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Engineering T cells to suppress acute GVHD
and leukemia relapse after allogeneic hematopoietic
stem cell transplantation
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• Targeted ablation of
OX40+ T cells with
engineered T cells
suppresses
alloreactivity and
preserves antiviral
immunity.

•OX40-targeting T-cells
co-expressing a tumor-
specific chimeric
antigen receptor
protect animals from
both acute GvHD and
leukemia relapse.
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Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic
hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive
prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a cos-
timulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in
driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated
on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the
hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis. We
thus created an OX40-specific cytotoxic receptor that, when expressed on human T cells,
enables selective elimination of OX40+ T cells. Because OX40 is primarily upregulated on
CD4+ T cells upon activation, engineered OX40-specific T cells mediated potent cyto-
toxicity against activated CD4+ T cells and suppressed alloreactive T-cell expansion in a
mixed lymphocyte reaction model. OX40 targeting did not inhibit antiviral activity of
memory T cells specific to Epstein-Barr virus, cytomegalovirus, and adenoviral antigens.
Systemic administration of OX40-targeting T cells fully protected mice from fatal xeno-
geneic GVHD mediated by human peripheral blood mononuclear cells. Furthermore,
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combining OX40 targeting with a leukemia-specific chimeric antigen receptor in a single T cell product provides
simultaneous protection against leukemia and aGVHD in a mouse xenograft model of residual disease posttransplant.
These results underscore the central role of OX40+ T cells in mediating aGVHD pathogenesis and support the
feasibility of a bifunctional engineered T-cell product derived from the stem cell donor to suppress both disease
relapse and aGVHD following allo-HSCT.
 2024
Introduction
Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is a potentially curative therapy for several aggressive hema-
tologic malignancies. However, the therapeutic benefit of allo-
HSCT in cancer patients is partially offset by transplant-related
mortality due to graft-versus-host disease (GVHD), leukemia
relapse, and opportunistic infections.1-6 Acute GVHD (aGVHD)
is mediated by alloreactive donor T cells that arise from the
graft and produce systemic damage that can be fatal for the
recipient. Standard GVHD prophylaxis and treatment rely on
OLUME 141, NUMBER 10
general immunosuppressants such as corticosteroids, metho-
trexate, inhibitors of calcineurin and mTOR, and other
agents.2,5,7-13 The nonspecific immune suppression of these
drugs further increases the risk of posttransplant infections and
relapse due to weakened immunity,14-18 and current treatments
do not fully prevent aGVHD in a subset of patients.8,12,19

Depleting T cells from the graft prior to transplant decreased
the incidence of GVHD but significantly elevated the risk of
leukemia relapse and infectious complications.20,21 Likewise,
recent clinical evidence suggested that prophylactic use of
posttransplant cyclophosphamide, an immunosuppressive
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agent targeting proliferating alloreactive T cells,22,23 reduced
GVHD incidence and improved disease-free survival,24-26 but it
also may increase the risk of viral infections early posttrans-
plant.27-29 Despite these preventative methods, established
steroid-resistant GVHD requires complex management and has
a poor prognosis, significantly contributing to posttransplant
mortality.16,19,30-32 Therefore, therapeutic strategies that selec-
tively inhibit aGVHD without decreasing antitumor and anti-
pathogen immunity are necessary to improve outcomes in
patients post allo-HSCT.

The pathogenesis of aGVHD is complex and involves both
helper and cytotoxic T-cell subsets that functionally interact.7-9

Donor-derived CD4+ T cells play a central role in initiating
and propagating GVHD and supporting subsequent expansion
of host-reactive CD8+ T cells.33-36 A high frequency of minimally
differentiated CD4+ T cells in the graft has been associated with
increased incidence of aGVHD following allo-HSCT,37,38 and
approaches aimed at selective inhibition of CD4+ T cells have
protected against aGVHD.39 One such approach is to block
signaling from OX40, a costimulatory receptor upregulated
primarily on CD4+ and a small subset of CD8+ human T cells,
eliciting a costimulatory signal upon binding to OX40L on
antigen-presenting cells.40,41 OX40 plays a pivotal role in
driving expansion of host-reactive T cells.41 OX40 blockade or
removal of OX40+ allo-stimulated donor T cells from the graft
pretransplant controlled expansion of host-reactive T cells and
can preserve protective T-cell immunity against tumor and viral
antigens.42-44 Functional ablation of OX40+ T cells is thus
emerging as an attractive strategy to mitigate aGVHD without
globally suppressing productive T-cell immunity. However,
therapeutic antibodies may not produce durable benefits, as
other costimulatory signals may compensate for OX40
blockade and host-reactive T cells may emerge posttransplant
due to the temporarily dysregulated mechanisms of central and
peripheral tolerance.10

We hypothesized that selective elimination of OX40+ donor
T cells after allo-HSCT could functionally ablate these cells to
prevent or suppress aGVHD. Here, we engineered human
donor T cells to recognize and eliminate OX40+ T cells and
demonstrated their protective function in a xenogeneic model
of aGVHD. Furthermore, we engineered the OX40-directed
T cells to coexpress a tumor-specific chimeric antigen recep-
tor (CAR), creating therapeutic T cells that protect from both
aGVHD and leukemia relapse in vivo. These results highlight
the importance of OX40+ T cells in driving GVHD pathogenesis
and support the feasibility of manufacturing a donor-derived
engineered T-cell product that protects against 2 major cau-
ses of failure after allo-HSCT.

