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Inherited bone marrow (BM) failure syndromes are a
diverse group of disorders characterized by BM failure,
usually in association with ‡1 extrahematopoietic
abnormalities. BM failure, which can involve ‡1 cell
lineages, often presents in the pediatric age group.
Furthermore, some children initially labeled as having
idiopathic aplastic anemia or myelodysplasia represent
cryptic cases of inherited BM failure. Significant advances
in the genetics of these syndromes have been made,
identifying more than 100 disease genes, giving insights
into normal hematopoiesis and how it is disrupted in
patients with BM failure. They have also provided
important information on fundamental biological
pathways, including DNA repair: Fanconi anemia (FA)
genes; telomere maintenance: dyskeratosis congenita (DC)
genes; and ribosome biogenesis: Shwachman-Diamond
syndrome and Diamond-Blackfan anemia genes. In

addition, because these disorders are usually associated
with extrahematopoietic abnormalities and increased risk
of cancer, they have provided insights into human
development and cancer. In the clinic, genetic tests
stemming from the recent advances facilitate diagnosis,
especially when clinical features are insufficient to
accurately classify a disorder. Hematopoietic stem cell
transplantation using fludarabine-based protocols has
significantly improved outcomes, particularly in patients
with FA or DC. Management of some other complications,
such as cancer, remains a challenge. Recent studies have
suggested the possibility of new and potentially more
efficacious therapies, including a renewed focus on
hematopoietic gene therapy and drugs [transforming
growth factor-b inhibitors for FA and PAPD5, a human
poly(A) polymerase, inhibitors for DC] that target disease-
specific defects.

Introduction
Inherited bone marrow failure (BMF) syndromes are a diverse
group of life-threatening disorders, usually presenting in the
pediatric age group.1 Although historically these disorders
largely included syndromic categories, such as Fanconi anemia
(FA), next-generation sequencing has added to the list an
increasing number of new genetically defined entities, such as
ERCC6L2-associated BMF. The genetic advances have also led
to the recognition that some idiopathic cases of BMF/myelodys-
plasia (MDS) are cryptic forms of recognized syndromes, such as
dyskeratosis congenita and FA. The genetic developments also
raise an important question as to what should be considered an
inherited BMF syndrome. This issue is complicated, because
some germline genetic variants can produce very pleiotropic
hematological and nonhematological phenotypes, and the asso-
ciated phenotypes could be easily classified into more than 1
category. In this review, we included entities that are frequently
associated with global BMF and/or constitutional cytopenia(s).
A discussion of these entities, highlighting the genetic advances
and management principles, is given herein. Tables 1-10 pro-
vide details on the marked heterogeneity with .100 currently
identified disease genes. We also highlighted some newer enti-
ties associated with phenotypes varying from BMF to MDS and
leukemia.

FA
FA was first described by Fanconi in 1927.2 It is usually inherited
as an autosomal recessive (AR) trait, but in a small subset of
patients, it can be an X-linked recessive disorder. Patients with
FA are clinically heterogeneous.3 Typical features include BMF
development and an increased predisposition to cancer.
Affected individuals may also have $1 extrahematopoietic
abnormalities, including dermatological (eg, cafe au lait spots),
skeletal (eg, radial hypoplasia), genitourinary (eg, single kidney),
gastrointestinal (eg, duodenal atresia), and neurological abnor-
malities (Table 2). Approximately one-third of patients have no
overt extrahematopoietic abnormalities. Most patients are diag-
nosed at the end of the first decade of life; however, some
patients are diagnosed in adulthood.

FA cells display hypersensitivity to DNA cross-linking agents,
such as diepoxybutane (DEB) and mitomycin C (MMC). This FA
cell hallmark led to the development of a diagnostic test several
decades ago and has facilitated many advances, including eluci-
dating the genetics with currently characterized 22 FA and
FA-like disease subtypes/complementation groups.3-20 The pro-
teins encoded by the FA and FA-like genes (Table 3) participate
in DNA repair.21 Specifically, 8 of the FA proteins (FANCA,
FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and

556 blood® 11 AUGUST 2022 | VOLUME 140, NUMBER 6

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/140/6/556/1912887/bloodbld2020006481c.pdf by guest on 08 June 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood.2020006481&domain=pdf&date_stamp=2022-08-11


FANCM) interact with one another to form a nuclear complex,
the FA core complex. The FA core complex is necessary for acti-
vation of the FANCI-FANCD2 complex to a monoubiquitinated
form (FANCI-FANCD2-Ub). FANCI-FANCD2-Ub then interacts
with DNA repair proteins, such as BRCA2, BRCA1, and RAD51,
leading to DNA damage repair. Patients with FA type D1 (FA-
D1) and those with FA-S have biallelic variants in BRCA2 and
BRCA1, respectively. These observations linked FA to the DNA
damage-response pathway (Figure 1). BRCA2 is important for
DNA damage repair by homologous recombination. Cells lack-
ing BRCA2 inaccurately repair damaged DNA and are hypersen-
sitive to DNA cross-linking agents. It has been established that
FANCJ represents BRIP1 (partner of BRCA1) and FANCN repre-
sents PALB2 (partner of BRCA2) and that SLX4 is also an FA pro-
tein. These findings have strengthened the connection between
FA and DNA repair; specifically, the FA network orchestrates
incisions at cross-linked DNA sites.22 Recent studies have sug-
gested that the FA proteins are important in counteracting
aldehyde-induced genotoxicity in hematopoietic stem cells.23

FA proteins also have other functional roles, including cytokine
regulation,24 mitophagy, and ribosome biogenesis.25 The multi-
functional biological roles of FA and FA-like proteins are
depicted in Figure 1.

