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KEY PO INTS

� Low flow and
leukocyte-induced
ICAM1 clustering
synergize to
mechanically activate
endothelial PIEZO1.

� Activation of PIEZO1
initiates signaling
processes that result in
opening of the
endothelial barrier and
leukocyte extravasation.

The extravasation of leukocytes is a critical step during inflammation that requires the
localized opening of the endothelial barrier. This process is initiated by the close
interaction of leukocytes with various adhesion molecules such as ICAM-1 on the surface of
endothelial cells. Here we reveal that mechanical forces generated by leukocyte-induced
clustering of ICAM-1 synergize with fluid shear stress exerted by the flowing blood to
increase endothelial plasma membrane tension and to activate the mechanosensitive cation
channel PIEZO1. This leads to increases in [Ca21]i and activation of downstream signaling
events including phosphorylation of tyrosine kinases sarcoma (SRC) and protein tyrosine
kinase 2 (PYK2), as well as of myosin light chain, resulting in opening of the endothelial
barrier. Mice with endothelium-specific Piezo1 deficiency show decreased leukocyte
extravasation in different inflammation models. Thus, leukocytes and the hemodynamic
microenvironment synergize to mechanically activate endothelial PIEZO1 and subsequent
downstream signaling to initiate leukocyte diapedesis.
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Learning objectives
Upon completion of this activity, participants will:
1. Describe how low flow and leukocyte-induced intercellular adhesion molecule 1 clustering interact to mechanically activate

endothelial PIEZO1, based on a mouse model
2. Identify the role of PIEZO1 activation in signaling processes leading to opening of the endothelial barrier and leukocyte

extravasation, based on a mouse model
3. Determine pathophysiologic and clinical implications of how molecular mechanisms underlying the initial interactions between

leukocytes and endothelial cells are linked to opening of the endothelial barrier, based on a mouse model

Release date: July 21, 2022; Expiration date: July 21, 2023

Introduction
The endothelial cell layer is a tight barrier for cells in the circula-
tion. However, during inflammation, leukocytes can transmigrate
the endothelium and extravasate in the perivascular space, a
process that involves a well-coordinated cascade of events. This
includes initial leukocyte capture and rolling, firm adhesion, and
crawling, which are then followed by breaching of the endothe-
lial barrier and the extravasation.1-3 The molecular mechanisms
that control and mediate the initial interactions between leuko-
cytes and endothelial cells are well characterized and involve
interactions between endothelial selectins and glycoproteins of
leukocytes during capture and rolling steps, whereas arrest, firm
adhesion, and crawling are mediated mainly by integrins on leu-
kocytes that bind to endothelial ICAM-1 and VCAM-1 and
induce their clustering.2,4-6 How these initial processes are linked
to the opening of the endothelial barrier, which requires the
remodeling of endothelial adherens junctions and endothelial
cell contraction,7-12 is, however, poorly understood.

Opening of endothelial junctions and endothelial cell contraction
during leukocyte transmigration require activation of endothelial
signaling pathways, and several studies have shown that leuko-
cytes induce an increase in the cytosolic Ca21 concentration in
endothelial cells.13-18 This calcium signal is not necessary for
leukocyte adhesion but is required to induce transendothelial
migration.13-15 ICAM-1 has been shown to be involved in
lymphocyte-induced Ca21 transients in endothelial cells,15 and,
more recently, the transient receptor potential channel C6 (TRPC6)
has been shown to be required for endothelial calcium transients
induced by neutrophils and for transendothelial migration,19 but
how leukocytes induce endothelial Ca21 transients is still unclear.

The Piezo proteins PIEZO1 and PIEZO2 are mechanically activated
cation channels that form homotrimeric complexes,20-22 which are
sufficient to mediate mechanically induced currents.20 PIEZO1 has
been shown to be gated directly by changes in membrane ten-
sion23-25 and to mediate multiple cellular processes including
endothelial flow sensing.26-28 In this study, we found that PIEZO1
is required for leukocyte extravasation by coincidentally sensing
increased membrane tension induced by flow and ICAM-1 cluster-
ing. The subsequent activation of signaling pathways then results
in the localized opening of the endothelial barrier.

Methods
Immunoblot analysis
Cells were lysed in cell lysis buffer (9803; Cell Signaling) contain-
ing 1% triton X-100 or in radioimmunoprecipitation assay (RIPA)

buffer (9806; Cell Signaling) supplemented with protease and
phosphatase inhibitors (5872; Cell Signaling). Lysates were cen-
trifuged at 10000g at 4�C for 10 minutes. Supernatants were
then subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes.
Membranes were probed with primary and horseradish
peroxidase–conjugated secondary antibodies (8884 and 7076,
respectively; Cell Signaling) and were developed using the
enhanced chemiluminescence (ECL) detection system (Pierce).