Methods
Constructs
The OX40-specific alloimmune defense receptor (OX40.ADR)
contains ligand-binding fragment of human OX40L (polymerase
chain reaction–amplified from a human complementary DNA
library) fused with an immunoglobulin G Fc spacer, CD28
transmembrane region, 4-1BB, and CD3ζ intracellular domains
using InFusion cloning (Takara Bio). A first-generation construct
(OX40.ADR-1G) in supplemental Figure 7, available on the
Blood website, had the same structural design except for
TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD
the 4-1BB costimulatory domain and an mEmerald tag linked at
the end of CD3ζ. The final construct was verified by Sanger
sequencing. A second-generation CD19.CAR, consisting of a
CD19-specific scFv (FMC63), immunoglobulin G4 hinge, CD28
transmembrane domain, a 4-1BB costimulatory domain, and a
CD3ζ chain, was previously developed and evaluated in the
laboratory.45 The CD19.CAR construct also contains
IRES-tNGFR (NGFR without the intracellular signaling domain)
sequence downstream of CD19.CAR. For the xenogeneic
GVHD mouse model, we used a control vector encoding the
mEmerald fluorescent protein to distinguish Ctrl T cells from
donor-matched peripheral blood mononuclear cells (PBMCs)
for flow cytometric analyses.

PBMC isolation and T-cell transduction
To obtain activated T cells, PBMCs were isolated from healthy
donors using Lymphoprep (Axis-Shield PoC AS) or Ficoll-Paque
PLUS (GE Healthcare) after informed consent on protocols
approved by the Institutional Review Board at the Baylor Col-
lege of Medicine (H-15152, H-45017) or Boston Children’s
Hospital (IRB-P00032515) and conducted in accordance with
the Declaration of Helsinki, Belmont Report, and US Common
Rule. In some experiments, deidentified buffy coats were pur-
chased from Gulf Coast Regional Blood Center and used as a
source for human PBMCs. T-cell activation and transduction by
gammaretroviral vectors have been previously described.46 See
detailed procedures in supplemental “Methods.”

Mouse strains and study approval
Breeder pairs of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG,
stock no. 005557) were purchased from The Jackson Laboratory
and bred in the Baylor College of Medicine animal facility. Both
female and male littermates (aged 6 to 12 weeks) were used for
experiments. All animal experiments were conducted in
compliance with the Baylor College of Medicine Institutional
Animal Care and Use Committee (Protocol #AN-4758).

Mouse xenogeneic GVHD model
NSG mice were irradiated at 1.2 Gy and on the following day
received 5 × 106 freshly isolated human PBMCs. Four days later,
mice received 5 × 106 control mEmerald-expressing or ADR
T cells from the same PBMC donor intravenously. At specified
time points, 50 μL of peripheral blood was obtained by tail-vein
bleeding. After red blood cell lysis, samples were sequentially
stained with antihuman Fcγ (for ADR detection) antibody and
washed, followed by antihuman CD45, CD3, CD8, and CD4
antibodies for flow cytometry analysis. Clinical scoring (on a
scale of 0 to 10) was performed based on previously described
methods.47 Body weights were measured at specified time
points. Mice were euthanized when they developed signs of
severe distress or when weight loss exceeded 20% of baseline.

Mouse xenogeneic GVHD with residual B-cell
leukemia model
NSG mice were irradiated at 1.2 Gy and received intravenously
5 × 106 freshly isolated human PBMCs and 5 × 105 NALM6-
GFP.FFluc (β2mKO) (or 3 × 106 BV173-GFP.FFluc [β2mKO]) on
the following day, followed by 5 × 106 control mEmerald-
expressing or ADR/CAR-expressing T cells generated from
the same PBMC donor 4 days later. Tumor progression was
monitored by injecting mice intraperitoneally with 100 μL
9 MARCH 2023 | VOLUME 141, NUMBER 10 1195



D-luciferin (30 mg/mL, PerkinElmer Inc) followed by biolumi-
nescence imaging using an IVIS Lumina II imaging system and
analyzed by Living Image 4.5 software (Caliper Life Sciences).
Body weights were measured at specified time points, and
clinical scoring (on a scale of 0 to 10) was based on previously
described methods.47 Mice were euthanized when they devel-
oped signs of excessive tumor burden or when weight loss
exceeded 20% of baseline.

