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Hematopoietic stem cells (HSCs) are the blood-forming
stem cells thought to be responsible for supporting the
blood system throughout life. Transplantability has long
been the flagship assay used to define and characterize
HSCs throughout ontogeny. However, it has recently
become clear that many cells emerge during ontogeny
that lack transplantability yet nevertheless are fated to
ultimately contribute to the adult HSC pool. Here, we
explore recent advances in understanding the numbers

and kinetics of cells that emerge during development to
support lifelong hematopoiesis; these advances are
made possible by new technologies allowing interroga-
tion of lifelong blood potential without embryo pertur-
bation or transplantation. Illuminating the dynamics of
these cells during normal development informs efforts
to better understand the origins of hematologic disease
and engineer HSCs from differentiating pluripotent stem
cells.

Introduction
Hematopoietic stem cells (HSCs) are the blood-forming stem
cells thought to be responsible for maintaining and replenishing
blood throughout life and during stress.1,2 As the first stem cell
population identified, HSCs serve as a paradigm for stem cell
biology.1,2 In adult vertebrates, they are found in the bone mar-
row (mammals) or kidney marrow (fish).3-5 Classically, they have
been most rigorously defined by their functional ability to recon-
stitute all major blood lineages for long periods of time when
transplanted. Transplantability has been exploited as a functional
readout to identify their unique molecular and other phenotypic
markers. These markers have been used in turn to define their
unique transcriptional profiles, interactions with the bone mar-
row (BM) niche, and functional potential and assess how pertur-
bations to homeostasis (eg, infection, disease, and genetic
manipulation) influence numbers and function. Limiting dilution
transplantation and imaging of mammalian whole BM have
established that transplantable HSCs are extremely rare in
adults, although variable with age.3,6-11 However, if we think of
HSCs as the cells that maintain blood for life, a reasonable ques-
tion is whether transplantability is the best approach to interro-
gate the size of the entire HSC pool, especially given the many
stress hurdles that HSCs must overcome to effectively repopu-
late and reconstitute the blood of ablated recipients (eg, hom-
ing, normoxia, encountering a niche damaged by ablation, and
ex vivo manipulation). HSCs capable of durable self-renewal,12-16

as evidenced by repeated serial transplantation, are experimen-
tally subjected to repeated external stressors and regenerative
insult. Indeed, serial transplantation dramatically reduces the
clonal complexity of reconstituted marrow.17 Thus, durably self-
renewing HSCs represent rare cells that can survive repeated

exposure to intense stress and might not equate perfectly to
physiologic HSCs that quietly support blood homeostasis in an
unperturbed setting throughout life.

Here, we explore recent advances in understanding the number
and dynamics of cells that emerge during development to sup-
port lifelong hematopoiesis. Many of these advances are made
possible by new technologies and approaches that allow interro-
gation of lifelong blood potential without embryo perturbation
or transplantation. Illuminating the dynamics of these cells dur-
ing normal development informs efforts to better understand
the origins of hematologic disease and engineer HSCs from dif-
ferentiating pluripotent stem cells.

Historical perspective on transplantability
as the gold standard of HSC activity
The history of how HSCs were conceived, identified, and charac-
terized helps to explain the original estimated numbers of clonal
specification events and how those numbers expand over the
course of ontogeny. At the end of the 1800s, a stem cell founda-
tion for blood had been proposed,18 and in 1916, Danchakoff19

articulated a reasonably sophisticated model of stem cells and
maturation supporting diverse lineage output and malignancy.
Studies in the 1960s by McCulloch and Till and associates20-24

established assays with quantifiable output, such as splenic col-
ony formation to define clonality and lineage output, which were
complemented by in vitro assays pioneered by Bradley and
Metcalf25 and expanded over the years to test hematopoietic
potential.26 In vitro assays, however, were not able to determine
self-renewal potential, and ultimately, the gold standard of HSC
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potential became the ability to completely reconstitute for a
long period of time (months or longer) the blood lineages of an
animal lethally irradiated to ablate its hematopoietic system (so-
called long-term reconstitution [LTR]) and more stringently to
serially reconstitute through multiple subsequent transplanta-
tions.27 Using these assays, multiple groups phenotypically
defined the cell populations containing HSCs and other lineage
maturation intermediates (eg, size and density, adhesive proper-
ties, and cell-surface molecular markers).28 Refined molecular
phenotypes were iteratively developed that highly enriched for
both murine (ie, a cocktail of antibodies to eliminate markers of
lineage differentiation [Lin2] in combination with Sca-1, c-Kit,
CD150, and EPCR and the absence of CD48) and human HSCs
(ie, CD341CD382CD901CD45A2CD49f1).9,10,28-39

