatory impact of TCL1A on the activity of the MCC and/or
APC/C during mitotic progression.

TCL1A impairs the interaction of CDC20 with
MAD2 and PLK1
As MAD2 binding to CDC20 is crucial for a productive mitotic
checkpoint,44 we analyzed the influence of TCL1A on the
CDC20-MAD2 interaction in mitotic MEC1 and HG3 cells
(each ± TCL1A) via PLAs. There was a pronounced decrease in
detected CDC20-MAD2 interactions in both TCL1A-high lines
compared with the respective control cells (Figure 6H), which
was validated in JVM3 cells via co-IPs (supplemental Figure 7G).
Next to the sequestration of CDC20 by MAD2, its binding to
the APC/C is negatively regulated via phosphorylation by
PLK1.45 In CDC20 co-IPs in JVM3 cells released from G2, we
detected faster decreases of CDC20-PLK1 interactions already
1 hour after release when TCL1A was present (Figure 6I), sug-
gesting a TCL1A-mediated impaired negative regulation of
Figure 5. TCL1A overexpression interferes with a proficient DDR and confers aneup
cells treated with 10 μM etoposide for the indicated time points. Samples with low TCL1
PCR]) show higher etoposide-induced phosphorylation and cleavage of ATM. (B) qRT-PCR
leukemic (Leuk.) (10 months) Eμ-TCL1A mice showed a lower expression of p53 than age-m
shows more DNA breaks in TCL1A-transgenic cells (bottom). Images at original magnifi
sentative photographs next to bar chart) and DoHH2 (N = 4) cells, both ± transgenic T
synchronized in G2 via treatment with 9 μM RO-3306 for 20 hours. At 30 minutes and 1
nohistochemistry; α-tubulin (α-Tub) (green) and Hoechst (blue). The TCL1A-transgenic JVM
as compared with controls, which was reproduced in opposite direction in MEC1 cells
condition; Student t test. Immunofluorescence images were captured at original mag
cytometric quantification of Hoechst staining in DoHH2 ± TCL1A (top, N = 3 per g
increased DNA ploidy was found in the TCL1A-positive condition as compared with the re
cells. Comparison of representative karyograms of DoHH2-TCL1A (N = 42) to DoHH2 pare
gains, losses, deletions, and translocations) in the TCL1A-transfected cells. Percent of c
exact test, quantification not illustrated. (G) Spectral karyotyping analysis of Eμ-TCL1A
translocations of chromosome 5. (H) Splenocytes from preleukemic (Pre-leuk.) (N = 3, W
showed an aberrant number of chromosomes compared with WT (N = 3) mice; Student

CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
CDC20 by PLK1. Together, this defines a novel molecular
mechanism on the modulatory impact of TCL1A on the profi-
ciency of the mitotic checkpoint by impairing the interaction of
CDC20 with its negative regulators.

Lower CDC20 expression correlates with features
of aggressive CLL
Besides this novel interaction of TCL1A with CDC20, there have
been no reports on CDC20 in CLL in general. CDC20 was no
target for mutations or copy number alterations in large CLL
series (copy number alteration, N = 319 CLL;29 mutations,
N = 1308 CLL; cBioPortal).46-49 We, therefore, analyzed its
mRNA expression using publicly available gene expression
databases50 and identified a pronounced CDC20 down-
regulation that was specific to CLL among several hematopoi-
etic neoplasms (Figure 7A). At the protein level, we detected
lower CDC20 in the more aggressive U-CLL than in M-CLL,
which inversely correlated with TCL1A expression (Figure 7B).

This negative correlation was confirmed in GEP of patients
included in the prospective CLL8 trial, which compared the
outcome after fludarabine/cyclophosphamide treatment with or
without rituximab (R) (FC vs FCR) (Figure 7C).27 The expression
of CDC20 and TCL1A correlated with levels of key DDR and cell
cycle–regulating genes, including ATM and TP53
(supplemental Figure 8A-C). Significantly higher WBC counts
were observed in the CDC20-low group (median, 101.3 vs 78.4
G/L for low vs high CDC20 levels, respectively; P = .003;
Figure 7D). Moreover, in univariate analyses, low CDC20
expression was associated with shorter PFS of patients in the FC
arm of the trial (median, 25.5 vs 34.1 months for low vs high
CDC20, respectively; P = .014; Figure 7E; supplemental
Table 14). As no effect on PFS was observed for patients in
the FCR arm (supplemental Figure 8D), it is tempting to spec-
ulate that a CDC20 effect is overridden by the impact of
the immunotherapeutic component rituximab, which targets
much less cell cycle–dependent than classical chemotherapy
(ie, FC).

