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Clinically tolerable, permissive HLA-DPB1 mismatches defined
by the T-cell epitope (TCE) model improve the selection of unre-
lated donors in allogeneic hematopoietic cell transplantation
(HCT).1 Nonpermissive mismatches across TCE groups have
been shown to be associated with stronger alloreactive
responses and worse clinical outcomes compared with permis-
sive mismatches within the same TCE group.2-4 We have
recently demonstrated that the biological basis of permissive-
ness is associated with the peptide repertoires (immunopepti-
domes) presented by these molecules, which play a central role
in determining the strength and T-cell receptor diversity of the
alloreactive responses that they elicit.5 Less immunogenic
HLA-DP molecules have similar bound peptide motifs6,7 and
overlapping immunopeptidomes.5 Although the role of struc-
tural similarity and overlapping immunopeptidomes in vitro is
clear,5 their relevance for alloresponses in vivo is still unknown.
We hypothesized that a similarity measure reflecting the
peptide-binding region of HLA-DPB1 alleles could constitute a
proxy for immunopeptidome overlap and hence improve the
prediction of permissive mismatches in the clinical setting.

To test this hypothesis, we investigated the structural hierarchies
of HLA-DPB1 alleles found in a Center for International Blood
and Marrow Transplant Research (CIBMTR) cohort of 5140
10/10-matched patients who received transplants for acute mye-
loid leukemia, acute lymphoblastic leukemia, or myelodysplastic
syndromes from 2008 to 2017 and their unrelated donors.
Detailed information on the patient cohort and clinical data (sup-
plemental Table 1, available on the Blood Web site), HLA typing
and DPB1 matching, multidimensional scaling and structure analy-
sis of HLA-DPB1 alleles, functional testing of HLA-DP alloreactive
responses, mismatch stratification models, and their association
with clinical outcomes can be found in the supplemental Materi-
als. The structural relationship between HLA-DPB1 alleles was
characterized by multidimensional scaling techniques based on
28 polymorphic amino acid positions encompassing all hyper-
variable regions in the HLA-DP molecule (supplemental Table
2). A total of 51 different HLA-DPB1 alleles, including 5 TCE

group 1 (TCE1), 9 TCE2, 36 TCE3 alleles, and 1 null allele (the
latter in a single patient), were identified in the clinical cohort.
Clustering by amino acid sequence analysis (Figure 1A) revealed
that DPB1 alleles segregate into two main branches, one includ-
ing all TCE1 and TCE2 alleles and another formed by TCE3
alleles. Within TCE3, we identified two sub-branches, one
formed by a subgroup of 4 frequent (cumulative allele frequen-
cies in patients and their donors 65.0% and 66.6%, respectively)
and structurally as well as functionally closely related alleles (ie,
DPB1*02:01, 04:01, 04:02, 23:01). These “core” TCE3 alleles
have been shown to have similar bound-peptide motifs6,7 and
overlapping immunopeptidomes.5,6 Using in vitro assays, we
show that TCE3 “core” alleles elicit significantly weaker (mean
response 18.5%) CD41 T-cell alloreactive responses from per-
missive donors compared with common “non-core” alleles
(mean response 29.2%; P , .001; Figure 1B), demonstrating the
functional relevance of the observed clustering. Using principal
coordinates analysis, we confirmed the hypothesis that TCE3
alleles can also be distinguished by a dimorphism (DEAV/GGPM
motif) formed by amino acids 84 to 87 in pocket 1,8,9 which,
due to their different physicochemical properties, has been
shown to have an important role in defining the peptide
repertoire bound by the HLA-DP molecule10,11 (supplemental
Figure 1).