Determination of [Ca21]i
For the determination of the intracellular Ca21 concentration,
endothelial cells were loaded with 5 mM Ca21-sensitive dye
Fluo-4 AM (F14201; Molecular Probes) or 5 mM Fura-2 AM
(F1221; Molecular Probes) in Hanks balanced salt solution sup-
plemented with 20 mM N-2-hydroxyethylpiperazine-N9-2-etha-
nesulfonic acid (HEPES) for 30 minutes at 37 �C and were then
washed with Hanks balanced salt solution 3 times at room tem-
perature. Live-cell images were acquired with an IX81 micro-
scope (Olympus) at a frequency of 1 Hz. Fluo-4 fluorescence
was measured by using excitation at 488 nm and emission col-
lected at 500 to 550 nm. Fura-2 was monitored by digital fluo-
rescence 340/380-nm ratio imaging. In experiments in which
polymorphonuclear leukocytes (PMNs) were added to endothe-
lial cells, only endothelial cells to which PMNs were attached
were used for the analysis.

Fluorescein isothiocyanate-dextran permeability
assay
A total of 1.5 3 104 human umbilical venous endothelial cells
(HUVECs) were seeded per well of a collagen-coated transwell
plate (3-mm pore size; Corning) and were cultured with daily
medium changes until reaching confluency. For knockdown
experiments, 8000 cells were transfected using Lipofectamine
RNAiMAX with the indicated small interfering RNAs (siRNAs).
For permeability assay, the medium of the upper insert was
removed and replaced with medium containing 250 mg/mL fluo-
rescein isothiocyanate (FITC)-conjugated dextran (relative molec-
ular mass, 40 kDa; Molecular Probes). The permeability was
determined by passage of FITC-dextran through the endothelial
monolayer into the lower chamber using FlexStation-3 (Molecu-
lar Devices).

Electrophysiology
Whole cell patch-clamp recordings were performed at room
temperature using an EPC10/2 amplifier with Pulse software
(HEKA Electronik GmbH, Lambrecht, Germany). Pipette resis-
tance was between 3 and 4 MV, and membrane potential was
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clamped at 280 mV. Normal external solution contained
140 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1mM MgCl2, 10 mM
HEPES, and 10 mM glucose, pH 7.4. The intracellular pipette
solution contained 95 mM L-aspartate, 40 mM CsCl, 1 mM
CaCl2, 1 mM MgCl2, 10 mM HEPES, and 0.1 mM guanosine

triphosphate, pH 7.2. Local low flow at indicated shear rate was
generated with a multichannel microperfusion system (LEAD-2,
LONGER). Mechanical stimulation was applied to cells using a
fire-polished glass pipette with a 3- to 5-mm tip diameter.
Pipette movement was controlled by PCS-5000 Patch-Clamp
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Figure 1. PIEZO1 mediates leukocyte transendothelial migration in vitro. (A) HUVECs pretreated with 10 ng/mL TNFa were transfected with 360 siRNAs pools against
RNAs encoding transmembrane proteins expressed in endothelial cells and were then exposed to THP-1 monocytic cells for 3 hours. Shown is the ratio of THP-1 cells that
transmigrated the HUVEC monolayer transfected with a particular siRNA pool and with control siRNA. The plot shows the ranked average ratios of 3 independent experiments.
(B) HUVECs were transfected with control (siCtrl) or PIEZO1-specific siRNA (siPIEZO1), and rolling, adhesion, and transmigration of human PMNs applied together with flow
(1.2 dynes/cm2) were analyzed (n 5 8 independent experiments per group). Cells treated with control siRNA were set as 100%. (C-I) The indicated endothelial cells were transfected
with control (siCtrl) or PIEZO1-specific siRNA (siPIEZO1) or were left untransfected (E). (C) Rolling, adhesion, and transmigration of mouse PMNs (n 5 8 per group) applied together
with flow (1.2 dynes/cm2) to a bEnd.3 cell monolayer. Cells treated with control siRNA were set as 100%. (D,F,G) Transmigration of human peripheral blood mononuclear cells
(D) (n 5 4 independent experiments per group), human PMNs (F) (n 5 6 independent experiments per group), or mouse PMNs (G) (n 5 6 independent experiments per group)
across HUVECs (D,F) or bEnd.3 cells (G) pretreated without or with 1 mM Yoda1 for 15 minutes. (E) MLECs were isolated from EC-Piezo1-KO and control mice, and transmigration of
mouse PMNs was determined after pretreament without or with 1 mM Yoda1 for 15 minutes (n 5 5 independent experiments). (H) HUVEC barrier integrity was assessed using an
electric cell-substrate impedance sensing (ECIS) system in the absence or presence of 1 mM Yoda1 (n 5 8 independent experiments per group). (I) Paracellular permeability of the
endothelial monolayer cultured in transwell plates was determined using 40 kDa FITC-dextran (n 5 5 independent experiments per group; a.u., arbitrary units). Shown are mean
values6 SEM; *P# .05; **P# .01; ***P# .001 (unpaired t test [B-H], 2-way ANOVA [I]).
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micromanipulator (Burlegh). The micromanipulator uses the
solid-state stability of piezoelectric technology to maintain
smooth and predictable pipette motion without drift. Whole cell
current was analyzed with IGOR Pro software (WaveMetrics).
Experiments were performed with dissociated single cells. In
experiments in which PMNs were added to endothelial cells,
only endothelial cells to which PMNs were attached were used
for the analysis.