Moreover, in CLL subgroups that we previously defined by
their molecular profiles,29 CDC20 expression was significantly
lower in those cases that carry a genome instability signature
(P < .001; Figure 7F). Together, CDC20 shows a specific
downregulation in CLL and lower levels mark a more aggressive
genomically instable disease.
loidy. (A) Immunoblot analysis of phosphorylated (p)ATMS1981 in freshly isolated CLL
A expression (by quantitative reverse transcription polymerase chain reaction [qRT-
analysis of TCL1A expression of patient samples from panel A. (C) Splenocytes from
atched WT mice (top). TUNEL analysis of splenocytes from WT and Eμ-TCL1A mice
cation ×60 on an Axio Scope.A1 fluorescent microscope. (D) JVM3 (N = 5, repre-
CL1A, as well as MEC1 cells (N = 5; ± shRNA-mediated TCL1A knockdown) were
hour after release, the percentage of aberrant spindles was determined by immu-
3 and DoHH2 cells showed a more pronounced accumulation of multipolar spindles
after shRNA-mediated TCL1A knockdown. Range of 300 to 700 individual cells per
nification ×60 using an IX83 fluorescent microscope (Olympus, Japan). (E) Flow-
enotype) and JVM3 ± TCL1A (bottom, N = 5 per genotype). In both cell lines,
spective control line. (F) G-banding–based karyotype analysis of DoHH2 ± TCL1A B
ntal cells (N = 21) with a trend toward an increased genetic complexity (chromosome
ells with genomic aberrations: DoHH2, 14.3%; DoHH2TCL1A, 23.8%; P = .516, Fisher
leukemic B cells shows karyotypes with trisomies of chromosomes 15 and 19 and
BC <30 × 109 cells/L) or leukemic (N = 5, WBC >50 × 109 cells/L) Eμ-TCL1A mice
t test.
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Low CDC20 expression is a feature of aggressive
Eμ-TCL1A cell populations
As in CLL samples, we also detected a reduced CDC20 protein
expression in splenocytes of Eμ-TCL1A mice as compared with
those from WT animals (supplemental Figure 9A). To assess the
association of reduced CDC20 expression with characteristics of
cellular subsets, we made use of our previously published
single-cell RNA sequencing data from Eμ-TCL1A mice and its
derived allele Eμ-TCL1AAkt-C, which resembles aggressive
Richter transformation.30 Integrative analysis of transcriptomes
of cells from both models identified 8 B-cell clusters, of which 2
were predominantly enriched in Eμ-TCL1Amice (cluster 2 and 10),
whereas 6 were enriched in Eμ-TCL1AAkt-C or shared with
Eμ-TCL1A mice (cluster 0, 3, 13, 18, 19, and 20) (Figure 7G;
supplemental Table 15). In Eμ-TCL1Amice, Cdc20 expression was
confined to the dominant cluster 2 (Figure 7H). In those Eμ-TCL1A
B cells clustering with the more aggressive Eμ-TCL1AAkt-C B cells,
hardly any Cdc20 expression was detected. Differential gene
expression analysis of the Cdc20-high vs all other clusters (Cdc20-
low) identified 746 significant genes, of which most were upre-
gulated in the Cdc20-high cluster. Consequently, most gene
ontology processes were defined by genes upregulated in the
Cdc20-high cluster (supplemental Figure 9B-D; supplemental
Tables 16 and 17). In line with the patient data, TCL1A expres-
sion was higher in the Cdc20-negative clusters (P < .001; Figure 7I;
supplemental Table 16). These data further confirm the more
aggressive characteristics of cells with low CDC20 expression.
e-pdf/141/12/1425/2086862/blood_bld-2
CDC20 ablation accelerates leukemic outgrowth
in mice
To validate the impact of modulated Cdc20 on murine CLL,
we created from an Eμ-TCL1A–transplantable mouse model51