Based on these observations, we postulated that HLA-DPB1
mismatches involving structurally distant alleles within TCE3
could have reduced immunopeptidome similarity and hence be
less permissive than those involving structurally close alleles. To
investigate this, we stratified TCE3 permissive mismatches (N 5

2216) in the HCT cohort into “core” (N 5 930) and “non-core”
(N 5 1286) or into DEAV/GGPM-matched (N 5 1209) and mis-
matched (N 5 1007) pairs and compared them with HLA-
DPB1–matched (N 5 785) and nonpermissively mismatched
(N 5 2023) pairs (supplemental Figure 2). These stratification
models were tested in parallel to the “classic” TCE model
considering permissive mismatches (N 5 2332) as a whole.
There were no major differences in clinical variables across
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Figure 1. Clustering analysis based on HLA-DP polymorphic positions reveals structurally and functionally divergent “core” and “non-core” HLA-DPB1 alleles
predictive of clinical outcome. (A) Amino acid variation at 28 polymorphic positions (amino acids 8-215) in HLA-DPB1 coding sequences was used to cluster alleles
according to their structural similarity. TCE3 “core” alleles (ie, DPB1*02:01, 04:01, 04:02, 23:01) form a distinct cluster separate from other alleles in this TCE group. For
clarity, only the 19 most common alleles in the cohort, with cumulative frequencies of 98.7% and 98.8% in the patients and donors, respectively, are shown. (B) Mean
in vitro alloreactive responses (% CD41CD1371) from self-TCE3 “core” healthy donors are lowest (18.5% 6 15.2%; n 5 47) against permissive TCE3 “core” alloantigens
(DPB1*02:01, 04:01, 04:02) and maximal (37.2% 6 12.7%; n 5 85) against nonpermissive TCE1 alleles (DPB1*09:01, 10:01, 17:01). Mean alloresponses against representa-
tive “non-core” TCE3 alleles (DPB1*01:01, 05:01, 15:01) are intermediate (29.2% 6 16.2%; n 5 69) between these 2 extremes. Bars indicate mean with standard devia-
tion. **P , .01; ***P , .001; ****P , .0001. A total of 187/201 cultures were included in Meurer et al13 and reanalyzed for this work. (C-D) Forest plots show the HR and
95% CI for (C) aGVHD II-IV and (D) TRM for the DP matching subgroups in the “classic” TCE model and the TCE3 “core” vs “non-core” stratification strategy (model
II). HLA-DP nonpermissively mismatched pairs are shown as reference and overall P values of the adjusted models are presented. For statistically significant models
(overall P , .01), P values for individual groups are also indicated. (E-F) Cumulative incidence (top panels) and Kaplan-Meier (bottom panels) estimates for (E) TRM and
(F) overall survival in the cohort are plotted for the TCE3 “core” and “non-core” permissive subgroups. Results from statistical comparison of the curves with Gray’s
test and log-rank are indicated.
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DPB1-matched and conventional TCE matching groups or
between TCE3 subgroups (supplemental Tables 1 and 3).

In line with previous results,2,12 HCT from HLA-DPB1 nonpermis-
sive compared with matched or permissive donors according to
the “classic” TCE model (model I, supplemental Figure 2) was
associated with significantly higher risks of acute graft-versus-
host disease (aGVHD) grades II-IV (P , .0001) (Figure 1C;
Table 1). When TCE3 permissive transplants were further strati-
fied as “core”/“non-core” (model II, supplemental Figure 2), the
risks of aGVHD II-IV increased progressively from “core” TCE3
(hazard ratio [HR] 1.12 [0.98-1.28]; P 5 .1012) to “non-core”
TCE3-permissive (HR 1.24 [1.06-1.46]; P 5 .0082), and nonper-
missive mismatches (HR 1.32 [1.16-1.50]; P , .0001) compared
with allele-matched patients (Table 1). Similarly increasing risks
were observed using the stratification based on DP84-87-matched
vs mismatched pairs (supplemental Table 4). When compared
with nonpermissive mismatches, only “core” (HR 0.85 [0.76-
0.94]; P 5 .0025) and DP84-87-matched (HR 0.87 [0.79-0.96]; P 5