PMN application and ICAM-1 clustering
We routinely applied 2 3 105 PMNs per milliliter to cells. For
antibody-mediated clustering of ICAM-1, sheep anti-mouse
IgG-coupled dynabeads (M280; Invitrogen) were coated with
mouse anti-human ICAM-1 antibody (BBIG-I1; R&D Systems)
or immunoglobulin IgG1 (IgG1) control (MAB002; R&D Sys-
tems) overnight at 4�C according to the manufacturer’s proto-
col. To induce clustering, 1.5 3 106 antibody-coated beads/
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Figure 2. PIEZO1 mediates leukocyte transendothelial migration in vivo. (A) Endothelium-specific PIEZO1-deficient mice (EC-Piezo1-KO) or control animals were
injected intraperitoneally with PBS or 500 ng of TNFa, and the number of peritoneal CD11b1;Ly6G1 neutrophils was determined by flow cytometry (n 5 4 mice, 2TNFa;
n 5 5 mice, 1TNFa). (B-D) EC-Piezo1-KO and control mice were treated with croton oil on 1 ear. Six hours later, animals were euthanized, and ears were immunostained as
whole mounts with antibodies against PECAM-1 (blue, endothelium), collagen-IV (red, basement membrane), and MRP14 (green, neutrophil). Arrows indicate neutrophils.
Scale bar, 10 mm. (B) Representative images of stained ears. (C) Schematic drawing illustrating the criteria to delineate the 5 positions in which leukocyte are found during
extravasation. (D) Distribution pattern of neutrophil positions relative to the endothelium and basement membrane (n 5 16 mice, control; n 5 14 mice, EC-Piezo1-KO;
3-5 vessels were analyzed per animal). (E-F) Confocal imaging of PMNs and lung microvessels 4 hours after intraperitoneal injection of 1 mg/kg LPS in EC-Piezo-KO
and control mice (E). Quantitative analysis of extravasated neutrophils per field (F; n 5 6 mice, wild type; n 5 6 mice, EC-Piezo1-KO). (G-H) EC-Piezo1-KO and control
animals were injected with 50 ng (in 100 mL PBS) IL-1b intrascrotally. After 3 hours, the cremaster muscle was isolated and stained for PECAM-1 and MRP14 (G). The
quantitative analysis of extravasated neutrophils per vessel area is shown in panel H (n5 8 mice, control; n 5 10 mice, EC-Piezo1-KO; 2-3 vessels were analyzed per animal).
(I) EC-Piezo1-KO and control mice were analyzed by intravital microscopy of cremaster venules 4 hours after injection of 50 ng IL-1b for extravasated leukocytes (n 5 9
mice per group; 4-10 measurements per animal). (J) Evans blue extravasation was assessed after subcutaneous injection of 20 mL PBS without or with 100 mM
of histamine or 100 ng/mL VEGF (n 5 8 mice, PBS and histamine; n 5 4 mice, VEGF). Shown are mean values 6 SEM. n.s., nonsignificant; **P # .01; ***P # .001 (unpaired
t test).
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Figure 3. Leukocytes and flow synergistically induce PIEZO1 activation to stimulate endothelial downstream signaling. (A) HUVECs were preactivated with TNFa,
loaded with Fluo-4, and exposed to PMNs alone, low flow (1.2 dynes/cm2) alone, or both. [Ca21]i was determined as fluorescence intensity (RFU, relative fluorescence units). (B)
HUVECs transfected with control (siCtrl) or PIEZO1-specific siRNA (siPIEZO1) were preactivated with TNFa, loaded with Fluo-4, and exposed to PMNs and low flow (1.2 dynes/
cm2) given together. [Ca21]i was determined as fluorescence intensity. Five traces representative of the traces of 1 experiment are shown in panels A and B, and the time point of
addition of PMNs is indicated by an arrow. The bar diagrams in panels A and B show the area under the curve (AUC) of the [Ca21]i traces from 6 independent experiments
(20-40 cells were analyzed per experiment). (C-D) Currents from MLECs of wild-type (control) or EC-Piezo1-KO mice were recorded in the whole cell patch clamp configuration.
The holding potential was 280 mV, and the MLECs were exposed to PMNs, low flow (1.2 dynes/cm2), or both (n 5 8-9 independent measurements per condition). (E-H)
Immunoblot analysis of total and phosphorylated PYK2, SRC, and MLC in lysates of TNFa-activated HUVECs transfected with control siRNA (siCtrl) or siRNA directed against
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mL was added to a tumor necrosis factor a (TNFa)-stimulated
HUVEC monolayer cultured in a 6-well dish and incubated for
15 minutes. For some experiments, antibody-coated beads
(5 3 105/mL) were injected into the ibidi perfusion system
containing HUVECs to induce ICAM-1 clustering on HUVECs
under physiologic flow conditions. Alternatively, ICAM-1 was
ligated with 15 mg/mL mouse monoclonal antibodies (R&D
Systems, catalog no. BBIG-I1) for 30 minutes, followed by
washing and ICAM-1 cross-linking with 50 mg/mL mouse sec-
ondary antibody (R&D Systems, catalog no. AF007) for 20
minutes at 37�C. Live cell imaging of membrane tension and
intracellular Ca21 during ICAM-1 clustering were performed
using a Leica SP8 or an Olympus IX81 microscope (see above).
For immunoblot analysis, beads were isolated using a magnetic
holder (Miltenyi Biotec), and cells were lysed with RIPA buffer as
described above.