Developmental ontogeny of HSCs
Classical embryology studies implicated endothelial cells as the
immediate precursors of the earliest blood cells in vertebrate
species, including pig, rabbit, guinea pig, cat, mouse, chick, and
human,18,40-44 and hemogenic endothelium was confirmed in
the modern era using techniques including dye-based and
genetic in vivo lineage-tracing studies,45,46 in vitro assays,47,48

functional genetic studies,49 and direct imaging in live zebrafish
and mouse embryos.50-52 However, precisely where this hemo-
genic endothelium was located has been heavily investigated
and disputed. The earliest emergence of blood is observed in
extraembryonic tissues (the mammalian yolk sac and chick area
vasculosa18,40,43,53-55), and early studies seemed to provide evi-
dence of diverse lineage potential and LTR by progenitors from
that region.56-59 However, in the 1970s, Dieterlen-Li�evre and
associates60,61 showed, using avian embryos, that all long-term
hematopoietic activity is derived intraembryonically from meso-
dermal tissue containing the dorsal aorta, whereas yolk
sac–derived lineages disappeared in adulthood, and this obser-
vation was confirmed in amphibian embryos.62-65 In the 1990s, it
was established in mouse that an intraembryonic trunk region
termed the aorta-gonado-mesonephros (AGM), containing the
primitive dorsal aorta, is a potent source of colony-forming units
and HSCs with LTR activity between �9 days postcoitum (E9.0)
and E10.5.66-72 These studies raised the possibility that definitive
HSC potential observed in the yolk sac might derive from circu-
lating progenitors that originate in the AGM, because circulation
initiates at �E8.0.73

A clear objective was to identify and geographically locate the
putative source of intraembryonic HSCs, but it was not clear that
the collection of phenotypic markers known to identify adult
HSCs would be expressed in developing HSCs. Markers such as
c-Kit, Sca-1, CD31, and CDH574-76 and genes newly discovered
to be functionally important in the specification of HSCs (eg,
Runx177-79) were found to label a population in the dorsal aorta
of vertebrates with HSC potential. We now know that newly
emerging HSCs and hematopoietic progenitors form clusters of
c-Kit1 cells in the dorsal aorta (intra-aortic cell clusters) in most
vertebrates, often localized near the midcaudal region of the
aorta close to the junction with the vitelline artery (VA).3,66,80,81

Limited numbers of c-Kit1 cells are seen in the aorta at E9.5
(�0-5 cells).80 In contrast, large numbers are evident by E10.5
(�609 6 84 c-Kit1 cells),80 with some forming clusters of .10
cells (�7 large clusters visible at E10.5). c-Kit1 cell numbers
begin declining by E11.5 (439 6 87 c-Kit1 cells; �1 large

cluster)80 as newly specified HSCs and progenitors move on to
the fetal liver (FL). By E14.5, only 30 to 40 single c-Kit1 cells are
detected in the aortic endothelium.80 Similarly, the numbers of
c-Kit1 clusters and large c-Kit1 clusters localized to the VA and
umbilical artery (UA) peak at E10.5 (250-300 c-Kit1 per vessel at
E10.5 and 100-200 at E11.5; 5 large clusters at E10.5 and 1 at
E11.5 per vessel). Interestingly, the largest c-Kit1 clusters are
found in the VA (76 c-Kit1 cells per cluster) and UA (48 c-Kit1

cells per cluster) rather than in the aorta proper (19 c-Kit1 cells
per cluster).80 As investigators sought to better define the phe-
notype and function of nascent mammalian HSCs, they turned
to the functional definition that had been established for adult
HSCs: LTR potential in adults or neonates undergoing transplan-
tation.8,68,82-85