Statistics
Statistical tests are indicated in the figure legends and were
performed using Prism 6 software (GraphPad).
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Results
Expression of OX40 on activated pathogenic
T cells
OX40 upregulation has been detected in peripheral blood
T cells in GVHD patients following allo-HSCT.48,49 However, its
expression on T cells that infiltrate target organs in aGVHD has
not been well documented. To validate OX40-targeting in the
context of aGVHD, we measured its expression on T cells iso-
lated from rhesus macaques that underwent allo-HSCT without
GVHD prophylaxis (Figure 1A), which allowed us to study GVHD
biology in an immunosuppression-free setting and obtain data
from multiple peripheral tissues that are inaccessible in patients.
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Allo-HSCT in this NHP model induces aGVHD that closely reca-
pitulates human disease.44,50,51 Compared with control animals
receiving autologous bone marrow (Auto), animals in the allo-
geneic transplantation group developed aGVHD with concomi-
tant OX40 upregulation on T cells in peripheral blood (Figure 1B,
supplemental Figure 1A). We also detected elevated levels of
OX40 on T cells in lymphoid and nonlymphoid tissues that are
commonly infiltrated by host-reactive T cells (Figure 1C). OX40
expression was more prevalent on CD4+ T cells compared with
CD8+ T cells (Figure 1B-C) and was predominantly restricted to
effector and memory T-cell subsets, reflecting their activated
functional state (supplemental Figure 1B-E).

Next, we evaluated the kinetics of OX40 expression on primary
human T cells. OX40 was not detected on resting human T cells
but was rapidly upregulated upon in vitro stimulation with plate-
bound CD3 and CD28 monoclonal antibodies (Figure 1D, sup-
plemental Figure 2A). Following removal of stimulatory anti-
bodies on day 2, OX40 expression gradually decreased
(Figure 1D) and was upregulated again following restimulation
(supplemental Figure 2B). Consistent with the observations in the
NHPmodel, CD4+ T cells had a highermagnitude andduration of
OX40 upregulation compared with CD8+ T cells (Figure 1D).
OX40 expression was also elevated on alloreactive human T cells
stimulated in a mixed lymphocyte reaction (MLR) assay in which
CellTrace Violet (CTV)-labeled PBMCs (Responder) were mixed
with irradiated allogeneic PBMCs (Stimulator) (Figure 1E). OX40
was upregulated on actively dividing (CTVLo) responder T cells
compared with minimally divided (CTVHi) T cells, with a higher
level of expression on stimulated/proliferating CD4+ T cells
compared with CD8+ T cells (Figure 1F). These results suggest
that OX40 is a suitable marker for selective targeting of activated
pathogenic T cells in aGVHD.

Generation and characterization of OX40-specific
alloimmune defense receptor T cells
To enable specific targeting of OX40-expressing human T cells,
we designed a cytotoxic OX40-specific alloimmune defense
receptor (OX40.ADR) consisting of the extracellular domain of
OX40L (the natural OX40 ligand) as a binder, connected via
spacer and transmembrane regions with intracellular signaling
domains of 4-1BB and CD3ζ to elicit T-cell cytotoxicity
(Figure 2A). Through retroviral transduction, OX40.ADR was
successfully expressed on the surface of activated primary
human T cells, with a mean transduction efficiency of 94%
(Figure 2B). OX40.ADR T cells expanded following transduction,
albeit more slowly than control nontransduced T cells, likely
reflecting mild fratricide of OX40.ADR T cells and/or toxicity
from ADR-derived tonic 4-1BB signaling.52 This is evidenced by
their transient reduction in viability during week 1 (supplemental
Figure 3A), minimal detectable surface OX40 expression (sup-
plemental Figure 3B), and decreased percentage of CD4+ T cells
(supplemental Figure 3C), likely reflecting their preferential
elimination due to higher expression of OX40 (Figure 1D). As a
result of 4-1BB and CD3ζ signaling, OX40.ADR T cells were
enriched with central memory T cells (TCM)

53 and had increased
expression of inhibitory receptors LAG-3 and TIM-3 (supple-
mental Figure 3D-E). OX40.ADR T cells produced a mean 183-
fold expansion over 14 days, indicating the feasibility of gener-
ating sufficient quantities of ADR T cells for functional analyses or
clinical use (Figure 2C). In vitro coculture assays confirmed that
TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD
OX40.ADR T cells produced specific and robust cytotoxicity
against model target CCRF-CEM cells modified to express
OX40, with minimal activity against parental (OX40−) CCRF-
CEM cells (supplemental Figure 4).

To further evaluate the selectivity of targeting activated T cells
by OX40.ADR T cells, we cocultured them with autologous
resting or activated T cells. OX40.ADR T cells had minimal
activity against resting autologous CD8+ T cells (Figure 2D left).
We detected a 25% reduction in mean resting CD4+ T-cell
counts upon coculture with OX40.ADR T cells (Figure 2D left),
likely due to OX40 upregulation on targets induced by
nonspecific stimulation in the presence of control or OX40.ADR
T cells (supplemental Figure 5). In contrast, after coculturing
OX40.ADR T cells with T-cell targets preactivated with anti-
CD3/anti-CD28 monoclonal antibodies, mean CD4+ and
CD8+ target counts were reduced by 80% and 29%, respec-
tively (Figure 2D right). Increased cytotoxicity against activated
CD4+ T cells is consistent with the pattern of OX40 expression
on human T cells (Figure 1D). OX40.ADR T cells produced
similar cytotoxicity against CD3/CD28-stimulated conventional
CD4+ T cells and regulatory T cells but had minimal activity
against resting subsets (supplemental Figure 6).