Dyskeratosis congenita
Classic dyskeratosis congenita (DC), first described in 1910, is an
inherited BMF syndrome characterized by the mucocutaneous
triad of abnormal skin pigmentation, nail dystrophy, and mucosal
leucoplakia.26,27 These features frequently develop in children.
Various other abnormalities have also been reported: dental (eg,
severe caries), gastrointestinal (eg, esophageal stenosis), genito-
urinary (eg, phimosis), neurological (eg, cerebellar hypoplasia)],
ophthalmic (eg, nasolacrimal duct narrowing), pulmonary (eg,
pulmonary fibrosis), skeletal (eg, osteoporosis), and vascular;
Table 2).27,28 BMF is a major cause of mortality, and DC predis-
poses patients to cancer and pulmonary complications. X-linked

recessive, autosomal dominant (AD), and AR subtypes of DC are
recognized. Sixteen DC genes (DKC1, TERC, TERT, NOP10,
NHP2, TINF2, TCAB1, USB1, CTC1, RTEL1, ACD, PARN, NAF1,
ZCCHC8,NPM1, andMDM4)29-43 have been identified (Table 4).

The gene mutated in X-linked DC (DKC1) was identified in 1998.
It encodes a highly conserved nucleolar protein called dyskerin.
Dyskerin associates with the H/ACA class of small nucleolar
RNAs in small nucleolar ribonucleoprotein particles, which are
important in guiding the conversion of uridine to pseudouridine
during ribosomal RNA maturation (Figure 2). Dyskerin also asso-
ciates with the RNA component of telomerase (TERC), where it
stabilizes the telomerase complex, which is critical for telomere
maintenance44,45 (Figure 2). Heterozygous variants in TERC and
TERT have been identified in patients with AD-DC30-32 and in
some patients with aplastic anemia (AA), MDS, acute leukemia,
and pulmonary and liver fibrosis.46-51 A subset of patients with
the multisystem disorder Hoyeraal-Hreidarsson syndrome has
DKC1 variants.52 Also, AR-DC is genetically heterogeneous with
9 subtypes because of biallelic variants in NHP2, NOP10, TERT,
TCAB1, USB1, CTC1, RTEL1, ACD, and PARN. One AD-DC sub-
type is related to variants in TINF2, which encodes a component
of the shelterin complex that protects telomeres and controls
access of telomerase to a telomere. Subsequently, heterozygous
variants in other genes (RTEL1, PARN, NAF1, ZCCHC8, NPM1,
and MDM4) have been associated with some DC features.38-43

Collectively, these observations have demonstrated that classic
DC, Hoyeraal-Hreidarsson, and a subset of AA and MDS/acute
myelogenous leukemia (AML) are principally related to a defect
in telomere maintenance, and cells from these patients have very
short and/or abnormal telomeres.44,53 The multisystem abnor-
malities in these patients, including predisposition to cancer,
have highlighted the critical role of telomeres and led to the rec-
ognition of a new category of human diseases called telomero-
pathies. Still, in different DC subtypes, the pathophysiology also
includes nontelomere defects (Figure 2). For example, patients
with DKC1, NHP2, and PARN variants also have ribosomal

Table 1. Characteristics of the inherited bone marrow failure syndromes

FA DC SDS DBA CDA CAMT SCN New*

Inheritance pattern AR, XLR XLR, AR AR AD AR AR AD AR
AD AD XLR AD AD AR AD

Somatic
abnormalities

Yes Yes Yes Yes Rare Yes Rare Yes

Bone marrow
failure

AA (90%) AA (80%) AA (20%) RCA Dysery Meg Neut Yes

Short telomeres Yes Yes† Yes No No No ?

Cancer Yes Yes Yes Yes No Yes Yes Yes

Chromosome
instability

Yes Yes Yes ? ? No ? Yes‡

Genes identified 22 16 4 21 5 4 7 251

CAMT, congenital amegakaryocytic thrombocytopenia and syndromic thrombocytopenia; Dysery, usually dyserythropoiesis; Meg, typically low megakaryocytes, but can progress to
global bone marrow failure; Neut, usually low neutrophils; RCA, red cell aplasia, although some patients can develop global bone marrow failure; XLR, X-linked recessive.

*Includes new and overlapping syndromes.

†Yes, usually very short in DC and short in FA and SDS.

‡Yes, only some new subtypes are currently known to show chromosome instability.
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defects (Figure 2). The overall phenotype in any patient is there-
fore a summation of these different biological defects, environ-
mental effects (eg, increased smoking-related risk of pulmonary
complications), and age (eg, worsening of mucocutaneous fea-
tures with aging). In addition, the clinical phenotype is influenced
by the anticipation phenomenon, increasing disease severity in
succeeding generations because of the inheritance of short telo-
meres through the germline. Collectively, these interacting fac-
tors make prognostic predictions and genetic counseling
challenging.