Lipopolysaccharide (LPS)-induced extravasation
EC-Piezo1-knockout (KO) and control mice were injected intra-
peritoneally with 200 mL phosphate-buffered saline (PBS) alone
or containing 1 mg/kg body weight lipopolysaccharide (LPS)
(L4391; Sigma). After 4 hours, animals were euthanized, and
lungs were collected for immunostaining with anti-MPR14 and
anti–platelet endothelial cell adhesion molecule 1 (PECAM-1)
antibodies. For quantification of extravasating PMNs, cryosec-
tions were analyzed in XYZ views on a Leica SP8 confocal micro-
scope by the following criteria: PMNs directly surrounded
by PECAM-1 staining (ie, blood vessel) were scored as intra-
vascular, whereas cells outside blood vessels were scored as
extravascular.

TNFa-induced peritonitis and flow cytometry
Wild-type or EC-Piezo1-KO mice were injected intraperitoneally
with 100 mL PBS containing no or 500 ng TNFa prewarmed to
37�C. After 60 minutes, animals were euthanized, and cells in the
peritoneal cavity were collected by flushing with 5 mL ice-cold
PBS. Peritoneal cells were filtered using a 70-mm strainer and ana-
lyzed by flow cytometry (BD FACS Canto II). The following anti-
bodies were used: FITC conjugated anti-mouse CD11b (101205;
BioLegend) and allophycocyanin (APC)-conjugated anti-mouse
Ly6G (127614; Biolegend).

Other reagents and antibodies
Yoda1 (5586) was from Tocris Bioscience. Cytochalasin D
(C8273), Blebbistatin (B0560), and PF431396 (PZ0185) were
from Sigma. PP2 (529576) was from Merck Chemicals.
Anti–PIEZO1-antibody was from Proteintech (15939-1-AP).
Anti-GAPDH (catalog no. 5174), anti-protein tyrosine kinase 2
(PYK2) (catalog no. 3292), anti–p-PYK2 (Tyr402; 3291), antisar-
coma (SRC) (2109), anti–p-SRC (Tyr416; 6943), anti-MLC
(3672), and anti–p-MLC (Ser19; 3675) were from Cell Signal-
ing Technology. Anti–endomucin antibody was from Santa
Cruz (sc-65495). Gd31 (439770) was from Sigma, and GsMTx4
(4912) was from Tocris.

Statistical analysis
Trial experiments or experiments done previously were
used to determine sample size with adequate statistical
power. Samples were excluded in cases where RNA/cDNA
quality or tissue quality after processing was poor (below
commonly accepted standards). Data are presented as
means 6 standard error of the mean (SEM). Comparisons
between 2 groups were performed with the unpaired,
2-tailed Student t test, and multiple group comparisons at
different time points were performed by 1- or 2-way anal-
ysis of variance (ANOVA). A value of P # .05 was consid-
ered statistically significant.

Results
PIEZO1 is required for leukocyte transendothelial
migration in vitro
In a screen to identify endothelial transmembrane proteins involved
in the transendothelial migration of leukocytes, we identified the
mechanosensitive cation channel PIEZO1 (Figure 1A; supplemental
Table 1, available on the Blood Web site). The siRNA-mediated
knock down of PIEZO1 in HUVECs or in the mouse brain endothe-
lial cell line bEnd.3 strongly reduced endothelial transmigration of
PMNs and peripheral blood mononuclear cells (Figure 1B-D). Simi-
larly, PMN transmigration through mouse lung endothelial cells
(MLECs) from mice with endothelium-specific loss of Piezo1
(EC-Piezo1-KO)28 was strongly reduced compared with wild-type
MLECs (Figure 1E; supplemental Figure 1A-B). Basal and TNFa-
induced expression of endothelial adhesion molecules was not
affected by loss of PIEZO1 (supplemental Figure 1C). Both PMN
transmigration of human andmurine endothelial cells could be stim-
ulated by Yoda1, an activator of PIEZO1, and this effect was not
seen after knockdown of PIEZO1 in endothelial cells (Figure 1D-G).
PMN rolling on and adhesion to endothelial cells was not affected
by loss of endothelialPiezo1 expression (Figure 1B-C), and endothe-
lial barrier function analyzed by measuring the electrical impedance
of the endothelial cell layer in vitro or by determining the permeabil-
ity of the endothelial layer for FITC-labeled dextran in vivo was nor-
mal after loss of PIEZO1 (Figure 1H-I).

