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• The mutational burden
in HSCs is proportionally
reflected throughout
hematopoietic
differentiation in
MDS/CMML.

• Improved hematopoiesis
in response to AZA
therapy was associated
with increased clonal
output from mutant
progenitors to mature
cells.
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Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are
clonal disorders driven by progressively acquired somatic mutations in hematopoietic
stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS
and CMML. Clinical improvement does not require eradication of mutated cells and may
be related to improved differentiation capacity of mutated HSCs. However, in patients
with established disease it is unclear whether (1) HSCs with multiple mutations progress
through differentiation with comparable frequency to their less mutated counterparts or
(2) improvements in peripheral blood counts following HMA therapy are driven by
residual wild-type HSCs or by clones with particular combinations of mutations. To
address these questions, the somatic mutations of individual stem cells, progenitors
(common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte
erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutro-
phils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-
cell genotyping, followed by bulk analysis in immature and mature cells before and after
ne 2024
AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and
progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from
productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.
Introduction
Somatic mutations in hematopoietic stem cells (HSCs) are a central
pathogenic event in myelodysplastic neoplasms (MDSs) and
chronic myelomonocytic leukemia (CMML).1-6 Patients with high-
risk disease who are ineligible for allogeneic bone marrow (BM)
transplantation are treated with hypomethylating agents (HMAs),
usually 5-azacytidine (AZA). AZA treatment can improve peripheral
VOLUME 141, NUMBER 11
blood (PB) counts and delay progression to acute myeloid leu-
kemia in some patients.7-10 Mutations progress in stepwise
branching fashion to establish clonal structures in HSCs, but
contribution of specific clones in circulating mature blood cell
types is unclear (supplemental Figure 1, available on the Blood
website). We and others have previously described cohorts with
hematological response to AZA despite persistently high variant
allele fractions (VAFs) in BM.11-13 Colonies derived from in vitro
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assays of stem cell function following AZA treatment showed
decreased mutational complexity, suggesting a shift in hemato-
poiesis from clones with high to low mutational burden in
response to treatment.12 However, in vitro colony-forming
capacity might not correlate with in vivo hematopoietic poten-
tial, and whether mutated clones are proportionally represented in
progenitor and mature cells or whether cells with fewer mutations
are better able to contribute to mature cells is unknown.
Furthermore, it is unclear how such contributions vary between
patients who do, or do not, respond to AZA. Single-cell geno-
typing techniques can resolve combinations of mutations in
cells.1,14-17 Index sorting and single-cell genotyping were used to
characterize the haplotype composition of individual stem cells
(HSCs/multipotent progenitors [MPPs] and MDS stem cells [MDS-
SCs]), progenitors (common myeloid progenitors, granulocyte
monocyte progenitors, and megakaryocyte erythroid progenitors),
and high-turnover circulating cells (monocytes, neutrophils, and
naïve B cells [nBCs]) in treatment-naïve and AZA-treated MDS
and CMML. We further characterized the VAF in progenitor
and mature cells before and after treatment in AZA responders
and nonresponders.

Study design
Samples were collected with patient consent and institutional
ethics approval. The BM was enriched for CD34+ cells and single-
cell index sorted into 384-well plates (supplemental Figure 2). A
multiplex polymerase chain reaction–based strategy was used to
amplify mutations in single cells. Amplicons were then barcoded,
followed by Illumina sequencing (supplemental Figure 3;
supplemental Material). Capture sequencing was performed using
a targeted panel for myeloid driver mutations (supplemental
Material). Mutational calling was performed via pairwise
sequence alignments using SeqAn18 and seqanpy (https://github.
com/iosonofabio/seqanpy). Analysis code is available at https://
github.com/julie-thoms/MDS_amplicons.

Results and discussion
Matched stem cells and progenitor cells from BM and high-
turnover differentiated cells from PB from 3 patients were
analyzed (Figure 1A; supplemental Table 1) and VAFs were
determined in bulk samples from each cell type. Variant alleles
were detected at high frequency (a 0.5 VAF indicates that
essentially every diploid cell carries a mutated copy of that
allele). VAF distributions were similar across BM and PB cell
types in all patients with the exception that nBCs in patient
#H198304 were predominantly wild-type (WT) (Figure 1B-D,
left), which were confirmed using an orthogonal approach
(supplemental Figure 4). Then VAFs of known mutations were
determined in single cells (Figure 1B-D, right; supplemental
Figure 5). Allele fractions were highly correlated between
bulk- and single-cell assessments (supplemental Figure 6;
Pearson r = 0.8989).

