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existing registries. One option is to
design a prospective observational
cohort (see figure) based on eligibility
criteria established a priori upon entry to
a disease registry coupled with reporting
of annual longitudinal follow-up data on
standardized report forms to capture
disease-specific information, choice of
treatments, response to treatment,
changes in treatment (and reasons for
change) or lack thereof when clinically
indicated, assessment of disease status,
and survival. This would in essence cap-
ture not only those who were fit enough
to receive HSCT or another intervention
such as gene therapy but also those who
met disease severity for an intervention
but were not offered the treatment or
were unable to tolerate the intervention
because of multiple comorbidities or a
because a suitable donor was not
available. Adult patients with IEI are
understudied and underrepresented in
registries but are likely to offer relevant
information on when the timing of a
treatment strategy should be modified for
the best possible outcome. Another factor
that will ensure a robust nested cohort
within a registry would be limiting partici-
pation to those clinical sites willing to
report consecutive patients with IEI and
are committed to continue longitudinal
follow-up throughout a patient’s life span.
Supportive care measures will no doubt
evolve and so will strategies for treatment
intervention. A prime example is the
adoption of less intense conditioning
regimens for HSCT. This approach
extends access to less fit patients with
progressive disease and is intended to
lower the burden of morbidity associated
with HSCT. Striking an appropriate bal-
ance between intensity of conditioning
regimen for HSCT and disease control
remains a challenge.8,9 Consequently,
only through careful study of strategies
among similar disease groups and/or
donor types (in the case for trans-
plantation) can we begin to make appro-
priate recommendations for treatments.

The proposed approach would require
substantial monetary investment and
participation of existing stakeholders. It is
particularly important that consecutive
patients with IEI be registered from each
of the participating sites to minimize bia-
ses. Finally, participation in the registry
and in associated research requires
patients to understand the important role
they play in advancing the treatments for
their disease, which underscores the need
for sustained longitudinal follow-up, and a
recognition that registry-led studies
impact future generations of patients in
addition to themselves.
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Comment on Turcotte et al, page 90
Treatment intensity in AML:
a double-edged sword
Brian D. Friend | Baylor College of Medicine

In this issue of Blood, Turcotte et al1 demonstrate in the largest cohort to date
of childhood acute myelogenous leukemia (AML) survivors that treatment
intensification and improved supportive care measures have led to dramati-
cally better long-term survival over time. However, they also show the
unwanted effects of treatment intensification, that being a greater burden of
late effects and toxicity that have persisted even in patients treated in the
most recent time period.
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The evolution in treatment of childhood
leukemia over the past 60 years has
been one of the greatest successes in
the field of oncology, with 5-year overall
survival rates now surpassing 90%.2 Yet
this triumph is due primarily to advances
in the treatment of acute lymphoblastic
leukemia (ALL), in which dose-intensive
combination chemotherapy followed by
a prolonged maintenance phase ach-
ieves long-term remissions for most
patients. For AML, however, improving
cure rates have lagged substantially
behind those of ALL, requiring more
intensive treatments, frequently
including hematopoietic cell trans-
plantation (HCT).

Higher rates of cure for childhood can-
cers have led to an estimated 500 000
cancer survivors by 20203 and a greater
appreciation of the burden of late effects
suffered by patients related to their prior
treatments. Much of this understanding
originated from the Childhood Cancer
Survivor Study, a robust cohort of
patients from 31 institutions with longi-
tudinal data dating to 1970.2 This
recognition has resulted in earlier iden-
tification of late effects and prompt
treatment, as well as the development of
preventative measures to improve
long-term outcomes. For example,
several treatment protocols since the
mid-1990s have included dexrazoxane
to reduce anthracycline-related car-
diotoxicity without impacting relapse
mortality.4 More notably, recent treat-
ment protocols for several childhood
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cancers have shifted their focus to more
nuanced systems of risk stratification,
with a goal of decreasing treatment
intensity to reduce the risk of developing
late effects. Such efforts have main-
tained excellent treatment outcomes
while leading to reductions in late
mortality.5

Given that treatment plans for childhood
AML have required intensification rather
than deescalation to improve survival,
many have suggested that these patients
may also suffer an undue burden of late
effects. However, data for AML survivors
are limited.6 In this report from the
Childhood Cancer Survivor Study
comparing outcomes of 5-year survivors
of childhood AML treated between 1970
and 1999, Turcotte et al1 illustrate the
double-edged sword of this treatment
approach, notably that the risk of relapse
has decreased substantially over time
while the chance of developing a chronic
health condition is more than threefold
higher in survivors than healthy siblings.
The authors also conducted analyses
based on selected treatment groups: (1)
HCT recipients, allogeneic or autolo-
gous; (2) chemotherapy with cranial
radiation; and (3) chemotherapy only.
Strikingly, the incidence of late effects
has decreased over time in patients who
underwent HCT, yet late mortality and
chronic health conditions have not
changed significantly in the chemotherapy-
only group among patients treated in
different time periods (see figure). Still,
overall most childhood survivors of AML
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reported good health outcomes regard-
less of treatment group.