Shwachman-Diamond syndrome
Shwachman-Diamond syndrome (SDS), first described in
1964, is usually an AR disorder characterized by exocrine
pancreatic insufficiency, BMF, and extrahematopoietic
abnormalities, particularly metaphyseal dysostosis (Table
2).54,55 Pancreatic insufficiency becomes apparent early in

infancy. Hematological abnormalities include neutropenia,
AA (�20%), MDS, and leukemia (�25%). Most patients with
SDS (.90%) have biallelic variants in the Shwachman-Bod-
ian-Diamond syndrome (SBDS) gene56 (Table 5). The SBDS
gene product has an important role in 60S ribosomal subu-
nit maturation and, therefore, in ribosome biogenesis.57

Thus, SDS is principally a disorder of defective ribosome
biogenesis.

Recently, it has been observed that biallelic variants in the EFL1
and DNAJC21 genes and heterozygous variants in the SRP54
gene can produce an SDS-like disease.57 Like SBDS, these pro-
teins are also involved in ribosome biogenesis.

Diamond-Blackfan anemia
Diamond-Blackfan anemia (DBA), first described in 1934,58

usually presents in early infancy with features of anemia.59

Table 2. Features of syndromic inherited BMF syndromes

IBMF Subtype Hematological Extrahematological Cancer

FA Single cytopenia, global
BMF, MDS, and AML.

Skin (eg, cafe au lait spots), skeletal (eg, radial
hypoplasia, short stature, “Fanconi facies”),
endocrine, genitourinary (eg, single kidney),
gastrointestinal (eg, duodenal atresia), and
neurological abnormalities.

Hematological (MDS,
AML). Squamous cell
carcinoma, especially
of the head and neck
and vulva. Other
tumors (eg, liver) are
also observed.

DC Single cytopenia, global
BMF, MDS, and AML.

The mucocutaneous triad of abnormal skin
pigmentation, nail dystrophy, and mucosal
leucoplakia. A variety of other abnormalities,
including dental (eg, severe caries),
gastrointestinal (eg, esophageal stenosis,
cirrhosis), genitourinary (eg, phimosis),
neurological (eg, cerebellar hypoplasia),
ophthalmic (eg, nasolacrimal duct narrowing,
retinopathy), pulmonary (eg, pulmonary
fibrosis), skeletal (eg, osteoporosis), and
vascular abnormalities.

Hematological (MDS,
AML). Squamous cell
carcinoma, especially
of the head and neck
and vulva. Other
tumors (eg, liver) are
also observed.

SDS Single cytopenia (eg,
neutropenia), global
BMF, MDS, and AML.

Exocrine pancreatic insufficiency, skeletal
(metaphyseal dysostosis, rib cage defects),
failure to thrive, developmental delay, dental,
and variable other abnormalities.

Hematological (MDS and
AML).

DBA Typically anemia, but can
progress to global
BMF, MDS, and AML.

Skeletal (triphalangeal thumb), short stature,
craniofacial (eg, high arched palate),cardiac,
and urogenital malformations.

Hematological (MDS,
AML), rarely
osteosarcoma and
colon cancer.

CDA Anemia with
dyserythropoiesis.

Skeletal abnormalities and splenomegaly. No

SCN Neutropenia, frequently
there are myeloid
maturation arrest,
MDS, and AML.

Usually, none in patients with ELANE variants.
There may be extrahematopoietic abnormalities
in non-ELANE–bearing patients.

Hematological (MDS and
AML).

CAMT and other syndromic
thrombocytopenias

Thrombocytopenia, BMF,
MDS, and AML.

In typical CAMT, there are usually no other
physical abnormalities. Patients with TAR have
an absence of radius and sometimes other
abnormalities. Those with a fusion of radius and
ulna can also have skin, skeletal, and other
extrahematopoietic defects.

Patients with classic
CAMT can develop
leukemia. Those with
TAR usually have no
cancer risk. Patients
with radioulnar fusion
due to MECOM
variants can develop
MDS and AML.
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The hallmark of classic DBA is a selective decrease in ery-
throid precursors and normochromic macrocytic anemia asso-
ciated with various extrahematopoietic abnormalities, such as
craniofacial (eg, high arched palate), thumb, cardiac, and uro-
genital malformations (Table 2). MDS and AML have been
reported in a few patients with DBA, suggesting an increased
predisposition to cancer. There are also cases that have evolved
into AA. Thus, although DBA is typically regarded as pure red
cell aplasia, a global hematopoietic defect can be observed in
some patients.

The first DBA gene (RPS19) was identified in 1999,60 and it
accounts for �25% of patients with DBA in White populations.
Subsequently, heterozygous variants of other genes encoding
small (RPS7, RPS10, RPS15, RPS17, RPS24, RPS26, RPS27,
RPS28, and RPS29) and large (RPL5, RPL9, RPL11, RPL15,
RPL18, RPL26, RPL27, RPL31, RPL35, and RPL35A) ribosomal
subunits proteins have been reported (Table 6). Collectively, the
genetic basis in �75% of patients with DBA can now be estab-
lished.61-68 These observations have also demonstrated that
DBA is a ribosome biogenesis disorder.

Some genotype-phenotype correlations have emerged. For
example, patients with variants in RPL5 gene tend to have multi-
ple physical abnormalities, including craniofacial, thumb, and
heart anomalies, whereas isolated thumb malformations pre-
dominantly occur in patients with heterozygous RPL11 variants.
A subgroup of patients with DBA/DBA-like disease has been
associated with variants in GATA1 (encoding an erythroid tran-
scriptional factor), CECR1/DADA2, TSR2, and EPO.68,69

In the Japanese population, RPS19 variants account only for
�13% of patients with DBA, and there are also differences in
the clinical phenotypes associated with different DBA genes
compared with White populations. This result suggests ethnic
differences in phenotypic expression, a feature that has been
observed in other genetic diseases, including FA.