a version with shRNA-mediated Cdc20 knockdown
(Eμ-TCL1A;Cdc20-KD; Figure 7J). At the early disease stage, a
significantly faster outgrowth of Cd5+/Cd19+ B cells was
Figure 6. The interaction of TCL1A and CDC20 takes place via defined motifs and im
of CLL-like MEC1 cells that were synchronized in mitosis (9 μM RO-3306 for 20 hours, 1
Quantification of PLA foci per cell is displayed in supplemental Figure 7A. (B) Images we
performed in MEC1 and HG3 CLL-like cells (synchronized as in panel A), and PLA foci p
counted in mitotic cells compared with nonmitotic cells. Negative control for MEC1: no
(TCL1A-negative HG3-EV) stained with primary antibodies. Boxes display medians with
icances by one-way analysis of variance). Representative immunofluorescent images are in
of the protein complementation assay (PCA). Signal emission in living cells was induce
TCL1A-bait and the ‘candidate’ protein interact for >0.5 seconds. As a negative control, a
was used to exclude fluorescence derived from spontaneous transient rejoining of split
fication ×100. (D) HeLa cells were cotransfected with TCL1A-YFPN and CDC20-YFPC con
Cytoskeleton and DNA were visualized by rhodamine-phalloidin (red) and Hoechst (b
interaction accumulated at the mitotic plate and dispersed during anaphase. (E) Five
directed mutagenesis (top) and were used in co-IPs in HEK293 cells to interrogate seque
nearly completely abolished the interaction. (F) The CDC20-TCL1A complex was predicte
and TCL1A (pdb ID 1JSG). Predictive tools to propose putative interfaces (CPORT)36 w
DOCKing 2.2 (HADDOCK 2.2) algorithm for modeling biomolecular complexes.37 This
(aa) of TCL1A involved in this interaction. The residues E40, K42, and Y96 of TCL1A are e
Y96 would promote this interaction in model B. Detailed HADDOCK statistics are summ
(top). They represent model A (EKYSAE, in red) with the aa substitutions E40S, K42A, and
from JVM3 cells stably overexpressing TCL1A-FLAG, TCL1A-EKYSAE-FLAG, or TCL1A-ER
hours. In the last 5 hours, 10 μM MG132 was added to reduce protein degradation of the
PLA for CDC20 and MAD2 was performed in MEC1-shTCL1A (TCL1A knockdown) vs -shC
PLA foci were counted per cell in the TCL1A-expressing/-high lines, suggesting an impair
25th to 75th percentiles and whiskers minimum and maximum; N = 40 cells (significanc
JVM3 ± TCL1A cells were synchronized in G2 by 9 μM RO-3306 for 20 hours and releas
determine CDC20-PLK1 interaction. IgG control: pooled lysates of JVM3EV and JVM3
interacting motif; neg, negative.

CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
observed in recipients transplanted with Eμ-TCL1A;Cdc20-KD
cells (N = 15) as compared with mice transplanted with
cells containing a GFP-coupled scramble shRNA vector
(Eμ-TCL1A;GFP; N = 19; Figure 7K). The shorter survival of Eμ-
TCL1A;Cdc20-KD mice was statistically not significant, likely
owing to the highly aggressive character of the disease model
(supplemental Figure 10A). Slightly elevated cyclin D1 levels
(P = .01) and reduced PARP cleavage (P = .048) were seen in
Eμ-TCL1A;Cdc20-KD mice, indicating higher proliferation rates
and apoptotic resistance (Figure 7L; supplemental Figure 10B).
This was paralleled by slightly elevated levels of pAkt and Bcl2
in Eμ-TCL1A;Cdc20-KD cells (supplemental Figure 10C).
Eμ-TCL1A;Cdc20-KD tumors also acquired a significantly higher
proportion of aneuploidy (P = .014) as compared with
Eμ-TCL1A;GFP cells (Figure 7M).

Discussion
Although TCL1A is established to centrally contribute to T-cell
and B-cell lymphomagenesis, the molecular concept of,
particularly nuclear, TCL1A effectors and target pathways has
remained incomplete. Most of the described TCL1A-interacting
proteins can be assigned to the governance of cell sur-
vival.13-15,52,53 Single-gene targeting of particular TCL1A exe-
cutioners, that is, AKT1 or ATM, however, does not reproduce
the phenotype of TCL1A-driven tumors.17,54 Therefore, the
spectrum of molecular and cell-biological consequences of
TCL1A dysregulation, as well as the contexts (cell type, stimuli)
in which such TCL1A-target engagements occur, are not fully
represented by its recognized effectors.18 Our animal experi-
ments here implicate particularly nuclear TCL1A to be of highly
transforming potential.