Endothelial PIEZO1 is critically involved in
leukocyte extravasation in vivo
To study leukocyte extravasation in vivo, we injected TNFa into
the peritoneal cavity and determined the number of CD11b1/
Ly6G1 myeloid cells in the peritoneal cavity 6 hours later. Whereas
TNFa induced a significant influx of cells into the peritoneal cavity
of wild-type mice compared with untreated controls, the effect of
TNFa was strongly reduced in EC-Piezo1-KO mice (Figure 2A). We
then studied the role of endothelial PIEZO1 in a model of acute
dermatitis of the ear by applying croton oil to the ear surface and
found that the total number of neutrophils seen in sections of ears
from wild-type and EC-Piezo1-KO mice was identical

Figure 3 (continued) PIEZO1 and incubated without or with human PMNs in the absence or presence of low flow (1.2 dynes/cm2) (E) or without or with 5 mM Yoda1
(G). Immunoblot analysis of PIEZO1 and GAPDH served as controls. Bar diagrams (F,H) show the densitometric analysis of 3 independent experiments. (I) Transmigra-
tion of human PMNs across TNFa-activated HUVECs preincubated for 30 minutes with the PYK2 and SRC inhibitors PF431396 (10 mM) and PP2 (10 mM), respectively
(n 5 5 independent experiments). (J) HUVECs transfected with control (siCtrl) or PIEZO1-specific siRNA (siPIEZO1) were preactivated with TNFa and exposed to PMNs
alone, low flow (1.2 dynes/cm2) alone, or both. After 15 minutes, VE-cadherin internalization was determined as described in Methods (n 5 4 independent experi-
ments). Shown are mean values 6 SEM. *P # .05; **P # .01; ***P # .001 (1-way ANOVA [A,D]; unpaired t test [B,F,H-J]).
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Figure 4. Endothelial PIEZO1 activation by leukocytes involves ICAM-1 activation and flow. (A-B) HUVECs were transfected with control siRNA (siCtrl) or siRNA
directed against ICAM-1. After treatment with TNFa, cells were exposed to low flow and human PMNs (A) or to flow and PMNs alone or given together (B). Thereafter,
the free [Ca21]i was determined after loading of HUVECs with Fluo4 (A), or immunoblot analysis of total and phosphorylated PYK2, SRC, and MLC was performed (B).
Immunoblot analysis of GAPDH served as control. The bar diagram (A) shows the AUC of the [Ca21]i-trace from 3 independent experiments. The bar diagram (B) shows
the densitometric analysis of 3 independent experiments. The arrow in panel A indicates the time point of addition of PMNs. (C-D) TNFa-activated HUVECs transfected
with control siRNA (siCtrl) or siRNA directed against ICAM-1 or PIEZO1 were exposed to low flow and anti–ICAM-1 antibody beads (ICAM-1 beads) given together (C)
or to low flow and anti–ICAM-1 beads alone or given together (D). Thereafter, the free [Ca21]i was determined after loading of HUVECs with Fluo-4 (C), or immunoblot
analysis of total and phosphorylated PYK2, SRC, and MLC (D) was performed. Traces shown in panel C represent signals from 20 to 40 cells, and the time point of
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(supplemental Figure 1D). However, when analyzing postcapillary
venules characterized by a diameter of 20 to 30 mm, the primary
site of leukocyte extravasation, we found that most neutrophils had
completed extravasation and were found in the perivascular space
in wild-type mice, whereas about 25% to 30% of the leukocytes
were found in the lumen of vessels (Figure 2B-D). However, in
EC-Piezo1-KO mice, a significantly reduced portion of leukocytes
had completed extravasation, and the majority, about 70% of
cells, showed arrest at the luminal surface of the endothelium
(Figure 2B,D), suggesting that they adhered to the endothelium
but were not able to initiate the process of endothelial transmigra-
tion. Similarly, LPS-induced extravasation of neutrophils into the
lung parenchyma was strongly reduced in EC-Piezo1-KO mice
(Figure 2E-F). Staining and intravital microscopy of the cremaster
of EC-Piezo1-KO mice revealed a reduced extravasation of neutro-
phils compared with controls after intrascrotal injection of
interleukin 1b (IL-1b; Figure 2G-I). Hemodynamic parameters were
similar in both mouse types, and there was no significant different
in leukocyte rolling and adhesion within venules (supplemental
Figure E-I). Also, basal extravasation of Evans blue and extravasa-
tion after subcutaneous injection of histamine or vascular endothe-
lial growth factor (VEGF) were indistinguishable between wild-type
and EC-Piezo1-KOmice (Figure 2J), indicating that vascular perme-
ability was unchanged. Expression of genes encoding proteins
involved in endothelial functions was not changed in endothelial
cells from EC-Piezo1-KOmice (supplemental Figure 1J-K).