Original estimates of the numbers of newly emerging HSCs dur-
ing mammalian development were based on the transplantation
of freshly isolated murine embryonic tissues.7,8,82,86 When these
transplantations are performed at limiting dilution, the number
of transplantable HSCs (also known as hematopoietic repopulat-
ing units [RUs]) based on Poisson statistics can be
estimated.3,7,8,50,68,70,82,84-89 Via this approach, only 1 to 2 RUs
are detected in E10.5 to E11.5 murine embryos.8,68,70 Thus,
nascent HSCs as defined by transplantation are rare at midges-
tation in the developing mammalian embryo.90,91 Although
these elegant studies shed light on the embryonic origin of
HSCs and their migration to successive anatomic locations
(AGM, FL, placenta, and BM), transplantation provides only an
instantaneous snapshot of the number of RUs present at a par-
ticular time and place.6,92 Moreover, nascent HSCs are not pro-
grammed to migrate to or engage with the adult BM niche, as
would be required in most transplantation studies. Indeed, one
can detect many more RUs when AGM-derived cells are trans-
planted at limiting dilution into neonates compared with
adults.93 Thus, transplantation-based estimates of nascent HSC
numbers overlook cells too immature to repopulate the hemato-
poietic system of an ablated recipient, but that would ultimately
realize their potential to contribute to lifelong hematopoiesis if
left developmentally unperturbed. These observations explain
why transplantation-based estimates of nascent HSC potential
underestimate the actual number of physiologically specified
HSCs. The limitations of transplantation-based techniques set
the stage for new approaches to estimate clonal specification of
HSCs: ex vivo reaggregate culture systems and fate mapping in
unmanipulated embryos.

Specification is more frequent than
previously thought: new insights from
novel approaches
Beginning in the early 2000s, the Medvinsky laboratory94-97 pio-
neered a new culture system that allowed for functional detec-
tion of immature HSC precursors with LTR potential. Dissected
tissues from E8.5 to E11.5 murine embryos were kept intact or
dissociated and then reaggregated in the presence or absence
of supportive OP9 stromal cells and subsequently cultured as
explants at the air-liquid interface in the presence of cytokines
and serum.71,94-98 These studies show that both expansion of
existing nascent HSCs and de novo HSC specification are ongo-
ing in cultured embryo explants.92,97 This system has been used
to investigate the hierarchy of HSC precursors between E9.5
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and E11.5 by assessing prospectively isolated candidate popula-
tions for HSC potential after culture in reaggregated
explants.94,96,97 Combined with subsequent limiting dilution
transplants, 1 to 2 E9.5, �50 E10.5, and �70 E11.5 immature
HSC precursors are detectable in the AGM and major arteries,95

revealing far greater numbers of cells that ultimately develop
transplantable HSC potential than estimated by previous
approaches.7,8,82,86 Moreover, these studies reveal that the
number of HSC precursors at E11.5 in the AGM matches
the functional HSC number in the E12.5 FL, suggesting that the
early FL HSC pool derives from a mixture of maturing and trans-
plantable HSC precursors rather than from extensive division of
rare previously specified HSCs.95 Thus, the E12.5 FL may com-
prise a niche supportive of HSC maturation, although this model
requires further exploration.6

Although reaggregated explant cultures have proven extremely
useful to uncover and define HSC precursor phenotypes at mul-
tiple stages of mammalian ontogeny, they probably do not fully
recapitulate the in vivo specification and maturation environ-
ment (eg, ex vivo cultures involve supraphysiologic cytokine con-
centrations). Nonphysiologic RUs may emerge in cultures, and
the potential of all legitimate HSC precursors may not be real-
ized.6,71,94-98 Moreover, transplantation of fresh or cultured
embryonic tissues reveals only the functional potential of a given
population rather than its actual in vivo fate (ie, contribution to
lifelong blood production; Figure 1). Therefore, estimated

numbers of HSCs and HSC precursors that derive from these
studies may not reflect in vivo reality. Indeed, the numerous
c-Kit1 intra-aortic cells observed between E10.5 and E11.5 sug-
gest that endothelial-to-hematopoietic transition (EHT) is not a
rare event80 (Figure 1). Determining exactly how many cells in
the aorta and UA and VA actually contribute to the adult HSC
pool requires noninvasive lineage tracing.