Congenital dyserythropoietic anemias
Congenital dyserythropoietic anemias (CDAs) comprise a heteroge-
neous group of disorders characterized by anemia, ineffective eryth-
ropoiesis, and morphological evidence of dyserythropoeisis.70,71

Table 3. FA genetic subtypes

Complementation
group (gene)

Approximate % of
patients with FA Chromosome location Gene product Exons

AR

A (FANCA) 65 16q24.3 FANCA 44

C (FANCC) 12 9q22.32 FANCC 22

G (FANCG) 12 9p13.3 FANCG/XRCC9 14

J (FANCJ) ,5 17q23.2 FANCJ/BRIP1 25

E (FANCE) 4 6p21.31 FANCE 10

F (FANCF) 4 11p14.3 FANCF 1

P (FANCP) 2 16p13.3 FANCP/SLX4 17

D1 (FANCD1) ,1 13q13.1 FANCD1/BRCA2 27

D2 (FANCD2) ,1 3p25.3 FANCD2 45

I (FANCI) ,1 15q26.1 FANCI 38

L (FANCL) ,1 2p16.1 FANCL 14

M (FANCM)* ,1 14q21.2 FANCM 25

N (FANCN) ,1 16p12.2 FANCN/PALB2 14

O (FANCO)* ,1 17q22 FANCO/RAD51C 12

Q (FANCQ) ,1 16p13.12 FANCQ/ERCC4 13

S (FANCS)* ,1 17q21.31 FANCS/BRCA1 24

T (FANCT) ,1 1q32.1 FANCT/UBE2T 7

U (FANCU) ,1 7q36.1 FANCU/XRCC2 3

V (FANCV) ,1 1p36.22 FANCV/REV7 10

W (FANCW) ,1 16q23.1 FANCW/RFWD3 18

X-linked recessive

B (FANCB) ,1 Xp22.2 FANCB 17

AD

R (FANCR)* ,1 15q15.1 FANCR/RAD51 13

FA subtypes (complementation groups) A, C, and G account for most patients with FA. As can be noted from the table, many FA genes encode proteins that had previously been
known by other names and have important roles in DNA repair.

*Biallelic variants in FANCM, FANCO, and FANCS and heterozygous variants in FANCR/RAD51 produce FA-like disease3 (abnormalities overlap with those in patients with FA but
are not sufficient to be classified as bona fide FA).
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The first description of CDAs was published in 1966 by Crookston
and colleagues.72 In 1968, Heimpel and Wendt73 classified CDAs
into 3 types (I-III). Over the years, additional subtypes (IV-VII) have
been added, often based on case reports.

Most patients with CDAI present with splenomegaly and ane-
mia. In some patients, nonhematological features (eg, skeletal
abnormalities) have been observed (Table 2). Ineffective erythro-
poiesis is evidenced by peripheral (anisocytosis) and BM (mega-
loblastic erythroid precursors, internuclear chromatin bridging,
and binocularity affecting 3% to 7% of the erythroblasts) abnor-
malities and increased hemolysis markers. The defining feature
is a “Swiss cheese” heterochromatin appearance in erythroblasts

on electron microscopy. The first disease gene (CDAN1) was
identified in 200274 (Table 7). Subsequently, CDIN1 (CDAN1
interacting nuclease 1) was found to be responsible for some
CDAI cases.75

CDAII is the most common CDA subtype and was described as
hereditary erythroblastic multinuclearity with a positive acidified
serum lysis test (HEMPAS) in 1969.76 It is inherited as an AR trait.
The anemia is variable (80-110 g/L), and �10% of cases require
regular blood transfusions. Clinical presentations include a vari-
able degree of jaundice, hepatomegaly, splenomegaly, and liver
cirrhosis. Peripheral blood morphology shows anisocytosis, and
BM features include normoblastic erythroid hyperplasia with

Table 4. DC genetic subtypes

DC Subtype
Approximate % of
patients with DC Chromosome location Gene product Exons

X-linked recessive 25 Xq28 DKC1 (dyskerin) 15

Autosomal dominant 12 14q12 TIN2 6

5 3q26.2 TERC* 1

3 5p15.33 TERT* 16

,1 4q32.2 NAF1* 13

,1 12q24.31 ZCCHC8* 17

,1 5q35.1 NPM1 13

,1 1q32.1 MDM4 13

Autosomal recessive 2 16q21 USB1 9

2 20q13.3 RTEL1* 35

1 16p13.12 PARN* 27

,1 15q14 NOP10 2

,1 5p15.33 TERT* 16

,1 5q35.3 NHP2 4

,1 17p13.1 WRAP5313

,1 17p13.1 CTC1 23

,1 16q22.1 ACD/TPP1 13

Uncharacterized .30 ? ? ?

The major subtypes of DC are associated with variants in DKC1, TINF2, TERC, and TERT.

*Heterozygous variants in these genes have been associated with pulmonary disease in late adulthood. Most of the DC genes encode products that have a principal role in
telomere maintenance; however, this is not the case for USB1 and NPM1. Variants in some other genes (GRHL2, DNAJC3, RECQL4, and LIG4) can produce features that overlap
with DC.

