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Bruton’s tyrosine kinase (BTK) is a common target for therapeu-
tic intervention in patients with chronic lymphocytic leukemia
(CLL).1,2 Ibrutinib is a first-generation BTK inhibitor (BTKi) that
covalently binds to BTK to disrupt the B-cell receptor signaling
pathway.3,4 Although BTKis are known to be an effective ther-
apy for CLL, treatment-related toxicities can lead to the discon-
tinuation of therapy.5,6 Acalabrutinib is a second-generation
BTKi developed to reduce off-target toxicities.7,8

Though BTKis have improved the management of CLL, some
patients experience clinical resistance and relapse during treat-
ment due to mutations in arising clonal cell populations.9,10 This
clonal evolution occurs when a dividing cell develops a new
mutation that results in a greater competitive advantage com-
pared with the surrounding cells.11-13 Clonal evolution can lead
to treatment resistance when an expanding subclone contains a
mutation that prevents the treatment agent from effectively tar-
geting the malignant cells.14-16 Mutations that prevent BTKi
binding, such as C481S BTK, or reconstitute B-cell receptor sig-
naling independent of functional BTK, such as mutations in
PLCG2, can drive treatment resistance in BTKi therapy.17-19

Identifying the evolution of subclones containing BTKi-resistant
mechanisms before they expand provides an opportunity to
alter the course of treatment before relapse occurs.

Although it has been shown that developing subclones with
CLL-relevant mutations typically leads to negative outcomes
during ibrutinib treatment, the follow-up time is often lim-
ited.9,14,20-22 Resistance mechanisms in acalabrutinib treatment
have been investigated,23 but no study has been done to inves-
tigate the impact of clonal evolution on the response of patients
treated with acalabrutinib. Here, we performed a longitudinal
analysis of up to 8 years to better understand genomic hetero-
geneity and clonal evolution during ibrutinib and acalabrutinib
treatments.

We collected blood samples from 38 CLL patients at multiple
time points during their BTKi treatment (supplemental Table
1; supplemental Figure 1A). Prior to BTKi treatment, B cells
were collected as a baseline measurement, and T cells were
collected as a germline control. B-cell samples were then

collected yearly for 3 years during treatment, with an addi-
tional sample taken at the most recent visit during the study
period. We collected a median of 5 time points (range, 2-6) for
each patient during their BTKi treatment (supplemental Figure
1B). For patients who relapsed, the final sample was collected
at the time of relapse. Samples were sequenced using 2003
whole-exome sequencing, providing deep sequencing data at
each time point (supplemental Methods).

Our patient cohort includes 21 patients treated with ibrutinib
and 17 treated with acalabrutinib. At the beginning of this study,
12 ibrutinib patients and 5 acalabrutinib patients were relapsed/
refractory, whereas the rest were treatment naive (supplemental
Results). Of the 38 patients, 19 continued to respond through-
out the study, and 19 relapsed. Eight patients treated with ibru-
tinib developed Richter’s transformation. We found no
significant difference in the progression-free survival for patients
treated with acalabrutinib compared with those treated with
ibrutinib (log-rank P 5 .11, supplemental Figure 2).

Understanding the clonal architecture of malignant B cells illu-
minates disease-causing or relapse-inducing mutations that
may have undergone clonal expansion. Using variant allele
frequencies (VAF) of the somatic mutations within each sam-
ple, we identified clonal evolution in 19 patients and no
clonal evolution in the other 19 patients. Clonal evolution fol-
lowed 3 general patterns: (1) new clone emergence (11/19
patients), where at least 1 new subclone emerged during
treatment; (2) clonal selection (5/19 patients), where at least 1
subclone was selected against and decreased in prevalence
while no new subclones emerged during treatment; and (3)
clonal replacement (3/19 patients), where a new subclone
appeared during treatment and replaced all subclones that
descended from the founding clone (Figure 1A shows 1
example case per pattern). All 3 of these patterns of clonal
evolution were seen in both BTKi cohorts.