Recent novel noninvasive lineage-tracing approaches allow for
tracking and quantification of numbers of hematopoietic precur-
sors with lifelong hematopoietic potential in an unperturbed set-
ting. For example, some fluorescence-labeling methods used to
study the clonal origins of blood are based on the Brainbow
allele, which was initially developed to study neuronal circuitry.99

The Brainbow allele allows inducible random expression of com-
binations of multiple copies of 4 different fluorescent proteins
(CFP, GFP, RFP, and YFP) and thereby produces �100 detect-
able colors in neurons.99 The system was adapted for use in
zebrafish as a CRE-inducible zebrabow allele (which harbors
�20 transgene insertions and produces 40 distinguishable fluo-
rescent colors).11 Tamoxifen-inducible draculin (drl:creERT2;
active during early hematopoiesis) in combination with the
zebrabow allele revealed that zebrafish embryos harbor �30
HSC precursors (21 pre-HSCs before HSC emergence at 24
hours postfertilization [hpf] and 34 HSCs at 72 hpf).11 In agree-
ment with this estimate, hsp70l LASER-induced labeling of indi-
vidual HSC precursors in Tg(cd41:eGFP; bactin2:switch; hsp70l;
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Figure 1. Possible differences in unperturbed in vivo fate and transplantability. At key developmental time points, noninvasive fate mapping studies and phenotypic
analyses indicate the presence of far more HSC-fated precursors than are capable of engraftment in transplantation assays. At E10 in the aortic lumen and E12 to E14 in
the FL, a few rare HSC-committed hematopoietic stem and progenitor cells (HSPCs) are already sufficiently mature to be transplantable (green), but most HSC-fated
HSPCs are not (brown). A small transplantable pool of HSPCs may also be present that would never realize an adult HSC fate without transplantation (blue circles). Dif-
ferences in unperturbed in vivo fate vs transplantation potential may arise from immaturity of HSPCs at the time of transplantation, stresses associated with ex vivo
manipulations, and niche availability.
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mCherry-T2A-creERT2) fish estimates 25 to 36 HSCs in the ven-
tral dorsal aorta.11,100 Together, these data suggest a larger
number of independently specified clonal HSC precursors than
predicted by transplantation approaches in mice (1-2 HSCs at
E11.5) and support a model in which HSC specification is more
frequent, especially considering that mice are larger than
zebrafish.

In mice, Fatima et al101 sought to label a single E7.5 HSC pro-
genitor via low marking of embryonic blood precursors by
exposing Abcg2-CreERT2Cre-ERT2/Cre-ERT2; Rosa26Lox-STOP-Lox-
YFPYFP/YFP embryos to a single dose of 4-hydroxytamoxifen at
E7.5. ABCG2 is a member of the ATP-binding cassette trans-
porter family expressed by all HSCs that allows for embryonic
labeling of some HSC precursors.102 This strategy resulted in
0.3% to 0.8% labeling of adult myeloid and lymphoid blood lin-
eages, confirming labeling of HSC precursors. Assuming that
0.3% labeling of the blood corresponds to a single labeled
HSC, the authors estimated that at least 333 HSC precursors
exist in E7.5 to E8.5 murine embryos.101,102 The inability of this
system to determine how many HSC precursors were actually
labeled at E7.5 precludes the model from placing an upper
bound on the actual number of HSC precursors present at E7.5.

We previously used a CRE-inducible Confetti allele,103 also
derived from the Brainbow system, to estimate independent
clonal HSC specification frequency during embryogenesis at key
time points. The Confetti allele can be recombined to 1 of 4 col-
ors (GFP, YFP, RFP, or CFP), and expression persists in subse-
quent cellular progeny.17,92,103 Although only 4 colors are
available, the distribution of colors in the adult HSC-derived
peripheral blood can be mathematically correlated to the num-
ber of discrete clones present at the time of recombination; if
few clones are present at recombination, color distributions
show high mouse-to-mouse variance (MtMV), whereas if numer-
ous clones are initially labeled, the variance is small.17,92 This
approach allowed estimates of the number of murine mesoder-
mal blood precursors (Flk1-Cre) as �700 (�E7), endothelial pre-
cursors (VE-cadherin-Cre) as �600 (�E8.5), and mature HSC
precursors (Vav1-Cre) as �600 (�E11-E14).