.0045) but not “non-core” (HR 0.94 [0.85-1.05]; P 5 .2728) nor
DP84-87-mismatched (HR 0.94 [0.84-1.05]; P 5 .3138) permissive
mismatches conferred significantly lower risks of aGVHD II-IV
(Figure 1C; supplemental Figure 3). Classification of TCE3-
permissive pairs according to “core” and “non-core” but not
according to DP84-87 matching or with the “classic” TCE model
also revealed a significant association with transplant-related
mortality (TRM) (Table 1; Figure 1D-E; supplemental Figure 3).
Compared with the nonpermissive mismatches, the risks of TRM
were significantly lower for the “core” permissive (HR 0.78
[0.68-0.88]; P 5 .0002) but not for the “non-core” permissive
(HR 0.95 [0.83-1.09]; P 5 .4578). Despite a constant difference
in survival between “core” and “non-core” mismatches through-
out the follow-up (HR 0.88 [0.77-1.00]; P 5 .046) (Figure 1F), no
statistically significant associations with overall survival or any of
the other clinical endpoints studied were observed for any of
the investigated models (supplemental Table 5).

Taken together, the increased risks of aGVHD and TRM
detected for permissive mismatches spanning “core” and “non-
core” subgroups demonstrate that a finer stratification of mis-
matches that reflects the immunopeptidome divergence
between alleles in this group can benefit outcome prediction
and potentially improve donor selection. Moreover, these results
shed light on the relationship between the TCE and other mod-
els of HLA-DP permissiveness. Of note, common “non-core”
DP84-87 DEAV1 alleles in TCE3 are linked to the 39UTR high-
expression rs9277534 G allele,13,14 associating a graft-versus-
host mismatch between them and a “core” allele with high risk
of aGVHD according to the expression model.15,16 Furthermore,
“core” allele DPB1*02:01 and “non-core” allele DPB1*05:01 are
the spearhead alleles of the evolutionary model for assessment
of DPB1 mismatch and GVHD risk in Japan,17 with mismatches
across these 2 subgroups considered detrimental. Previously
described interactions between these models and the TCE
model12,16-19 can be explained by the findings presented here.
Importantly, per definition, the expression12,15 and DP2-DP517

models can only be applied to a fraction of the patients.20 Con-
versely, a refined stratification of risk based on the structural
divergence among TCE3 alleles can be applied to all patient-
donor pairs, producing a comprehensive, unified model able to
reflect the effects of the other models.

In conclusion, in this study we have identified a “core” group of
structurally and functionally related HLA-DPB1 alleles that consti-
tute the main drivers of associations between TCE3 permissive
mismatches and reduced risk of aGVHD and TRM compared with
nonpermissive mismatches. These observations provide evidence
for the first time that immunopeptidome similarity, central to the
mechanistic basis of HLA-DPB1 TCE-permissiveness,5 also has
clinical consequences for the outcome of HCT. Prospective pref-
erential selection of “core” permissive donors within the TCE3
group to reduce transplant complications appears feasible due to
the high frequency of “core” alleles21 (supplemental Figure 4).

Table 1. Multivariable regression models for association between permissive and nonpermissive DPB1 mismatches
and aGVHD II-IV and TRM using the classic and “core” vs “non-core” TCE models

Endpoints

TCE (classic) TCE3 core vs non-core

DP matching HR (95% CI) (Overall) P DP matching HR (95% CI) (Overall) P

aGVHD II-IV Match 1.00 (<.0001) Match 1.00 (.0002)

Permissive 1.18 (1.03-1.35) .0197 Core permissive 1.12 (0.98-1.28) .1012

Nonpermissive 1.32 (1.16-1.50) ,.0001 Non-core permissive 1.24 (1.06-1.46) .0082

Non-permissive 1.32 (1.16-1.50) ,.0001

TRM Match 1.00 (.0328) Match 1.00 (.0042)

Permissive 0.99 (0.84-1.15) Core permissive 0.87 (0.72-1.05) .1439

Nonpermissive 1.12 (0.97-1.30) Non-core permissive 1.07 (0.90-1.27) .4482

Nonpermissive 1.12 (0.97-1.30) .1209

Models were adjusted or stratified for disease type, donor age, donor/recipient CMV match, GVHD prophylaxis, HCT-CI score, conditioning regimen, year of transplant, Karnofsky
score, time from diagnosis to transplant, graft type, TBI use, and disease status as required. P values for specific groups are shown only for those models in which the overall P value
was significant.
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Further studies to confirm the clinical advantage of “core” TCE3
permissive mismatches in this and other clinical settings, includ-
ing haploidentical transplantation,22,23 are warranted.
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