Table 5. SDS genetic subtypes

SDS Subtype
Approximate % of
patients with SDS Chromosome location Gene product Exons

Classic

Autosomal recessive .90 7q11.21 SBDS 5

SDS-like

Autosomal recessive ,2 5p13.2 DNAJC21 14

,2 15q25.2 EFL1 22

Autosomal dominant

,2 14q13.2 SRP54 17
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usually more than 10% binucleate erythroblasts. On electron
microscopy, erythroid cells have a characteristic endoplasmic
reticulum arrangement that gives them a double-membrane
appearance. Red cells are hemolyzed by acidified sera, but not
by the patient’s own serum. In 2009, the gene encoding the
secretory coat protein complex II component SEC23B has been
shown to be responsible for CDAII.77

CDAIII is rare. In one of the largest (Swedish) families investi-
gated, the disease was characterized by giant multinucleated
erythroblasts. CDAIII exhibits AD inheritance and is caused by
variants in KIF23.78 KIF23 encodes mitotic kinesin-like protein 1,
which has a critical role in cytokinesis during cell division.

The precise role of the proteins encoded by CDAN1, CDINI,
and SEC23B in disease pathology remains unknown. CDA-like
disease related to variants in erythroid transcription factor genes
(GATA1 and KLF1)79 have also been identified.

Severe congenital neutropenia
Severe congenital neutropenia (SCN), including Kostmann
syndrome, is characterized by severe peripheral neutropenia
(,0.2 3 109/L).80,81 These patients present with recurrent life-
threatening infections in infancy. BM examination frequently
shows maturation arrest in the myeloid lineage, and some
patients can present with cyclical neutropenia. These patients

Table 6. DBA genetic subtypes

DBA subtype
Approximate % of
patients with DBA Chromosome location Gene product Exons

Autosomal dominant 25 19q13.2 RPS19 6

10-20 Various* — —

7 1p22.1 RPL5 8

7 12q13.2 RPS26 4

5 1p36.11 RPL11 6

3 3q29 RPL35A 5

3 6q21.31 RPS10 6

2.4 10q22.3 RPS24 9

1 15q25.2 RPS17 6

,1 3p24.2 RPL15 5

,1 2p25.3 RPS7 7

,1 19p13.2 RPS28 4

,1 14q21.3 RPS29 5

,1 17p13.1 RPL26 4

,1 19p13.3 RPS15 4

,1 1q21.3 RPS27 4

,1 4p14 RPL9 8

,1 19q13.33 RPL18 7

,1 17q21.31 RPL27 6

,1 2q11.2 RPL31 5

X-linked recessive ,1 Xp11.23 GATA1 6

,1 Xp11.22 TSR2 5

Uncharacterized �25 ? ? ?

*Refers to large deletions in different DBA genes. Variants in EPO and CECR1/DADA2 can also produce DBA-like disease.

Table 7. CDA genetic subtypes

CDA Subtype
Approximate % of
patients with CDA Chromosome location Gene product Exons

Type I (AR) Major subset 15q15.2 CDAN1 28

Minor subset 15q14 CDIN1 18

Type II (AR) Major subset 20p11.23 SEC23B 22

Type III (AD) Rare 15q23 KIF23 25

Other subtypes ? 19p13.13 KLF1 3
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can progress to MDS and leukemia, usually with an acquisition
of secondary mutations in granulocyte colony-stimulating factor
(G-CSF) receptor. In most patients, heterozygous variants in the
neutrophil elastase gene (ELANE) have been identified.82 These
variants are thought to cause an accumulation of a nonfunctional
protein, which, in turn, triggers an unfolded protein response,
leading to a maturational arrest. The original family described by
Kostmann had AR-SCN and was caused by biallelic variants in
HAX1, 83 predicted to result in cell death defects. Variants in
other genes (GFI1, G6PC3, CSF3R, JAGN1, and VPS45)84-86

have also been associated with SCN (Table 8). Whereas ELANE
variants typically produce isolated neutropenia, variants in some
other genes are associated with extrahematological abnormali-
ties. There are also several syndromes (reviewed by Hauck and
Klein81) that involve neutropenia as part of a broader syndrome.

Congenital amegakaryocytic
thrombocytopenia and other syndromic
thrombocytopenias
Congenital amegakaryocytic thrombocytopenia (CAMT) usually
presents in infancy and is characterized by isolated thrombocy-
topenia and a reduction or absence of megakaryocytes in the
BM, usually without extrahematopoietic abnormalities. Approxi-
mately 50% of patients develop AA by the age of 5 years. The
disease can evolve into MDS or leukemia. Patients with CAMT

have biallelic variants in the gene (MPL) encoding thrombopoie-
tin receptor (Table 9).87

Thrombocytopenia with absent radius (TAR) is usually diagnosed
in infancy. TAR is caused by the compound inheritance of a
low-frequency, noncoding, single-nucleotide polymorphism and a
rare null allele in RMB8A. Thrombocytopenia associated with prox-
imal radius and ulna fusion is a relatively new entity arising from
heterozygous variants in HOXA11 or MECOM. Although patients
typically have thrombocytopenia, those with MECOM variants can
exhibit very variable hematological phenotypes, including progres-
sion to MDS and leukemia.88 Furthermore, some MECOM variants
have been associated with hematological abnormalities, including
global BMF in infancy, but no radioulnar fusion.89

New subtypes of inherited BMF and
overlapping syndromes
There are familial BMF cases and/or those that have $1 extrahe-
matopoietic abnormalities but do not fit into the entities dis-
cussed herein thus far. The availability of next-generation
sequencing has enabled elucidation of the genetic basis of
some of these disorders. Examples of these new entities include
those associated with germline variants (Table 10) in TPO,
ERCC6L2, MYSM1, DUT, EXOC3L2, TP53, and SP189,90 and the
number of cases reported in each subtype varies.