The MtMV in the Confetti color distribution yields the most
accurate estimate of initial labeling events in the range of 50 to
2500 cells; outside this range, estimates are qualitative rather
than quantitative (ie, very few vs very large numbers of initially
labeled events).92 Additionally, Confetti labeling efficiency needs
to be .3%, and .500 cells must be analyzed.92 Therefore,
each of these technical nuances must be considered when eval-
uating the likely fidelity of estimates of clonal complexity using
MtMV of Confetti labeling. Furthermore, the system does not
allow for the tracking of individual clones. Nonetheless, the evo-
lution of the global clonal complexity of a cellular system as a
whole can be followed, allowing one to interrogate the effects
of aging and other insults on the global clonal complexity of the
blood.17

Recently, a number of genetic barcoding technologies have
emerged and been applied to adult hematopoiesis. The Sleep-
ing Beauty system, based on a doxycycline-inducible transpo-
sase,104 suggested that native hematopoiesis is maintained by
thousands of multipotent progenitors, rather than HSCs, and
that HSCs predominantly contribute to megakaryopoiesis.104,105

This finding remains controversial, supported by studies where
hematopoiesis continued when HSCs were ablated in adults106-
108 but also refuted by lineage-tracing approaches that support
a traditional view of HSC contribution to steady-state hemato-
poiesis.109-111 Additional innate barcoding systems include Poly-
Lox, which generates random barcodes via induced
recombination of a cassette containing many loxP sites,112 and
CRISPR-based molecular recording or scarring, which revealed
skewed contribution of FL HSC precursors and reduced clonal
diversity in blood after 5-fluorouracil treatment.113-115 To date,
these technologies have not been reported to estimate fre-
quency of developmental HSC specification, but we are likely to
have insights in the near future, including tracking of individual
cells and study of lineage output and proliferative behavior.
However, if future work establishes definitively that multipotent
progenitors contribute substantially to steady-state hematopoie-
sis, key questions will need to be revisited to clarify our under-
standing of the establishment of the adult hematopoietic
system, such as whether multipotent progenitors are specified
independently of classically defined HSCs.116

Insights from human studies
Gaining insights into the frequency of HSC specification during
human ontogeny has been more challenging, but recent techno-
logic innovations are yielding fresh understanding. Early studies
seeking to investigate human clonal dynamics took advantage
of X inactivation and the evolution of telomere lengths with age.
These and other studies hinted at the highly polyclonal nature
of human adult blood and suggested that most HSC expansion
takes place during childhood and adolescence and stabilizes in
adulthood.117-120 Observations of shifting patterns of X inactiva-
tion with age in women provided early glimpses of age-
associated clonal hematopoiesis that have subsequently been
laid bare in studies of large cohorts of patients whose blood
was subjected to whole-exome sequencing.119,121-124

In 2014, Behjati et al125 reported a proof of principle that
somatic mutations acquired naturally over time and detected via
whole-genome sequencing (WGS) of many independently
expanded clones (murine gut organoids in this case) could be
exploited to trace the developmental history of a given tissue.
Using estimates of the rate of mutation accrual and the distribu-
tion of mutations among independently examined clones, these
naturally acquired barcodes can be organized into a hierarchy
and placed in ontologic time all the way back to the 2-cell
embryo. WGS is now revolutionizing our understanding of the
clonal dynamics of human blood development during ontogeny,
as well as the clonal evolution of mutations associated with
hematologic disease.121,122,124

In a groundbreaking study, Lee-Six et al118 used natural accumu-
lation of somatic mutations in clones of expanded human HSPCs
to examine the origins, lineage relationships, and clonal com-
plexity of the human hematopoietic system via WGS. They and
others estimated that adult human blood emerges from numer-
ous embryonic clones, with �50000 to 200000 HSCs actively
contributing to hematopoiesis in a healthy adult at any given
moment and most expansion of adult blood precursors occur-
ring during adolescence.118,126 This approach has now been
applied to expanded HSPC clones isolated from the liver and
BM of human fetuses. Here, investigators demonstrated
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explicitly that even early in development, HSPCs have acquired
dozens of somatic mutations.127 They also concluded that the
cells of a 2-cell embryo do not contribute equally to down-
stream tissues.127 Similarly, Ludwig et al128 recently demon-
strated that acquired somatic mutations in the mitochondrial
genome, which is almost entirely transcribed, can be exploited
in single-cell RNA-sequencing data sets as a useful barcode to
examine clonal relationships among sequenced human HSPCs.
Most recently, WGS of expanded clones has been applied
to illuminate the developmental timing of the acquisition of
driver mutations in patients with myeloproliferative neoplasms
(MPNs).129 Here, JAK2V617F and DNMT3A mutations were esti-
mated to arise in early fetal life and childhood, expanding for
years (sometimes many decades) before clinical presentation of
an MPN. This finding has major implications for thinking about
when and how screening should be performed for MPNs. How-
ever, because each of these studies depends on the sequencing
of clones expanded in vitro, the data are inherently biased for
cells capable of in vitro expansion, which may or may not be
influenced by disease mutations. Furthermore, it is difficult to
exclude mutation acquisition during colony expansion. Finally,
the high cost of WGS imposes a limitation on the number of
sequenced clones and potentially the ability to effectively
extrapolate the data.