Leukocytes and low flow induce PIEZO1
activation to stimulate endothelial
downstream signaling
Because increases in [Ca21]i are involved in the initiation of leuko-
cyte transendothelial migration and because leukocyte diapedesis
occurs in the presence of low flow in vivo, we studied leukocyte-
induced increases in endothelial cytosolic Ca21 in the absence
and presence of flow at a low shear rate (1.2 dynes/cm2). In control
HUVECs loaded with the [Ca21]i indicators Fluo-4 or Fura-2, low
flow alone or addition of human neutrophils alone had only a small
effect on the cytosolic [Ca21] (Figure 3A; supplemental Figure 2A).
Similar but less pronounced effects were seen with the even lower
shear rates of 0.4 and 0.8 dynes/cm2 (supplemental Figure 2B).
However, when neutrophils were given together with flow, we
observed a strong increase in the endothelial cytosolic Ca21 con-
centration (Figure 3A; supplemental Figure 2A). This synergistic
effect was rarely seen during rolling or initial arrest of leukocytes
but during crawling and during the transmigration phase
(supplemental Figure 2C), and it depended on PIEZO1 (Figure 3B;
supplemental Figure 2D). Chelation of intra- and extracellular
Ca21 by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
(BAPTA) and EGTA, respectively, blocked Ca21 transients (supple-
mental Figure 2E-F). Whole cell patch-clamp recordings of MLECs
showed characteristic inward currents when cells were exposed
simultaneously to low flow and PMNs, which were not seen in
MLECs from EC-Piezo1-KO animals (Figure 3C-D; supplemental
Figure 2G-H). In contrast, exposure of MLECs to flow alone or
PMNs alone induced only small currents (Figure 3C-D).

We then tested the potential involvement of PIEZO1 in the induc-
tion of downstream signaling events mediating leukocyte-induced
opening of endothelial junctions. Whereas low flow alone had
hardly any effect on the phosphorylation of PYK2, SRC, and the
myosin light chain (MLC) in endothelial cells, addition of PMNs
had as small but significant effect. However, application of both
flow and PMNs synergistically induced endothelial PYK2, SRC,
and MLC phosphorylation to a degree significantly higher than
each of the 2 stimuli alone, and this effect was strongly reduced
after knockdown of PIEZO1 (Figure 3E-F). The effect of PMNs
and flow was mimicked by application of Yoda1, and this effect
was again blocked after knockdown of PIEZO1 (Figure 3G-H). Inhi-
bition of endothelial PYK2 or SRC by PF431396 or PP2, respec-
tively, reduced basal transmigration and blocked Yoda1-induced
increases in PMN transmigration (Figure 3I). These data strongly
indicate that PMNs and low flow synergistically induce downstream
signaling events through endothelial PIEZO1, resulting in the
opening of endothelial junctions and leukocyte transmigration.
Consistent with this, we also observed synergism in the ability of
flow and PMNs to induce internalization of vascular endothelial
(VE)-cadherin, an effect strongly inhibited after siRNA-mediated
suppression of Piezo1 expression (Figure 3J).

Endothelial PIEZO1 is activated by flow-induced
ICAM-1 clustering
Because engagement of endothelial ICAM-1 by leukocyte b2

integrins is essential for induction of increases in [Ca21]i and
diapedesis,13,15,29,30 we suppressed expression of endothelial
ICAM-1 and found that this strongly inhibited PMN-induced
Ca21 transients and PYK2, SRC, and MLC phosphorylation
(Figure 4A-B; supplemental Figure 3A-B). Clustering of ICAM-1
using beads coated with anti–ICAM-1 antibodies mimicked the
effect of PMNs and induced Ca21 transients and phosphorylation
of PYK2, SRC, and MLC synergistically with low flow (Figure 4C-D;
supplemental Figure 3C), whereas beads coated with a control
IgG had no effect (supplemental Figure 3D-E). The effects of
ICAM-1 clustering were inhibited after knockdown of PIEZO1 and
ICAM-1 (Figure 4C-D). Similar results were obtained when ICAM-
1 clustering was induced by cross-linking of bound anti–ICAM-1
antibodies (supplemental Figure 3F-I). When beads coated with
anti–ICAM-1 antibodies were given together with low flow, an
inward current was induced, which was sensitive to Gd31 and the
PIEZO1 inhibitor GsMTx4, whereas beads and flow alone had
hardly any effect (Figure 4E-F). This strongly indicates that cluster-
ing and activation of ICAM-1 by leukocytes in the presence of low
flow results in PIEZO1-mediated downstream signaling leading to
the opening of endothelial junctions.