To assess the ability of OX40.ADR T cells to suppress allor-
eactive T-cell expansion, we adopted an MLR model in which
alloreactive T cells were stimulated with HLA-mismatched T cell
receptor–edited control or OX40.ADR T cells (Figure 2E). At the
end of the assay, unmodified control T cells were eliminated by
expanding alloreactive T cells, whereas OX40.ADR-armed
T cells suppressed the expansion of alloreactive T cells and
resisted their cytotoxicity (Figure 2F-G). These results suggest
that OX40.ADR T cells selectively inhibit the expansion and
function of alloreactive T cells.

OX40.ADR T cells prevent progression of fatal
xenogeneic GVHD in vivo
To assess whether OX40.ADR T cells protect against systemic
aGVHD in vivo, we adopted an established xenogeneic GVHD
model that recreates many aspects of human disease.54,55

Moreover, previous work suggested that OX40 expression
was enriched in human T cells from this model compared with
unstimulated T cells.55 Here, immunodeficient NSG mice were
sublethally irradiated and injected intravenously with human
PBMCs to induce rapid-onset, lethal GVHD mediated by xen-
oreactive human T cells (Figure 3A). Four days after PBMC
injection, animals were split into 3 experimental groups, with
2 groups receiving donor-matched T cells either transduced
with a control vector (control T) or OX40.ADR. One week
following treatment, mice receiving OX40.ADR T cells had
significantly lower numbers of CD3+ donor PBMCs in circula-
tion, compared with mice receiving control T cells (Figure 3B).
Consistent with our in vitro findings (Figure 2D), OX40.ADR
T cells produced higher cytotoxicity against CD4+ T cells in vivo
(Figure 3B). Mice receiving OX40.ADR T cells maintained body
weights similar to mice without GVHD (that did not receive
PBMCs), whereas control untreated mice or animals treated
with control T cells rapidly lost weight due to GVHD progres-
sion (Figure 3C). We further examined the severity of GVHD
symptoms using an established clinical scoring system. Injection
of human PBMCs rapidly induced clinical symptoms in all
9 MARCH 2023 | VOLUME 141, NUMBER 10 1197
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experimental groups, except for animals treated with

OX40.ADR T cells (Figure 3D). OX40.ADR T-cell treatment
significantly prolonged animal survival (Figure 3E), indicating
potent protection against xenogeneic GVHD.

4-1BB costimulation in the OX40.ADR construct improved
in vivo expansion and persistence of ADR T cells (supplemental
Figure 7A-B), resulting in better protection against fatal xeno-
geneic GVHD compared with studies using a first-generation
construct (OX40.ADR-1G, supplemental Figure 7C-F).
Although OX40.ADR-1G T cells reduced GVHD pathology in
target organs, increased infiltration and activity of (second-
generation) OX40.ADR T cells resulted in elevated GVHD scores
on day 12 (supplemental Figure 7G-H). However, the activity of
1198 9 MARCH 2023 | VOLUME 141, NUMBER 10
OX40.ADR T cells did not manifest in any physical signs of
GVHD, suggesting the increased pathology scores were, at least
in part, driven by increased infiltration and transient local
inflammation produced by ADR T cells in target tissues. As the
animals receiving the second-generationOX40.ADR T cells were
fully protected from GVHD for the duration of the experiment,
we used this construct for all remaining studies.