Table 8. SCN genetic subtypes

Subtype
Approximate % of
patients with SCN Chromosome location Gene product Exons

Autosomal dominant 50-60 19p13.3 ELANE 6

,2 1p22.1 GFI1 11

Autosomal recessive 15 1q21.3 HAX1 7

5 17q21.31 G6PC3 8

Rare 1q21.2 VPS45 18

Rare 1p34.3 CSF3R 19

? 3p25.3 JAGN1 2

Miscellaneous syndromes* — — — —

*A heterogeneous group that includes patients with neutropenia as part of a broader syndrome. Some of the genes and associated syndromes in this category are WAS (Wiskott-
Aldrich syndrome protein), SBDS (Shwachman-Bodian-Diamond syndrome), G6PC (glycogen storage disease), CXCR4 (WHIM syndrome), TAZ (Barth syndrome), RBSN (syndromic
myelofibrosis and neutropenia), and SMARCD2.

Table 9. CAMT, syndromic thrombocytopenia, and other syndromic thrombocytopenias

Subtype
Approximate % of

patients Chromosome location Gene product/locus Exons

CAMT

Autosomal recessive Majority 1p34.2 MPL 11

TAR
Autosomal recessive

Majority 1q21.1 RBM8A 6

Radioulnar synostosis ? 7p15.2 3q26.2 HOXA11 2 23

Autosomal dominant — — MECOM* —

MECOM (MDS1 and EVI1 Complex Locus) variants can be associated with variable hematological features ranging from isolated thrombocytopenia to global BM failure and
leukemia.
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There are also entities that are initially characterized in patients
with MDS/leukemia or other syndromic diseases, but can also
present with peripheral cytopenias. These entities include
GATA2 deficiency and SAMD9/SAMD9L-related disease. In
addition to MDS and leukemia, these patients can have a vari-
able number of extrahematopoietic abnormalities. Germline var-
iants in these genes are particularly prevalent in pediatric
patients with MDS associated with monosomy 7. GATA2 and
SAMD9/SAMD9L are also included in the category of familial
MDS/AML genes.91 Other genes in this category include
RUNX1, CEBPA, TERC, TERT, SRP72, AKNRD26, ETV6, DDX41,
RTEL1, PAX5, TP53, ACD, MECOM, HLTF, XPC, and DHX34
(Table 10). This highlights the overlapping nature of hematologi-
cal (BMF, MDS, and AML) and extrahematological phenotypes

produced by germline variants in the mentioned genes. It is
likely that additional new entities of familial BMF/MDS will be
characterized in the future.

Epidemiology
The true incidence and natural history of inherited BMF disor-
ders remain uncertain. SCN and DBA are among the most prev-
alent of these disorders; for example, the estimated annual DBA
birth incidence is 5 per 106. Tamary et al reported on a retro-
spective population-based registry of inherited BMF syndromes
in Israel,92 representing the first comprehensive population-
based study to evaluate the incidence and complications of the
different inherited BMF syndromes. A total of 127 patients

Table 10. New BMF and overlapping syndromes

Subtype Chromosome location Gene product Exons

Recently recognized BMF
subtypes

Autosomal recessive 9q22.32 ERCC6L2 27

3q27.1 TPO/THPO 7

1p32.1 MYSM1 23

15q21.1 DUT 9

19q13.32 EXOC3L2 10

17p13.1 TP53 12

Autosomal dominant 7q21.3 SAMD9* 3

7q21.2 SAMD9L* 6

12q13.13 SP1 7

Familial MDS and leukemia

Autosomal dominant 21q22.12 RUNX1 13

19q13.11 CEBPA 1

3q26.2 TERC* 1

5p15.33 TERT* 16

3q21.3 GATA2* 8

4q12 SRP72 20

10p12.1 ANKRD26 46

16q22.1 ACD/TPP1 12

12p13.2 ETV6 14

5q35.3 DDX41 17

20q13.33 RTEL1 35

9p13.2 PAX5 11

7q21.3 SAMD9* 3

7q21.2 SAMD9L* 6

3q26.2 MECOM* 23

17p13.1 TP53 12

12q13.2 ERBB3 28

19q13.32 DHX34 21

Autosomal recessive 3q21.3 MBD4 8

3q24 HLTF 25

3p25.1 XPC/XPCC 18

*Variants in these genes can produce very diverse hematological features, including AA, MDS, and leukemia. They can also produce various extrahematopoietic abnormalities. For
example, GATA2 deficiency can be associated with pulmonary alveolar proteinosis and primary lymphedema; SAMD9 disease can be associated with adrenal insufficiency,
intrauterine growth restriction, and genital abnormalities; and SAMD9L disease can be associated with neurologic/cerebellar, ophthalmic, and pulmonary complications.
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diagnosed from 1966 through 2007 were registered: 52% had
FA, 17% had SCN, 14% had DBA, 6% had CAMT, 5% had DC,
2% had SDS, and 2% had TAR. The most common disease was
FA, which also carried the worst prognosis, with severe BMF
and development of cancer. These data are probably relevant
only to Israel. For example, based on the data from this registry,
the annual FA incidence was calculated to be �2 per 100000
live births, sevenfold higher than expected from the worldwide
carrier frequency of 1 in 300 and probably reflecting a high con-
sanguinity rate in Israel.