Adding complexity: transient and
tissue-specific populations
Multiple investigations have revealed the existence of transient
embryonic HSPCs with restricted lineage potential, generally
erythroid and erythromyeloid oligopotency.130,131 More recently,
a suite of studies has defined long-lasting or permanent precur-
sors with highly restricted lineage potential, including tissue-
resident macrophage and specific subsets of adult lymphoid
cells, which may not derive from HSCs.66,132-134 Some of these
HSPCs may have a role in the emergence of HSCs (eg, proin-
flammatory AGM-associated macrophages).135 Here, we briefly
highlight additional layers of complexity that derive from these
newly discovered transient and restricted lineage HSPCs, as well
as how they might confound interpretations of the dynamics and
magnitude of lifelong HSC specification during embryogenesis.

During embryonic development, transient hematopoietic waves
have been detected that emerge from the yolk sac, contribute
with little or no frequency to the adult HSC pool, and harbor
erythroid or erythromyeloid potential.3,71,72,136-139 Primitive
erythrocytes arise earliest in blood islands of the yolk sac, and
by E8.5 in mouse or 32 hpf in zebrafish, a subsequent oligopo-
tent precursor termed the erythromyeloid progenitor (EMP) is
specified.66,130,136,138 Recently, lineage tracing was performed via
activation of Tg(drl:creERT2;ubi:lox-GFP-lox-mCherry) reporter
fish with TAM at 30 vs 54 hpf, suggesting that definitive HSPCs
minimally contribute to embryonic lymphomyelopoiesis in zebra-
fish.140 These findings are supported by additional experiments
that deplete HSCs with nitroreductase/metronidazole treat-
ments,140 validating previous observations in mice.136

Until recently, it was thought that EMP-derived myeloid cells did
not perdure into adulthood, but multiple recent studies have
now shown that certain types of adult tissue-resident macro-
phages, including microglia in the brain, alveolar macrophages

of the lung, Kupffer’s cells in the liver, and Langerhans cells in
the skin, are partly or wholly EMP derived and migrate to the
embryo proper, where they differentiate during organogenesis,
beginning at �E10.5.132-134 In mammals, these cells are able to
self-renew and persist into adulthood, unless faced with unusual
challenges, such as organismal irradiation. Interestingly, it seems
that in lower vertebrates, such as teleost fish, there are 2 succes-
sive waves of microglial specification, where a second HSC-
derived population of microglia (development of which relies on
colony-stimulating factor 1 receptor b [csfr1b]) replaces the ear-
lier EMP-derived wave, so these specification processes may not
be completely conserved across vertebrate phyla.141 Addition-
ally, a transient wave of tissue-resident macrophages derived
from the heart endocardium and essential for cardiac valve
development has also been discovered via lineage tracing that
exploited the endocardial-specific Nfatc1-Cre mouse line.142

Similarly, it now seems that some embryonic lymphoid popula-
tions are also specified independently of HSCs and persist into
adulthood.132,134 Fetal T-lymphoid progenitors have been
reported in circulation before the establishment of the thy-
mus.143-145 Multiple studies have reported development of a
restricted lymphoid or T-lineage precursor in the mouse yolk sac
or directly from hemogenic endothelium of mouse and zebrafish
embryos, and in some cases, these precursors arise earlier than
AGM HSCs and in the absence of blood flow (ie, yolk sac in ori-
gin), although recent depletion and lineage-tracing studies have
revealed an HSC origin for specific innate lymphoid subsets.146-
150 It seems that embryonically derived gd T cells persist and
self-renew in the skin of mice.151