OX40.ADR T cells preserve cytotoxic antiviral
T-cell immunity
To produce the greatest clinical benefit, treatment for aGVHD
should not impair protective donor T-cell responses and preserve
antiviral immunity posttransplant. Therefore, we evaluated the
activity of OX40.ADR T cells against autologousmultivirus-specific
MO et al
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T cells (VSTs) that recognize immunodominant epitopes from
Epstein-Barr virus (EBV),56,57 cytomegalovirus (CMV),58,59 and
adenovirus (AdV),60,61 3 of the most common viruses affecting
posttransplant patients62 (Figure 4A). VSTs were expanded
through 2 rounds of stimulation with overlapping peptide pools
containing immunodominant epitopes of EBV, CMV, and AdV
antigens. Autologous EBV-transformed lymphoblastoid cell lines
(LCLs) were generated for each donor and pulsed with the same
TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD
peptide mix, thus modeling virus-infected target cells. When
coculturedwith autologousVSTs and LCLs (Figure 4A),OX40.ADR
T cells did not reduce the ability of VSTs to eliminate LCLs pre-
senting viral antigens (Figure 4B). Expansion of activated VSTs in
the presence of ADR T cells was largely preserved, with only a
slight reduction observed in CD4+ compartment (Figure 4C),
which correlates with the OX40 expression profile in activated
VSTs during coculture (supplemental Figure 8).
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To evaluate the effect of OX40.ADR activity against antiviral
T-cell immunity in vivo, we subcutaneously engrafted immu-
nodeficient NSG (MHCnull) mice with LCLs and then treated
them with autologous EBV-specific VSTs (EBV-VSTs) along with
1200 9 MARCH 2023 | VOLUME 141, NUMBER 10
ADR T cells (Figure 4D). Here, we used an NSG strain that lacks
murine major histocompatibility complex expression to mini-
mize ADR T-cell activation due to xenoreactivity against the
murine host. Although OX40.ADR T cells slightly reduced the
MO et al
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initial EBV-VST expansion, we observed sustained EBV-VST
expansion in mice receiving OX40.ADR T cells at later time
points (Figure 4E) and comparable anti-LCL activity between
groups receiving unmodified Ctrl T cells and OX40.ADR T cells
(Figure 4F). These results suggest OX40.ADR T cells do not
ablate antiviral responses, at least in the short term.

OX40.ADR T cells coexpressing a CD19.CAR retain
high cytotoxic activity through both chimeric
receptors in vitro
Because relapse and GVHD account for most patient deaths
post allo-HSCT,63 we engineered donor T cells to produce both
antitumor and anti-GVHD activity directed against recipient
malignancy and donor alloreactive T cells, respectively.
To enable dual recognition of leukemia and alloreactive T cells,
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TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD
we coexpressed a second-generation CD19-specific CAR
(CD19.CAR) on OX40.ADR T cells (CAR-ADR T cells, Figure 5A).
We then cocultured CAR-ADR T cells with either autologous
activated T cells (OX40.ADR targets) or CD19+OX40− pre-B ALL
cell line NALM6 (CD19.CAR targets, supplemental Figure 9) at a
1:2 effector-to-target ratio (Figure 5B-C). CAR-ADR T cells
produced robust cytotoxicity against activated T-cell targets,
similar to that with singly transduced OX40.ADR T cells
(Figure 5B). Likewise, CD19.CAR-mediated T-cell cytotoxicity
against NALM6 tumor cells was not inhibited by coexpression
of OX40.ADR (Figure 5C). To investigate the activity of CAR-
ADR T cells when both receptors were stimulated simulta-
neously, we cocultured effector T cells with a mixture of acti-
vated T cells and tumor targets at a 1:1:1 cellular ratio. Again,
CAR-ADR T cells showed cytotoxicity against respective target
No
rm

al
ize

d 
ta

rg
et

 co
un

t

Ctrl
 T

 A
DR T

CAR T

CAR-A
DR T

0.001

0.010

0.100

1

10

NAL M6

ns

P = .0007

P = .001

0

0

03

04

05

103 104 105

ADR

Ctrl T 0
CAR-ADR T 90%

No
rm

al
ize

d 
ta

rg
et

 co
un

t

Ctrl
 T

ADR T

CAR T

CAR-A
DR T

0.001

0.010

0.100

1

10

NALM6

ns

P < .0001

P < .0001

1 : 2

CAR targets

lls. (A) Schematic of a CAR-ADR T cell (left) and a representative flow plot showing
logous activated T cell targets were cocultured at a 1:2 ratio. Residual target counts
cells and NALM6 tumor targets were cocultured at a 1:2 ratio. Residual target counts
T cells, autologous activated T cells, and NALM6 were cocultured at a 1:1:1 ratio.
shown. In panels B-D, mean ± SD values are shown. Each dot represents data from

correction.

9 MARCH 2023 | VOLUME 141, NUMBER 10 1201

nloaded from
 http://ashpublications.net/blood/article-pdf/141/10/1194/2086641/blood_bld-2022-016052-m

ain.pdf by guest on 04 M
ay 2024



0 10 20 30 40

109

102

103

104

105

106

107

108

Days post PBMC injection
0 10 20 30 40

109

102

103

104

105

106

107

108

Days post PBMC injection

0 10 20 30 40

109

102

103

104

105

106

107

108

Days post PBMC injection
0 10 20 30 40

109

102

103

104

105

106

107

108

Days post PBMC injection

NALM6 + CAR T (n = 12)

0 10 20 30 40 50

0

50

100

Days post PBMC injection

Pe
rc

en
t s

ur
viv

al

Survival

NALM6 + CAR T (n = 12)

PBMC + NALM6 + Ctrl T (n = 7)

PBMC + NALM6 + CAR T (n = 10)

PBMC + NALM6 + ADR T (n = 6)

PBMC + NALM6 + CAR-ADR T (n = 15)

P < .0001

PBMC + NALM6  + Ctrl T (n = 7)

PBMC + NALM6 + Ctrl T (n = 7)