Of the 21 patients who received ibrutinib, 12 (57.1%) had clonal
evolution during treatment. This includes 8 patients with a pat-
tern of new clone emergence, 3 with clonal selection, and 1
with clonal replacement during treatment (Figure 1B). Clonal
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Figure 1. An overview of the clonal evolution identified in this study. (A) The patterns of clonal evolution identified, with an example of 1 patient from each pattern.
This includes patient 28 (no evolution), patient 26 (new clone emergence), patient 27 (clonal selection), and patient 32 (clonal replacement). Gene names represent
mutated CLL-relevant genes found within the indicated subclone. A, B, C, and D represent a unique cluster of variants seen within a given subclone that distinguishes
it from other subclones. Richter’s transformation patients account for 4/19 of those with no evolution, 3/11 with new clone emergence, and 1/5 with clonal selection.
(B) A breakdown of the clonal evolution found within each treatment cohort. Each cohort is separated into patients who continued to respond to the given BTKi and
those who relapsed during BTKi treatment. (C) A Fisher’s exact test comparing the presence or absence of evolving subclones containing CLL-driver mutations to the
treatment outcome of all patients.
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evolution was observed in 7 (41.2%) of the 17 patients who
received acalabrutinib treatment, including 3 with new clone
emergence, 2 with clonal selection, and 2 with clonal replace-
ment. These findings show that patients treated with acalabruti-
nib develop similar patterns of clonal evolution as those treated
with ibrutinib.

We investigated the impact of evolving subclones containing
CLL-relevant mutations on treatment outcomes (supplemental
Table 2). Of the 19 patients who relapsed, 9 (47.4%) had evolv-
ing mutations (change in VAF $0.1) in CLL-relevant genes. Only
2 of the 19 patients (10.5%) who responded to treatment
throughout this study had evolving mutations in CLL-relevant
genes. This data shows a significant association between the
evolution of subclones containing mutations in CLL-relevant
genes and poor treatment outcomes (Fisher P 5 .029, Figure 1C).
As TP53 mutations are known to be associated with poor clinical
outcomes regardless of treatment and are highly associated with
Richter’s transformation,24,25 we separated patients with baseline
TP53 mutations to account for potential bias (supplemental Figure
3). When only including patients without confounding baseline
TP53 mutations (27 patients; 8 relapsed, 19 responded), we found
that 5 of the remaining 8 patients who relapsed had evolving
subclones with CLL-relevant mutations, compared with only 1 of
the 19 patients who responded. This analysis reveals a strong
association between evolving CLL-relevant mutations and relapse
(Fisher P 5 .011).

We then determined whether the evolution of CLL-relevant
mutations can be used as a prognostic marker. Setting a land-
mark at year 2 of treatment, we grouped patients based on the
presence or absence of at least 1 evolving subclone with a CLL-
relevant mutation up to that point. Comparing patients with this
evolution in the first 2 years to those without, we saw a signifi-
cant difference in the progression-free survival beyond year 2
between the 2 groups (log-rank P 5 .0004, Figure 2). This same
significant difference was observed when looking solely at the
ibrutinib cohort (log-rank P 5 .0021, supplemental Figure 4A)
or the acalabrutinib cohort (log-rank P 5 .04, supplemental
Figure 4B). We concluded that patients with evolving CLL-
relevant mutations in the first 2 years of treatment are more
likely to relapse while receiving BTKi treatment.

Within our cohort, 3 patients treated with ibrutinib and 3 treated
with acalabrutinib developed a subclone containing a C481S
BTK mutation, with VAFs ranging from 0.05 to 0.8. Each of these
patients relapsed in no more than 3.5 years. The C481S muta-
tion was detectable 1 year before relapse in 2 patients and only
detectable at relapse in the remaining 4 patients. Additional
information about the BTK mutations in each patient can be
found in supplemental Results. Like ibrutinib, we found that aca-
labrutinib is capable of driving the evolution of subclones con-
taining BTK mutations. Notably, we did not detect any PLCG2
mutations within our cohort.

In conclusion, we have determined that acalabrutinib treatment
leads to the development of similar clonal evolution patterns as
observed in ibrutinib treatment (supplemental Discussion). Addi-
tionally, the evolution of subclones with CLL-relevant mutations
in the first 2 years of treatment is significantly associated with
eventual relapse during either BTKi treatment. We also find that
baseline TP53 somatic mutations or the development of

subclones containing BTK mutations increases relapse risk in
both BTKi treatments. Within a clinical context, our findings can
provide a subclone-level understanding of a patient’s response
to ibrutinib or acalabrutinib and help identify markers for poten-
tial relapse.
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