In a subsequent report from the Canadian registry,93 the most
common disease was DBA followed by FA, showing an FA inci-
dence of �11.4 cases per 106 births. It is likely that the true inci-
dence/prevalence of these disorders varies in different regions
of the world, reflecting such factors as consanguinity rates and
environmental influences, such as infections. This variation has
also been reported in a recent study by Bluteau et al from
France.89 Further studies on the epidemiology of these disor-
ders are desirable.

General principles of diagnosis
and management
A diagnosis of an inherited BMF should be considered in a pedi-
atric patient when $1 BMF-associated extrahematopoietic fea-
tures are identified clinically or by investigations. It should also
be considered during differential diagnosis in children present-
ing with isolated AA, MDS, or leukemia. The specific extrahema-
topoietic abnormalities help diagnose a recognized syndrome,
but this diagnosis is not always possible based on clinical fea-
tures alone.

Chromosomal breakage analysis of blood lymphocytes after
exposure to DEB or MMC remains a useful diagnostic test for
FA. However, it may give unclear results if there is somatic
mosaicism, and biallelic variants in the Nijmegen breakage syn-
drome gene can also cause increased chromosomal breakage
with MMC or DEB. All children presenting with AA and MDS
ideally should be tested for FA. Furthermore, children who pre-
sent with leukemia and suggestive congenital abnormalities or
who have monosomy 7, an additional chromosome 3, or com-
plex karyotypes should be tested for FA. Genetic testing for FA
genes is possible but not always straightforward. Telomere
length, particularly using flow fluorescence in situ hybridization,
can be a useful initial screening test in the diagnosis of DC or
DC-like disease.94 Patients with DC frequently, but not always,
have chromosomes with very short telomeres. Genetic testing
for DC genes can help substantiate the diagnosis. However, as
in FA, this strategy is not straightforward, as many patients have
certain variants that can be difficult to categorize, and the
genetic basis will remain unknown even though approximately
one-third of patients have been tested for currently known DC
genes. In patients with global BMF, the other genes to consider
are SDS genes and new entities, such as those, mentioned
herein, including variants in TPO, ERCC6L2, MYSM1, MECOM,
and SAMD9/SAMD9L. For patients presenting with isolated neu-
tropenia, analysis of ELANE and HAX1 may help substantiate
the underlying diagnosis. For those with isolated anemia, an ini-
tial focus on DBA and CDA genes is warranted.

Because of the availability of next-generation sequencing, many
clinicians now have access to targeted gene panels that can test
for all BMF genes (.100) simultaneously (Tables 3-10). Further-
more, there is increasing access to whole-exome and whole-
genome analyses. Similar to all tests, these approaches have
advantages and disadvantages. For example, if a new variant(s)
is identified even in a known disease gene, it is not always possi-
ble to be certain that the variant is responsible for the clinical
phenotype. In such cases, studies of the segregation of the vari-
ant within families and functional analyses can provide useful
additional information on the significance of the variant.

Once an inherited BMF diagnosis has been made, clinically and/
or genetically, the chronic nature of these disorders should be
explained to the patient and family. In general, patients need life-
time follow-up (ideally, in a special BMF clinic) and will need
monitoring for hematological complications, including leukemia,
immunological defects, and cancer. The frequency of monitoring
investigations, such as blood tests, BM examinations, and pulmo-
nary function tests, is difficult to precisely stipulate because of the
considerable heterogeneity and the absence of randomized stud-
ies. However, regular follow-up is advisable, possibly annually,
with more frequent monitoring being implemented as specific
problems arise. Expert groups have developed consensus guide-
lines95 that provide a useful framework for clinical practice.

Owing to the significant risk of cancer in many of these syn-
dromes, particularly as patients enter adulthood, avoidance of
smoking is advisable. They should also avoid sunbathing and
minimize alcohol intake as they enter adulthood. Patients should
be regularly screened for hematological and nonhematological
cancer.95 Treatment for cancer depends on the specific type,
but the underlying genetic defect should be considered (ie,
more supportive care and reduced drug doses).

Regarding pulmonary disease, patients should avoid smoking,
particularly those with FA or DC. Medical treatment is usually
difficult in severe lung disease, and lung transplant may be an
option in some cases. Advice on skincare (eg, use of moisturiz-
ing creams) and sunlight avoidance are important. They should
also avoid occupations that expose them to hazardous chemi-
cals or repeated physical trauma. When doing domestic chores,
such as cleaning, protective gloves should be used, particularly
in DC. Avoiding extremes of temperature is desirable, as the
skin is usually fragile compared with that in the normal popula-
tion. Liver disease is more common in patients with FA or DC
than in the population without these disorders; hence, all admin-
istered drugs require close monitoring. Drugs also should be
used carefully, as patients with inherited BMF syndromes tend
to be small and more sensitive to many drugs. This factor is par-
ticularly important in patients with FA or DC who undergo allo-
geneic hematopoietic stem cell transplantation (SCT).