0 10 20 30 40

0.6

0.8

1.0

1.2

Days post PBMC injection
0 10 20 30 40

0.6

0.8

1.0

1.2

Days post PBMC injection
0 10 20 30 40

0.6

0.8

1.0

1.2

Days post PBMC injection

0 10 20 30 40

0.6

0.8

1.0

1.2

Days post PBMC injection
0 10 20 30 40

0.6

0.8

1.0

1.2

Days post PBMC injection

No
rm

al
ize

d 
bo

dy
 w

ei
gh

t

NALM6 + CAR T (n = 12) PBMC + NALM6 + CAR T (n = 10)

PBMC + NALM6 + ADR T (n = 6) PBMC + NALM6 + CAR-ADR T (n = 15)

PBMC + NALM6 + CAR T (n = 10)

PBMC + NALM6 + ADR T (n = 6) PBMC + NALM6 + CAR-ADR T (n = 15)

A

0 10 20 30 40

109

102

103

104

105

106

107

108

Days post PBMC injection

Bi
ol

um
in

es
ce

nc
e 

(to
ta

l c
ou

nt
s)

C

D

D-1 D0 D4

TBI
1.2Gy

Donor PBMCs
5×106, i.v.

Donor-autologous CAR-ADR T cells
5×106, i.v.

NSG

Tumor growth

Body weight

+

B

GVHD

Tumor progression

Tumor progression

GVHD

Tumor progression

NALM6 (  2mKO)
FFluc+,5×105, i.v.

β

Figure 6.

1202 9 MARCH 2023 | VOLUME 141, NUMBER 10 MO et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/10/1194/2086641/blood_bld-2022-016052-m

ain.pdf by guest on 04 M
ay 2024



0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

Days post PBMC injection

No
rm

al
ize

d 
bo

dy
 w

ei
gh

t
Bi

ol
um

in
es

ce
nc

e 
(to

ta
l c

ou
nt

s)

PBMC + BV173 + CAR-ADR T (n = 9)PBMC + BV173 + ADR T (n = 7)

PBMC + BV173 + CAR T (n = 6)PBMC + BV173 + Ctrl T (n = 4)BV173 + CAR T (n = 6)

PBMC + BV173 + CAR-ADR T (n = 9)PBMC + BV173 + ADR T (n = 7)

PBMC + BV173 + CAR T (n = 6)PBMC + BV173 + Ctrl T (n = 4)

0 10 20 30 40 50 60 70

109

108

107

106

105

104

103

102

Days post PBMC injection

0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

Days post PBMC injection
0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

Days post PBMC injection
0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

Days post PBMC injection

0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

Days post PBMC injection

0 10 20 30 40 50 60 70

109

108

107

106

105

104

103

102

Days post PBMC injection
0 10 20 30 40 50 60 70

109

108

107

106

105

104

103

102

Days post PBMC injection

0 10 20 30 40 50 60 70

109

108

107

106

105

104

103

102

Days post PBMC injection
0 10 20 30 40 50 60 70

109

108

107

106

105

104

103

102

Days post PBMC injection

BV173 + CAR T (n = 6)

0 10 20 30 40 50 60 70
0

50

100

Days post PBMC injection

Pe
rc

en
t s

ur
viv

al

Survival

BV173 + CAR T (n = 6)
PBMC + BV173 + Ctrl T (n = 4)
PBMC + BV173 + CAR T (n = 6)
PBMC + BV173 + ADR T (n = 7)
PBMC + BV173 + CAR-ADR T (n = 9)

P < .0001
P = .0001

E

G

F

GVHD

Tumor progression

Tumor progression

GVHD

D-1 D0 D4

NSG

H

Tumor progression

Tumor growth

Body weight

Donor PBMCs
5×106, i.v.

Donor-autologous CAR-ADR T cells
5 × 106, i.v.+

BV173 (  2mKO)
FFluc+,3×106, i.v.

βTBI
1.2Gy

Figure 6 (continued)

TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD 9 MARCH 2023 | VOLUME 141, NUMBER 10 1203

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/10/1194/2086641/blood_bld-2022-016052-m

ain.pdf by guest on 04 M
ay 2024



D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/141/10/1194/2086641/blood_bld-2022-016052-m

ain.pdf 
cells that was as potent as T cells expressing either receptor
alone (Figure 5D). Comparable activity between CAR-ADR
T cells and singly transduced T cells was also observed upon
titrating effector-to-target ratios in a stress-test model (supple-
mental Figure 10). These results indicate that OX40.ADR-armed
CD19.CAR T cells possess the dual-targeting capability and that
both receptors elicit cytotoxicity independently.