Stem cells with multiple mutations might contribute proportionally
(neutral selection) or asymmetrically (negative clonal selection) to
mature circulating cells (supplemental Figure 1B). To resolve this,
BM cells from 3 patients were classified (supplemental Table 1) as
healthy HSC/MPPs, MDS-SCs, common myeloid progenitors,
granulocyte monocyte progenitors, or megakaryocyte erythroid
progenitors using indexed fluorescence-activated cell sorting and
SINGLE-CELL GENOTYPING IN MDS/CMML
assessed the presence/absence of known variants in BM cell types
and matched PB neutrophils, monocytes, and nBCs (Figure 1B-D;
supplemental Figure 7).

In patient #H198302, 4 mutations were tracked (Figure 1Bii;
SRSF2, CUX1, and biallelic TET2). Most stem cells carried 2 or 3
mutations and we detected no WT HSC/MPPs. Cells across the
progenitor compartment were similar and mostly highly
mutated, which is a pattern that was maintained particularly in
differentiated monocytes and neutrophils.

In patient #H198303, 2 mutations12 were tracked (Figure 1Cii;
biallelic TET2). In the stem compartment, cells carrying biallelic
TET2 mutations were frequent, but numerous cells were WT or
carried a single mutant allele. Progenitors were relatively
homogenous, although mutational burden differed slightly from
the stem compartment. The haplotype distribution in mature
cells was again like progenitor cells, with the exception that no
WT neutrophils were detected.

In patient #H198304, 4 mutations were tracked (Figure 1Dii;
SRSF2, RUNX1, and biallelic TET2). Most stem cells carried 2 or 3
mutations, a few healthy HSC/MPPs had no mutations detected,
and ~20% of MDS-SCs carried an additional mutated RUNX1
allele. In the progenitor compartment, all cell types were similar. In
the mature compartment, myeloid populations contained cells
with 1, 2, 3, or 4 mutations, with a higher proportion of cells with
all 4 alleles mutated than in progenitors, suggesting that highly
mutated stem cells can produce differentiated myeloid cells.
Consistent with bulk analysis, few mutant cells were detected in
nBCs. Additional PB analysis in this patient revealed that naïve
T cells, but not natural killer (NK) cells, were also predominantly
WT (supplemental Figure 4C-D), suggesting specific impairment
of B- and T-lineage maturation in mutated cells.

Attrition of highly mutated cells during myeloid maturation was
not observed in any patient with single-cell analysis, suggesting
that highly mutated stem and progenitor cells retain some
capacity to differentiate in vivo. To extend these observations and
further characterize the impact of HMA therapy, we analyzed
archived pre- or post-AZA samples from a second MDS cohort
(supplemental Table 1) and measured VAFs in mononuclear cells
and bulk sorted immature myeloid progenitors (imMyes), mono-
cytes, and NK cells from BM (Figure 2A). The pretreatment clonal
composition of mature myeloid cells (monocytes) essentially
mirrored total BM and imMye in all patients (Figure 2B-C). The NK
cells, which are generally believed to derive from lymphoid pro-
genitors, shared a similar clonal composition with their myeloid
counterparts, albeit with lower VAFs. In 2 patients, (#61293005
and #61293004) subclones with biallelic TP53 mutations that did
not contribute to mature cells were detectable in imMye (VAF
range, 0.08-0.41). Following AZA treatment, the VAFs of these
noncontributing subclones diminished as patients responded to
treatment.