This study provides the first evidence for a modulating effect of
TCL1A on mitotic progression and identifies a new and unique
nuclear protein spectrum engaged by TCL1A. Through multiple
proteomic analyses, we demonstrate that TCL1A interacts with
pairs CDC20’s interaction with its negative regulators MAD2 and PLK1. (A) PLA
hour after release). TCL1A interacts with CDC20, MAD2, and CDK1 during mitosis.
re taken using an SP8 confocal microscope (Leica) PLA for TCL1A and CDC20 was
er cell were quantified in mitotic and nonmitotic cells. Significantly more foci were
primary antibody staining (Backgr.). Negative control for HG3: EV-transfected cells
25th to 75th percentiles and whiskers minimum and maximum; N = 25 cells (signif-
supplemental Figure 7C. (C) Split yellow fluorescent protein (YFP)–reporter principle
d upon noncovalent complementation of the N/C-terminal YFP components if the
construct encoding an ATG codon fused with the N-terminal part of YFP (ATG-YFP)
YFP parts. Images were taken on an Axio Scope.A1 microscope at original magni-
structs and the TCL1A-CDC20 interaction was visualized by the YFP signal (green).
lue), respectively. Prominent signals corresponding to the specific TCL1A-CDC20
constructs of indicated CDC20 variants were generated by PCR-mediated site-
nce restrictions of the CDC20-TCL1A interaction (bottom). RCRY4A and del(97-169)
d based on the published experimental protein structures of CDC20 (pdb ID 4GGA)
ere used and the outputs exploited in the High Ambiguity Driven protein-protein
in silico modeling predicted 2 potential models, which differ in the amino acids

xpected to stabilize the TCL1A-CDC20 interaction in model A, whereas E9, R93, and
arized in supplemental Tables 12 and 13. (G) TCL1A mutants used in co-IP studies
Y96E, and model B (ERYKDE, blue) with E9K, R93D, and Y96E. CDC20 co-IP of lysates
YKDE-FLAG (bottom). Cells were synchronized before in G2 by 9 μM RO-3306 for 20
2 mutants. The EKYSAE (model A) nearly abolished the TCL1A-CDC20 interaction. (H)
trl cells as well as in HG3-EV vs -TCL1A (TCL1A introduction) cells. Significantly less
ed CDC20-MAD2 interaction in the presence of TCL1A. Boxes display medians with
es as per Student t test). Images were taken using an SP8 confocal microscope. (I)
ed in full medium. CDC20-IP was performed in lysates at indicated time points to
TCL1A. CMV, cytomegalovirus; DAPI, 4′ ,6-diamidino-2-phenylindole; MIM, MAD2-
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a range of proteins that orchestrate DDR pathways, particularly
cell cycle checkpoints. The cell cycle was one of the most
prominent functional clusters enriched in the TCL1A inter-
actome and its key regulatory molecules such as, CDC20,
CDK1, or MAD2, colocalized with TCL1A in the cytoplasm and
at the mitotic spindle.

The observed cellular consequences of (enforced) TCL1A
expression in several CLL-like cell lines55 and in Eμ-TCL1Amice,
that is, an accelerated entry and transition through mitosis,
corroborate these molecular findings. Further in line with this
new mode of TCL1A’s action, a higher rate of aneuploidy
coincided with a higher incidence of multipolar spindles and
aberrant responses to DNA damage. The primary occurrence of
aneuploidy in preleukemic Eμ-TCL1A mice indicates a direct
TCL1A effect rather than this being a secondary phenomenon
of tumor progression.