Flow and ICAM-1 clustering synergistically
increase endothelial membrane tension
ICAM-1 clustering and adhesion of leukocytes to endothelial cells
have been shown to induce stiffening of the endothelial surface
and to induce traction stress.31-35 We therefore determined mem-
brane tension in response to ICAM-1 clustering and PMNs using
the fluorescent lipid tension sensor FliptR36 and the membrane

Figure 4 (continued) addition of beads is indicated by an arrow. In panel D, immunoblot analysis of GAPDH served as controls. Bar diagrams (C) show the AUC of the
[Ca21]i traces from 3 independent experiments. Bar diagrams (D) show the densitometric analysis of 3 independent experiments. (E-F) Currents from HUVECs pre-
treated without or with 10 mM Gd31 or 5 mM GsMTx4 and exposed to low flow (1.2 dynes/cm2), anti–ICAM-1 beads, or both were recorded in the whole cell patch
clamp configuration at a holding potential of 280 mV. Shown are characteristic traces (E) and statistical analysis of 5 to 12 independent recordings (F). Shown are
mean values 6 SEM. *P # .05; **P # .01; ***P # .001 (unpaired t test [A-B]; 1-way ANOVA [C-D,F]).
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stress sensor (MSS) biosensor35 (supplemental Figure 4A-B). We
found that clustering of ICAM-1 or addition of PMNs leads to a
small increase in endothelial membrane tension (Figure 5A-D).
Low flow, which by itself had no significant effect on endothelial
membrane tension, when given together with ICAM-1 clustering
agents or PMNs, resulted in a very strong increase in plasma

membrane tension (Figure 5A-D). This indicates that low flow and
ICAM-1 clustering synergistically increase endothelial membrane
tension.

Because ICAM-1 clustering has been shown to induce localized
actin polymerization, MLC phosphorylation, and actomyosin
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icant; **P# .01; ***P# .001 (1-way ANOVA).
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contractility, which promote junctional opening,18,31 we analyzed
the effect of cytochalasin D and blebbistatin on membrane ten-
sion and on phosphorylation of PYK2, SRC, and MLC induced by
ICAM-1 clustering. Both agents blocked ICAM-1–dependent
changes in membrane tension and downstream signaling
(Figure 6A-D). We then tested whether increased membrane ten-
sion and downstream signaling induced by ICAM-1 clustering
involves the actin adapter proteins a-actinin-4 and cortactin,
which have been shown to be recruited after clustering of ICAM-1
and be required for ICAM-1–mediated actin filament branch-
ing and for ICAM-1–dependent transendothelial migration of
neutrophils.37-39 As shown in Figure 6E-G and supplemental
Figure 5A-B, siRNA-mediated knockdown of the RNAs encoding
a-actinin-4 and cortactin blocked the effect of ICAM-1 clustering
on membrane tension and downstream signaling. These data sug-
gest that actin polymerization and actomyosin contractility of the

cortical cytoskeleton induced by ICAM-1 clustering and leading to
increased cortical tension40,41 directly affect plasma membrane
tension41 and thereby induce PIEZO1 activation.

Discussion
We report that the mechanosensitive cation channel PIEZO1
plays a critical role in transendothelial migration of leukocytes
in vitro and in vivo by integrating low levels of fluid shear stress
and mechanical signals induced by clustering of ICAM-1 and
thereby mediating increases in [Ca21]i and a localized opening of
the endothelial barrier (Figure 6H). It has been reported that
TRPC6 is critically involved in leukocyte-induced increases in
endothelial [Ca21]i during leukocyte transendothelial migration.19

In expression analyses, we were not able to observe expression
of TRPC6 in endothelial cells (supplemental Figure 1J).
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Nevertheless, it could well be that both PIEZO1 and TRPC6 oper-
ate in parallel under in vivo conditions or that PIEZO1 is involved
in the initiation of leukocyte extravasation by sensing both flow
and leukocyte adhesion, whereas TRPC6 mediates increases in
[Ca21]i mainly at later stages of diapedesis.