A subset of B cells, known as B1a cells, residing in the mucosa
and body cavities of adult tissues has also been proposed to
have an HSC-independent origin. In vitro lineage potential and
in vivo transplantation studies have revealed FL and neonatal
HSPCs to be more potent than adult BM HSCs at generating
B1a cells.152 Indeed, adult HSCs do not cell autonomously con-
tain high-level B1a potential (as reviewed by Ghosn et al153).
Furthermore, B1a potential can be detected in yolk sac and
AGM tissues before HSC emergence,154 and B1a progenitors
are detected in Cbfb2/2; Tek:GFP-Cbfb mice, which lack trans-
plantable HSCs.155 However, B1a progenitors observed in
Cbfb2/2; Tek:GFP-Cbfb mice also display maturation defects,
raising questions as to whether this model accurately reflects
steady-state biology. Furthermore, fate mapping studies have
revealed that B1a progenitors are absent in the developing
embryo until HSC emergence.150 Barcoding studies have also
revealed the presence of FL HSPCs that give rise to both B2
and B1a progeny when transplanted.156 These studies were
complemented by single-cell transplantations in which pheno-
typic FL long-term HSCs (LT-HSCs) gave rise to both B2 and
B1a cells. In contrast, Ghosn et al157 failed to observe B1a
potential after transplantation of bulk FL LT-HSC. This disparate
result might be explained by phenotypic differences in the pop-
ulations interrogated, because Ghosn et al depleted Mac-11

cells from LT-HSCs; previous work has shown that FL LT-HSCs
express Mac-1.82 In an interesting twist, a fate mapping study in
which cells that transit through an Flk21 state are irreversibly
switched from TdTomato1 to GFP1 showed that an embryonic
Flk21 precursor, termed transient HSCs, has multilineage poten-
tial with bias toward B1a B and gd T lymphocytes but does not
persist in the adult HSC compartment.158 It was recently
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reported that B2 vs B1a identity can be directed by the nature
of the B-cell receptor (BCR) being expressed and that this
potential is somewhat plastic (ie, B2 cells can be made to revert
to a B1a phenotype simply by switching their BCR to a typical
B1a BCR).159 This raises the question of whether appropriate
antigen exposure could be key to the development of B1a cells.
Might differential exposure to antigen during in vitro culture
assays, transplantation, or steady-state development explain
some of the disparate findings described? Further investigation
is needed to decipher these puzzles.

Together, these results demonstrate how limited phenotypic
markers may be misleading and how functional studies and high-
resolution lineage-tracing studies must continue to inform and
complement our attempts to understand fate potentials and the
clonal establishment of hematopoietic lineage potency. In addi-
tion, recent quantitative modeling of normal and malignant HSPC
dynamics has highlighted the importance of a unifying mathe-
matic model that could reconcile different observations by con-
sidering cell heterogeneity and an extended nonsteady state, in
which cells do not evenly contribute to downstream cellular com-
partments.160 Early experiments relied on the quantification of
transplantable repopulating units as a measurement of HSC num-
bers and thus only captured a fraction of blood precursors at any
given developmental stage. Furthermore, the contribution of
each blood precursor to the adult HSC pool may be distinct,
hence the importance of unbiased labeling methods to accurately
measure blood precursor dynamics and of appropriate mathe-
matic modeling able to integrate cell heterogeneity as defined
by murine Cre lines displaying overlapping and nonoverlapping
labeling of distinct blood precursors.

Conclusions
Together, lineage-tracing data and genomic mutational studies
reveal that HSC specification is not a rare event; 10s of zebrafish
HSPCs, 100s of murine HSPCs, and 1000s of human HSPCs con-
tribute to the adult HSC pool11,92,101,118 (Figure 1). Each of these
approaches has its own advantages and limitations (Table 1).
Additionally, the presence of transient waves of progeny derived
from embryonic HSPCs and long-lived non–HSC-derived cells
complicates interpretations of the origins of hematopoietic clonal
complexity. Indeed, key for future studies will be to definitively
resolve the role of classically transplantable HSCs in steady-state

hematopoiesis. This will likely require new tools that allow for
clean fate mapping of multipotent progenitors vs HSCs, because
all existing published tools show some lack of discrimination in
labeling between these two populations.109-111 Another important
question to address is whether multipotent progenitors are speci-
fied independently from HSCs during embryogenesis and if they
contribute progeny into adult life. Alternatively, these cells might
simply be organized into a hierarchy of transplantation and life-
long blood potential, consistent with the classic view. The novel
approaches described here and others to come should eventually
bring some clarity on these outstanding issues.
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