At the core of our findings, we established a direct physical
interaction of TCL1A with the APC/C cofactor CDC20. In
contrast to its interaction with AKT,42 a disrupted dimerization
of TCL1A did not influence TCL1A-CDC20 complex formation,
suggesting that TCL1A interacts with CDC20 before its
homodimerization, or that interaction of CDC20 with mono-
meric TCL1A is functionally sufficient. Through a combined
biochemical and in silico–modeling approach, we defined the
crucial regions of the TCL1A-CDC20 interaction with the aa
E40, K42, and Y96 of TCL1A as well as the MIM- and CRY-
boxes of CDC20, which are important degrons in regulating
the MCC to APC/C switch.23,56 Therefore, our structure-based
predictions suggest a functional consequence of TCL1A-
bound CDC20 on the MCC and/or APC/C. Indeed, we iden-
tified a TCL1A-associated disrupted interaction of CDC20 with
its negative regulators, MAD2 (sequestration of CDC20 by the
MCC23) and PLK1 (inhibitory phosphorylation).45 These data
imply TCL1A to perturb proper mitotic checkpoint function,
likely contributing to accelerated cell cycle transition and
accumulating aneuploidy.
Figure 7. CDC20 expression is reduced in CLL and correlates with a more aggress
myeloid neoplasms as measured by microarray-based gene expression profiling (data set
10th and 90th percentiles. CLL stands out among the other hematopoietic cancers, as its C
with healthy controls. (B) Expression of TCL1A and CDC20 in primary human CLL cells.
unstimulated U-CLL (N = 6) vs M-CLL (N = 6) (left). Linear regression analysis demonstrate
R = 0.437) (right). (C) GEP of previously untreated patients with CLL (N = 337) of the prosp
expression. (D) Patients from the CLL8 trial were divided into 2 groups by the median
significantly higher WBC counts in comparison with those with high CDC20 (N = 163, blu
percentiles. Significance was determined using the median test. (E) Patients from the CLL
by the median expression of CDC20. The Kaplan-Meier curve illustrates the significantly s
green; median PFS, 25.5 months) compared with those with high CDC20 expression (N =
levels are significantly lower in CLL that we previously characterized by a molecular p
mesenchymal transition (EMT)–like programs (N = 130; P < .001, Mann-Whitney test). B
(G) Reanalysis of single-cell RNA sequencing data from Eμ-TCL1A and Eμ-TCL1AAkt-C (Rich
the clusters identified in the integrative analysis of both models that were then applied to
cells, whereas clusters 0, 3, 13, 18, 19, and 20 represent Eμ-TCL1AAkt-C or those that are
Seurat cluster 2. (I) TCL1A expression is significantly lower in Seurat cluster 2 compared
knockdown experiment: leukemic Eμ-TCL1A splenocytes51 were nucleofected with the tra
30 (miR-30)–based shRNA sequences against murine Cdc20 at the 3′ end. A pJ547-GFP
syngeneic hosts and tumor development, GFP+ splenocytes were purified using fluoresce
tested by immunoblots (right). (K) Flow-cytometric analysis of PB cells showing a faster inc
transplanted with Eμ-TCL1A;Cdc20-KD B cells (N = 19) compared with Eμ-TCL1A;GFP c
whiskers show minimum and maximum; significance was tested using a two-way analysis
showing increased cyclin D1 and slightly reduced PARP cleavage in splenocytes from Eμ-
the end point of survival analysis. Each lane represents an individual animal. (M) The pro
higher in Eμ-TCL1A;Cdc20-KD cells compared with Eμ-TCL1A;GFP cells (Student t test)
chronic myeloid leukemia; hygro, hygromycin resistance; MDS, myelodysplastic syndrom

CELL CYCLE ABLATION AND GENOME DESTABILIZATION BY TCL1A
Is potentially tumor-suppressing CDC20 relevant in CLL? We
observed a strong CLL-specific transcriptional CDC20 down-
regulation, which correlated inversely with TCL1A expression.
Lower expression of CDC20 in CLL was associated with higher
genomic instability. Patients with CDC20-low CLL had a shorter
PFS after chemotherapy. Lower CDC20 is likely part of the
transcriptional programs of the more aggressive TCL1A-high
subset of U-CLL. Nevertheless, we demonstrated a rather
direct causal proleukemic impact of reduced CDC20 in the
context of TCL1A overexpression by experimental Cdc20
downmodulation, which accelerated leukemic progression and
higher rates of aneuploidy in the Eμ-TCL1A CLL model. At the
single-cell level of TCL1A-induced murine CLL, Cdc20-low/
negative clusters showed the highest TCL1A expression and
were associated with a more aggressive phenotype, for
example, in our model of Richter transformation. Interestingly
and in contrast to our observations in CLL, higher levels of
CDC20 in solid tumors (normally TCL1A-negative) are associ-
ated with treatment resistance, dissemination, and poor prog-
nosis.57-59 Such a particular dual relationship of a TCL1A target
protein and a downregulated safeguarding molecule is already
shown for the TCL1A-ATM interaction.2,4,52

Overall, our findings add valuable new insights to the molecular
concept of, thus far underappreciated nuclear, executioners of
oncogenic TCL1A. We conclude that TCL1A overexpression pro-
motes premature, DNA damage–prone cell cycle checkpoint tran-
sition, which in context-specific synergy with impaired damage
repair and hyperactive prosurvival signaling (see the visual abstract
on the Bloodwebsite) mediates the transforming impact of TCL1A.
This provides a rationale for more informed targeting strategies.
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