CAR-ADR T cells protect against both xenogeneic
GVHD and leukemia progression in vivo
Relapse posttransplant arises from residual disease that survives
allo-HSCT conditioning. We modeled minimal residual leuke-
mia post allo-HSCT by co-injecting irradiated NSG mice with
human PBMCs and CD19+ NALM6 leukemia. Four days later,
we treated animals with T cells expressing CD19.CAR or
OX40.ADR or both (Figure 6A). In the absence of human
PBMCs, CD19.CAR T cells produced robust antileukemic
activity protecting mice from fatal tumor progression
(Figure 6B). However, in mice engrafted with human PBMCs,
CD19.CAR T cells rendered no protection against GVHD,
resulting in rapid weight loss in those animals compared with
mice not receiving human PBMCs (Figure 6C light and dark
blue lines, respectively). Conversely, mice receiving OX40.ADR
T cells had no early onset weight loss but succumbed to rapid
leukemia progression (Figure 6C green lines). However, infusion
of CAR-ADR T cells prevented both weight loss and leukemia
progression (Figure 6C purple lines), prolonging animal survival
(Figure 6D).

To validate our findings in the NALM6 leukemia model, we
evaluated the activity of CAR-ADR T cells in a second model
using a CD19+OX40− B cell leukemia line BV173 (Figure 6E,
supplemental Figure 9). In line with previous findings, CAR-ADR
T cells effectively suppressed both leukemia progression and
GVHD development, resulting in sustained tumor eradication
(Figure 6F), maintained body weight (Figure 6G), lack of signs of
GVHD (supplemental Figure 11), and extended survival
(Figure 6H).

Taken together, these results illustrate the dual protective
function of OX40.ADR-armed CD19.CAR T cells against both
aGVHD and leukemia relapse in vivo.
by guest on 04 M
ay 2024
Discussion
We show that targeting OX40+ T cells with ADR-modified
T cells suppresses alloreactivity in vitro and prevents fatal
xenogeneic aGVHD in vivo. OX40.ADR T cells coexpressing
CD19.CAR provide simultaneous protection against both
aGVHD and leukemia relapse in vitro and in vivo while preser-
ving T-cell–mediated antiviral immunity. These results support
the feasibility of a dual-pronged cell therapy to mitigate the
2 major complications following allo-HSCT without substantially
increasing the risk of infectious complications.
Figure 6 (continued) CAR-ADR T cells protect from xenogeneic GVHD and preven
(NALM6). (B) Tumor luminescence at specified time points. Each line represents data from
same animal) at specified time points. Each line represents data from an individual anim
group. (D) Animal survival over time. P values were calculated using log-rank test. (E) Sche
time points. Each line represents data from an individual animal. (G) Animal body weight (
represents data from an individual animal. In panels F-G, causes of death are indicated f
calculated using log-rank test.
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aGVHD has a complex pathogenesis involving multiple cell
types at different stages of disease progression. Both CD4+ and
CD8+ T cells play important roles in initiating and propagating
disease in models of aGVHD.7-9 As both T-cell subsets also are
involved in critical protective immunity posttransplant,
including tumor- and pathogen-specific responses, untangling
T cells that mediate aGVHD from the beneficial T-cell subsets
has become a major challenge in the field. Purging alloreactive
T-cell subsets from the graft after a brief incubation with the
recipient’s cells has been evaluated, both preclinically64-68 and
in the clinic,69-73 and achieved a lower frequency and severity of
alloreactive responses. However, risks of GVHD, relapse, and
infections remained. Similarly, using the posttransplant cyclo-
phosphamide protocol as prophylaxis, which relies on prefer-
ential targeting of rapidly proliferating effector T cells in
response to alloantigens,22,23 substantially reduced the risk of
GVHD and relapse24-26 but predisposed patients to some viral
infections.27-29 These studies highlight the need for more
selective targeting.

Using engineered donor T cells for targeted elimination of
autologous host-reactive T-cell subset is an appealing way to
selectively and permanently ablate the pathogenic population.
Recent evidence highlighted the ability of engineered T cells,
originally developed as cancer treatments, to target pathogenic
T cells mediating allo-immune complications such as immune
rejection and GVHD. For example, we previously reported the
development of a 4-1BB–specific ADR (4-1BB.ADR) that, when
expressed on human T cells, enabled selective elimination of
alloreactive T cells responsible for immune rejection.45 Another
group demonstrated that CAR T cells targeting CD83, an anti-
gen mainly expressed on mature dendritic cells and activated
lymphocytes, successfully inhibited the progression of xeno-
geneic GVHD.74 These approaches prove the feasibility of using
engineered T cells to prevent or suppress diseases driven by
pathogenic T cells. However, targeting 4-1BB or CD83 with
engineered T cells in the context of aGVHD may result in a
broader ablation of activated T cells and/or myeloid cells,
potentially affecting protective immune responses posttrans-
plant. Therefore, we sought to determine whether more
selective ablation of pathogenic T cells produced therapeutic
benefit without significantly damaging other components of
protective immunity.