Management of hematological
complications
Major advances in supportive treatment have led to consider-
able improvements in the outcome of these patients. Red cell
transfusions should be performed to maintain the hemoglobin
at an asymptomatic level (typically, .80 g/L), and platelets
should be maintained at .10 3 109/L. All patients with
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neutropenia must receive prompt therapy with broad-spectrum
antibiotics if they develop an infection. Addition of G-CSF may
be appropriate in these circumstances. Leukocyte-depleted and,
where appropriate, cytomegalovirus-negative blood products
should be chosen, to prevent the development of HLA antibod-
ies and reduce the risk of cytomegalovirus.

Inherited BMF syndromes usually respond to specific interven-
tions. In patients with FA and DC who have significant periph-
eral cytopenias (hemoglobin ,80 g/L, neutrophils ,0.5 3 09/L,
and platelets ,20 3 109/L), the first-line medical therapy in
some countries is frequently oxymetholone started at 0.5 to
1.0 mg/kg per day and gradually increased, if necessary, to a
maximum dose of 5 mg/kg per day. Patients with DC are usually
more sensitive to oxymetholone than are patients with FA. There
is also increasing experience in danazol use in these patients,
and now, danazol is preferably used compared with oxymetho-
lone.96,97 Approximately 70% of patients with DC or FA will
have a hematological response to danazol that can be durable
for years in some patients. Patients with severe BMF and HLA-
compatible donors can be cured of their hematological compli-
cations by SCT. In patients with severe BMF without significant
comorbidities, it is reasonable to consider upfront SCT without
prior androgen therapy. If family donors are to be used, ensur-
ing that they have been adequately tested for the relevant
genetic variant(s) is important. It has been established that
patients with inherited BMF syndromes have greater efficacy
and lower toxicity with low-intensity, fludarabine-based proto-
cols. There is now considerable experience using such protocols
in patients with FA or DC, but this is not the case with some
rare entities.98-102 The use of cord blood and haploidentical
donors is also beneficial in specific circumstances. After many

challenges, there has been some recent success with hemato-
poietic gene therapy in patients with FA subtype A.103 In the
future, therapeutic strategies that target disease-specific hema-
topoietic stem cell defects are likely to emerge. There have
been exciting preclinical studies on the role of transforming
growth factor-b inhibitors in FA104 and PAPD5, a human poly(A)
polymerase, inhibitors in DC.105

In patients with DBA, the first-line therapy remains predniso-
lone, as up to 80% of patients respond to this treatment.
Prednisolone dose and frequency are titrated to the lowest
number required to maintain reasonable hemoglobin and
minimize side effects. In the minority of steroid-refractory
patients or those who become refractory to prednisolone,
treatment with regular blood transfusions is instituted and
should be accompanied by a comprehensive iron-chelating
program to prevent iron overload. At this stage, hematopoi-
etic SCT may be appropriate and potentially curative for
patients with DBA who have compatible sibling BM donors.
The current emerging consensus is to recommend SCT
before the age of 10 years (ideally, before 5 years) in every
child requiring transfusion support with either a sibling or a
fully matched, unrelated donor.106

Patients with CDA with mild anemia require no major inter-
ventions. Folate supplementation is prescribed to prevent
folate deficiency. If regular transfusions are necessary, early
attention to iron chelation is essential. Iron loading may also
occur in nontransfused patients with CDA. Splenectomy may
be beneficial in some patients (CDAII), and there are reports
of successful hematopoietic SCT.70,107 In CDAI, there are
also case reports of improvement after treatment with
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interferon-a.70 The mechanism of this therapeutic benefit
remains unclear.

The mainstay of neutropenia management in patients with SCN
is G-CSF. More than 90% of patients respond to this treatment,
and the dose is adjusted to maintain an absolute neutrophil
count of 1.5 to 2.0 3 109/L. Other measures to prevent infection
are also instituted, and any evidence of infection should be
promptly treated. For patients with compatible donors, SCT
may be appropriate if they have a poor response to G-CSF or
there is evolution to MDS/leukemia.108

Concluding remarks
The major advances in the molecular basis of inherited BMF syn-
dromes have provided insights into critical biological pathways,
such as DNA repair (FA), telomere maintenance (DC), and ribo-
some biogenesis (SDS and DBA). They have also provided inter-
esting links between inherited (eg, DBA and SDS) and acquired
(eg, MDS and 5q2 syndrome) hematological disorders.

Phenotypic similarities (BMF, extrahematopoietic abnormalities,
and cancer) between these syndromes have been acknowl-
edged for years (Tables 1 and 2). Not surprisingly, the overlap is
also observed at the level of molecular pathology (Figure 3). For
example, SDS and DBA are both disorders of ribosomal biogen-
esis, whereas FA, DC, and SDS all have short telomeres. Further
overlapping and biological connections may emerge in the
future.

In clinical practice, significant genetic advances have led to
improved diagnosis, particularly for those with atypical presenta-
tions, and have enabled better personalized management. This
includes the use of low-intensity, fludarabine-based conditioning
protocols that have resulted in improvements in outcomes after

hematopoietic SCT and the repurposing of drugs such as dana-
zol. New therapies capable of correcting or ameliorating
disease-specific defects of different syndromes are emerging in
the laboratory setting, with potential for translation into the
clinic.
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