Following 6 cycles of AZA therapy, VAFs in mature myeloid cells
continued to reflect those in imMye, irrespective of clinical
response. As in pretreatment samples, NK cells generally had
lower VAFs than their myeloid counterparts, which is consistent
with observations in the primary cohort that mutant HSCs
contribute to both myeloid and lymphoid lineages but with a
bias toward the former. Overall, highly mutated progenitor
16 MARCH 2023 | VOLUME 141, NUMBER 11 1317
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Figure 1. Mutational burden in matched stem and progenitor cells in the BM and differentiated cells in PB. (A) Blood differentiation hierarchy in MDS/CMML showing
stem cells (healthy stem cells [HSCs/MPP] and MDS-SC), progenitors (common myeloid progenitors [CMP], granulocyte monocyte progenitors [GMP], megakaryocyte eythroid
progenitors [MEP], and common lymphoid progenitors [CLP]), and differentiated mature cells (left). Those cell types colored white were not characterized in this figure.
Schematic showing collection and cell sorting strategies for PB and BM (right). PB was flow sorted into neutrophils (Neut: SSChi, CD45+, immunoglobulin D–negative, CD16+,
and CD66b+), monocytes (Mono: SSClo, CD45+, immunoglobulin D–negative, and CD16+), and nBC (SSClo, CD45+, IgD+, and CD27−). BM mononuclear cells (BM-MNC) were
isolated on Ficoll and used directly for bulk capture sequencing. MACS-enriched CD34+ cells (BM-CD34+) were dropped into 384-well plates for amplicon sequencing, with
indexing for CD38, CD123, CD45RA, CD90, and IL1RAP, and post hoc assignment of cell type (HSC/MPP: LIN−, CD34+, CD38lo, CD45RA−, CD123−, IL1RAP−; MDS-SC: LIN−,
CD34+, CD38lo, [CD45RA+ or CD123+ or IL1RAP+]; CMP: LIN−, CD34+, CD38+, CD45RA−, CD123+; GMP: LIN−, CD34+, CD38+, CD45RA+, CD123+; and MEP: LIN−, CD34+,
CD38+, CD45RA−, CD123−). (B-D) (i) VAFs determined by capture sequencing in bulk BM and PB cell types (bulk VAF) and corresponding VAFs determined by amplicon
sequencing in single cells (single-cell VAF). VAFs refer to alleles: in diploid cells a VAF of 0.5 indicates that every cell carries a mutated allele. VAFs >0.5 can occur where there
is loss of heterozygosity or in the case of X-linked genes in male patients where each cell carries only 1 copy of the allele. For single-cell VAFs, each allele was analyzed
individually, and the bar graph indicates the number of cells analyzed for each mutation in each cell type. Bars show standard error of the mean. (ii) Single-cell haplotypes. Pie
charts show the proportions of cells across the hematopoietic hierarchy carrying 0, 1, 2, 3, or 4 mutations in the specified alleles; the number of individual cells analyzed for
each population are as indicated in square brackets. Patient #H198302 (B), patient #H198303 (C), and patient #H198304 (D) are shown respectively. Ery, erythrocyte; Meg,
megakaryocyte.
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Figure 2. Fidelity of mutational burden in immature and mature cells before and after 6 cycles of AZA in clinical responders and nonresponders. (A) Schematic
showing AZA treatment regime and sorting strategy to assess VAF in multiple cell types before and after AZA treatment. Those cell types colored white were not characterized
in this figure. (B-C) VAFs in individual cell types, pre- and post-AZA treatment in 9 patients with MDS, for the indicated variants for each patient with corresponding clinical
parameters (neutrophils, ×109/L; platelets [Plts], ×109/L; hemoglobin [Hb], g/L; and blasts, % blasts in BM). VAFs refer to alleles: in diploid cells a VAF of 0.5 indicates that every
cell carries a mutated allele. VAFs >0.5 can occur where there is loss of heterozygosity or in the case of X-linked genes in male patients where each cell carries only 1 copy of
the allele. For each patient the International Working Group [IWG] (2006) assessment post-AZA is shown.19 Responders (B) (complete remission [CR], marrow complete
remission [mCR], and hematological improvement [HI]) are indicated in purple and nonresponders (C) (all stable disease [SD]) are indicated in lime. Variant names are
abbreviated as gene names; multiple occurrences of the same gene in a single patient indicate multiple variants detected. Full variant IDs are provided in the supplemental
Table 2.
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clones contributed proportionally to the mature population in
all patients except for biallelic TP53 mutant clones, and clinical
response to HMA occurred without substantial variations in
subclonal structure.

In summary, the mutational profiles of thousands of individual
stem/progenitor/mature cells plus bulk sorted cells were charac-
terized from a total of 12 patients with MDS/CMML and found that
in vivo, highly mutated stem cells contribute to productive
hematopoiesis (supplemental Figure 1B, neutral selection). We
observed proportional contribution from specific clones across the
stem to mature trajectory and found these proportions were
retained following HMA therapy. In patients who showed clinical
response to HMAs, we observed modest variations in subclonal
structure after treatment. Notably, several clones (all with biallelic
TP53 alterations) did not contribute to mature cells and dimin-
ished after HMA treatment. However, in patients who failed to
respond, there was little or no variation in subclonal structure
following AZA treatment. Our data also support the hypothesis
that clinical response to HMAs can and frequently does occur
without substantial variations in subclonal structure, suggesting
that improved circulating cell counts in responder patients are
driven by increased output from mutated HSCs.

These findings are pertinent when combining cytotoxic thera-
pies designed to eliminate mutant cells with HMAs.20 Given
recent reports that the number of HSCs that contribute to blood
formation in clonal hematopoiesis and elderly individuals are
small,21,22 our study questions whether therapeutic principles
and end points that apply in high-blast acute myeloid leukemia
(clonal eradication and minimal residual disease monitoring for
relapse) are appropriate in contexts where clinical improvement
does not require ablation of mutant clones.
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