The pattern of OX40 expression in activated T cells and its
limited expression on cell surface of other critical hematopoietic
or nonhematopoietic tissues40 makes it a suitable target for
adoptive cell therapy. T cells expressing an OX40-specific ADR
were easy to manufacture and had limited fratricide, likely due
to both the cis-masking of OX40 by the ADR construct (similar
to that observed with the 4-1BB.ADR45) and the minimal
expression of OX40 on cytotoxic CD8+ T cells. Indeed,
OX40.ADR T cells were enriched for CD8+ T cells at the end of
expansion, supporting self-selection for a fratricide-resistant
t leukemia progression in vivo. (A) Schematic of the model setup for panels B-D
an individual animal. (C) Animal body weight (normalized to weight on day 0 of the
al. In panels B-C, causes of death are indicated for each respective experimental

matic of the model setup for panels F-H (BV173). (F) Tumor luminescence at specified
normalized to weight on day 0 of the same animal) at specified time points. Each line
or each respective experimental group. (H) Animal survival over time. P values were
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population. Reflecting the pattern of OX40 expression,
OX40.ADR T cells predominantly target activated CD4+ T cells
with limited activity against activated CD8+ T cells and pre-
served the broad anti-viral activity of VSTs, in line with previous
studies42 and clinical evidence that inherited OX40 deficiency
did not compromise immunity against most common childhood
pathogens including EBV and CMV.75

Apart from GVHD and opportunistic infections, leukemia
relapse is another major complication and a leading cause of
death after allo-HSCT. CAR T cells have demonstrated potent
antitumor activity against hematologic malignancies resistant to
conventional treatments and have been used to mitigate
posttransplant relapse in clinical trials.76 Several clinical reports
showed reduced GVHD from donor-derived CD19.CAR T-cell
transplant recipients,77-79 which has been modeled in subse-
quent mechanistic studies in mice.80 In the posttransplant
setting, CAR T-cell administration requires immediate tapering
of immunosuppressive GVHD prophylaxis to ensure maximal
potency, which may increase the risk of aGVHD. Therefore,
arming CAR T cells with OX40.ADR should enable dual pro-
tection against donor alloreactivity and host malignancy and
thus may serve as posttransplant prophylaxis for GVHD and
relapse in a broad patient cohort.

Despite its tightly regulated specificity, OX40.ADR T cells may
produce unwanted “on-target, off-alloreactive T cell” cytotox-
icity against subsets of activated Tregs that suppress allor-
eactivity and helper CD4+ T cells involved in clearance of tumor
or pathogens. As we observed strong GVHD protection in our
animal model, it is possible that concomitant depletion of
pathogenic T cells by OX40.ADR T cells would offset potential
suppression of Treg function. Furthermore, the effect of OX40+

T-cell depletion on the incidence of chronic GVHD81 warrants
additional studies as OX40 expression is increased on T cells in
that condition. Although the xenogeneic GVHD mouse model
allows the recreation of many aspects of human disease,54,55

additional studies are needed in immunocompetent models,
such as NHPs,44,50,51 which may more closely resemble human
physiology. Using Tregs themselves as a cellular platform for
ADR targeting may help avoid excessive inflammatory
responses and compensate for the potential systemic Treg
targeting via OX40. Multiple preclinical studies have described
the development of CAR-expressing Tregs82 to treat T-cell–
driven diseases, such as multiple sclerosis83 and xenogeneic
GVHD,84 thus supporting the feasibility of this approach. Aside
from potential activity against activated Tregs, OX40.ADR
T cells may damage protective antileukemia and antipathogen
responses with a helper T cell component, especially in lym-
phodepleted patients posttransplant.34,85 Several strategies can
be used to overcome these limitations. As shown in this study,
coexpressing a tumor-specific CAR on OX40.ADR T cells
enables a graft-versus-leukemia effect with simultaneous pro-
tection against aGVHD. Similarly, these receptors can be
expressed on VSTs manufactured from the stem cell donor to
achieve triple-pronged activity. Long-term damage can be
minimized by limiting the persistence of OX40.ADR-expressing
T cells either by configuring CAR/ADR signaling (eg, by modi-
fying costimulation86,87) or by incorporating a suicide switch.88

In conclusion, we showed that a single engineered T-cell product
can mitigate both aGVHD and leukemic relapse after allo-HSCT.
TARGETED ABLATION OF OX40+ T CELLS PREVENTS aGVHD
Depletion of OX40+ activated T cells with OX40.ADR T cells
effectively prevents fatal xenogeneic GVHD, and T cells coex-
pressing OX40.ADR and a CAR provide dual protection against
GVHD and leukemia relapse. Our studies support the feasibility
of using donor-derived therapeutic T cells to reduce transplant-
related mortalities and improve outcomes in patients post allo-
HSCT. More broadly, the current study and our previous work
using 4-1BB.ADR to prevent immune rejection demonstrate the
effectiveness of ADR T cells against different types of pathogenic
T cells. Through careful selection of the target molecule, the
application of ADR T cells may be further expanded to T-cell–
mediated autoimmune diseases such as multiple sclerosis and
type 1 diabetes. Furthermore, ADR T cells can be used as a tool
to selectively target specific populations of pathogenic T cells to
better understand their role in alloimmune or autoimmune dis-
ease pathogenesis and inform targeted therapy approaches in T-
cell–driven pathologies.
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