ICAM-1 is a central endothelial adhesion receptor that functions as
a ligand for b2 integrins on leukocytes and promotes leukocyte
spreading, migration, and transmigration.29,42 Engagement of
ICAM-1 leads to the clustering of ICAM-1 molecules and its redis-
tribution into ring-like structures around adherent leukocytes,
which is a requirement for efficient downstream signaling.43,44

ICAM-1 clustering induces cytoskeletal changes such as actin poly-
merization, MLC phosphorylation, and actomyosin contractility,
which promote junctional opening.18,31,42,45 ICAM-1 also pro-
motes increase in [Ca21]i levels,

13,46 which has been shown to lead
to activation of SRC via protein kinase C.15 ICAM-1–mediated acti-
vation of SRC and PYK2 has been shown to be required for
VE-cadherin–dependent leukocyte transendothelial migration.30

This involves direct phosphorylation of VE-cadherin30,47,48 and
indirect regulation of VE-cadherin through VE-PTP49 or by phos-
phorylation of b-catenin.50 How ICAM-1 clustering induces activa-
tion of these downstream signaling events resulting in junctional
opening and transendothelial migration is poorly understood. Our
data indicate that downstream signaling through ICAM-1 requires
coactivation of PIEZO1 by fluid shear stress and ICAM-1–induced
reorganization of the cortical cytoskeleton.

Various mechanical stimuli acting on cellular membranes have
been shown to be able to activate PIEZO1. These include expo-
sure to fluid shear stress, mechanical indentation of the cell sur-
face, cell migration, compression of the cell membrane, or
forces generated at the cell–cell or cell–matrix interface.21,51 Our
data show that low-level fluid shear stress and interaction of leu-
kocytes with the endothelial surface act in a synergistic manner
to activate endothelial PIEZO1 and to initiate leukocyte transen-
dothelial migration. In postcapillary venules, the place where
leukocyte extravasation mainly takes place, the shear stress
exerted by the flowing blood is relatively low at about 1 to 2
dynes/cm,2,52,53 a shear rate hardly able to induce PIEZO1-
mediated signaling.27,28 Consistent with this, we saw only very
small increases in [Ca21]i and no significant increase in the phos-
phorylation of PYK2, SRC, or MLC in response to fluid shear
stress of 1.2 dynes/cm2. Similarly, when ICAM-1 clustering was
induced in TNFa-pretreated endothelial cells by PMNs or
anti–ICAM-1 antibodies, only small increases in [Ca21]i and
phosphorylation of PYK2, SRC, and MLC could be observed,
which were further reduced after suppression of Piezo1 expres-
sion. However, when endothelial ICAM-1 clustering was induced
while exposing cells to low flow, downstream signaling was
strongly activated, and this effect was inhibited by knockdown
of PIEZO1. This raised the question as to how ICAM-1 clustering
promotes PIEZO1 activation. Both ICAM-1 clustering and adhe-
sion of leukocytes to endothelial cells have been shown to
induce stiffening of the endothelial surface and to induce trac-
tion stress.31-34,54 These endothelial responses are caused by
increased actin polymerization and actomyosin contractility of
the cortical cytoskeleton, which lead to increased cortical ten-
sion40,41 and require recruitment of the actin adapter proteins
a-actinin-4 and cortactin.31,37 Because the plasma membrane

and the underlying cortical cytoskeleton are closely intercon-
nected,40,41 changes in the actomyosin cortical tension directly
affect plasma membrane tension41 and therefore are likely to
regulate PIEZO1 activity. Consistent with this, we found that inhi-
bition of actin polymerization and myosin activity and siRNA-
mediated knockdown of a-actinin-4 and cortactin blocked
ICAM-1–mediated increases in membrane tension and PIEZO1-
dependent downstream signaling required for leukocyte trans-
endothelial migration. We therefore also think that it is the
combined effect of low flow and leukocyte-induced ICAM-1
clustering on plasma membrane tension that induces PIEZO1
activation. This is consistent with a series of biophysical studies
showing that changes in plasma membrane tension are sufficient
to regulate the open probability of PIEZO1 and that no intra- or
extracellular interactions are required.23-25 However, we cannot
exclude that additional mechanisms are involved. For instance, it
has recently been suggested that Piezo1 can be linked to the
actin cytoskeleton through members of the cadherin family
including VE-cadherin,55 and this mechanism may contribute to
Piezo1 activation induced by ICAM-1 clustering and subsequent
actin polymerization.

Recent data indicate that changes in plasma membrane tension
are restricted to subcellular domains of endothelial cells as local
increases in membrane tension lead only to local activation of
mechanosensitive ion channels such as PIEZO1.56 The finding that
leukocyte-induced endothelial downstream signaling and diape-
desis require PIEZO1 and flow is consistent with earlier observa-
tions, which showed that fluid shear stress promotes
transendothelial leukocyte migration.57-60 Our data identify a novel
synergism of local hemodynamic forces and initial endothelial leu-
kocyte adhesion to induce plasma membrane tension and endo-
thelial signaling events that promote leukocyte extravasation. The
discovery of a novel mechanosensing and mechanosignaling pro-
cess required for the initial phase of leukocyte diapedesis may
also lead to new anti-inflammatory therapeutic approaches.
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