These findings demonstrate that
although the majority of AML survivors
are living without significant perceived
impairment, close monitoring and
surveillance for late effects are critical
during long-term follow-up, and the
follow-up should be adapted on the
basis of changes in treatment through
the years. In addition, more preventative
measures and early interventions during
survivorship could be effective in
reducing the burden in patients, espe-
cially those at high risk of late effects.
Practical approaches, such as exercise
interventions to improve cardiovascular
health, could impact many childhood
cancer survivors, yet to be successful and
widely adopted, they will need to
engage this particular patient popula-
tion, likely by incorporating digital and
mobile technology.

The more challenging question is how
can we modify upcoming treatment pro-
tocols to reduce late toxicity in a disease
where 5-year survival outcomes are still
suboptimal. Development and incorpo-
ration of targeted therapies is likely the
best approach to improve efficacy while
minimizing toxicity. FLT3 inhibitors have
shown efficacy in adult patients with this
specific mutation without significant
adverse effects,7 and there are ongoing
studies in pediatric AML (NCT04293562).
Immune-based approaches, such as
chimeric antigen receptor T-cell therapy,
have demonstrated great success in ALL
but have been more difficult to target in
AML, though there are some promising
studies in development.8 Nevertheless,
late toxicities may still be seen with tar-
geted therapies; therefore, further
studies are needed to ascertain the
long-term effects for immune-based
therapies.9

Although targeted therapies are
designed primarily to reduce the risk of
disease recurrence, other approaches
should focus on mitigating treatment-
related mortality. First, investigators
should strive to identify low-risk AML
patients, who do not benefit from more
intensive treatment, particularly HCT.
Second, advances in molecular profiling
including whole exome sequencing and
RNA sequencing, as well as more sensi-
tive techniques to assess disease status
such as next-generation sequencing, will
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allow for more individualized and less
toxic treatments in the future.10 Third,
given that a large population of patients
will still require HCT for cure, novel
strategies to decrease regimen related
toxicity, such as the development of
personalized pharmacokinetic-guided
dosing algorithms, are needed.

The findings from Turcotte et al’s1 study
are limited by the facts that the cohort
stretches over nearly 3 decades and
treatment of AML has changed sub-
stantially through the years. For
example, in patients in this study who
received HCT, one-third were autolo-
gous and nearly half received total body
irradiation, neither of which are part of
standard treatment today. Yet the long-
term outcome data presented here are
essential to our understanding of the
late toxicity seen in AML patients and
will be helpful in designing the next
phase of treatment protocols. Ulti-
mately, such protocols should optimize
cure rates and long-term quality-of-life
outcomes while reducing the risk of late
effects.
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Acquiring a new diagnostic
approach for aVWS
Sarah O’Brien | The Research Institute at Nationwide Children’s Hospital; and
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In this issue of Blood, Icheva et al describe a new and highly predictive
approach for the laboratory diagnosis of acquired von Willebrand syndrome
(aVWS) in neonates and infants undergoing surgery for congenital heart
disease (CHD).1 Although pediatric aVWS is a rare disease, it appears most
commonly in the clinical setting of CHD, in which the shear stress–induced
increase in von Willebrand factor (VWF) proteolysis causes the loss of high
molecular weight multimers (HMWM).2 Understanding possible risk factors
of bleeding in infants with CHD is crucial for this patient population because
neonates and small infants, in particular, are susceptible to the coagulopathic
effects of cardiopulmonary bypass, almost invariably requiring the use of
blood components and other procoagulant interventions.3,4
Historically, a significant barrier to the
timely diagnosis of aVWS has been the
lack of readily available and accurate
laboratory testing. Individual and pre-
analytical variables affect the sensitivity
of traditional laboratory testing for
aVWS, particularly with ristocetin-based
activity testing.5 The gold standard for
diagnosing aVWS, the VWF multimer
analysis, is time consuming and unavai-
lable on-site at many institutions. A key
advancement in recent years has been in
the measurement of functional assess-
ment of VWF, with ristocetin-based
activity tests gradually being supple-
mented or replaced by assays based on
the binding of VWF to a recombinant
platelet glycoprotein (GP1bM), which
show greater precision and higher
sensitivity.6 In this prospective cohort
study, Icheva et al take the next step of
investigating how this new testing can
be used in the identification of aVWS.

The investigators screened all patients
with CHD aged 0 to 12 months requiring
corrective or palliative cardiac surgery
over a 17-month time frame and ach-
ieved a high enrollment percentage
(95% of eligible infants enrolled in the
study). Participants underwent detailed
coagulation testing at 4 standardized
time points (preoperative, intraopera-
tive, postoperative day 1, and final
testing, typically within the first 2 weeks
after surgery) (figure). VWF:GP1bM
testing was performed using a commer-
cially available test, and at the authors’
institution, only 1 hour elapses from
blood collection to the result. In their
analysis, the authors compared the pre-
dictive value of the GP1bM/VWF:anti-
gen (Ag) ratio, the VWF:collagen
binding/VWF:Ag ratio, and peak systolic
echocardiographic gradients with the
gold standard HMWM ratios. Among the
algorithms studied, the GP1bM/VWF:Ag
ratio provided the best predictive value
for identifying aVWS and correlated
strongly with the HMWM ratio. Another
key finding from this work was that a
GP1bM/VWF:Ag cutoff value of <0.83,
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