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Multiple COVID-19 vaccine doses in CLL and MBL
improve immune responses with progressive and high
seroconversion
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KEY PO INT S

•Multiple doses result in
high rates of
seroconversion in CLL
(94.2%) and MBL
(100%), with
progressively higher
antispike antibody
levels.

•Neutralization against
COVID-19 variants
requires strong specific
T-cell responses and
higher antispike levels.
22-0
Patients with chronic lymphocytic leukemia (CLL) or monoclonal B-lymphocytosis (MBL)
have impaired response to COVID-19 vaccination. A total of 258 patients (215 with
CLL and 43 with MBL) had antispike antibody levels evaluable for statistical analysis.
The overall seroconversion rate in patients with CLL was 94.2% (antispike antibodies
≥50 AU/mL) and 100% in patients with MBL after multiple vaccine doses. After 3 doses
(post-D3) in 167 patients with CLL, 73.7% were seropositive, 17.4% had antispike
antibody levels between 50 and 999 AU/mL, and 56.3% had antispike antibody levels
≥1000 AU/mL, with a median rise from 144.6 to 1800.7 AU/mL. Of patients who were
seronegative post-D2, 39.7% seroconverted post-D3. For those who then remained
seronegative after their previous dose, seroconversion occurred in 40.6% post-D4,
46.2% post-D5, 16.7% post-D6, and 0% after D7 or D8. After seroconversion, most
had a progressive increase in antispike antibody levels. Neutralization was associated
with higher antispike antibody levels, more vaccine doses, and earlier severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) variants; neutralizing antibody
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against early clade D614G was detected in 65.3%, against Delta in 52.0%, and against Omicron in 36.5%. SARS-
CoV-2–specific T-cell production of interferon γ and interleukin 2 occurred in 73.9% and 60.9%, respectively, of 23
patients tested. After multiple vaccine doses, by multivariate analysis, immunoglobulin M ≥0.53 g/L, immuno-
globulin subclass G3 ≥0.22 g/L and absence of current CLL therapy were independent predictors of positive
serological responses. Multiple sequential COVID-19 vaccination significantly increased seroconversion and anti-
spike antibody levels in patients with CLL or MBL.
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Introduction
The COVID-19 pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is well into its third year
and emerging variants now account for most infections across
the globe. Patients with chronic lymphocytic leukemia (CLL)
have immune failure with hypogammaglobulinemia,1 higher
infection risk,2-4 and higher risk of severe COVID-19.5-8 We9 and
others10-15 have documented impaired response after 2 initial
doses (post–dose 2 [D2]) of COVID-19 vaccination, with 44%
of patients with CLL and 9.5% of patients with monoclonal
B-lymphocytosis (MBL) failing seroconversion (Abbott Diag-
nostics assay level ≥50 AU/mL). Furthermore, post-D2, 75% and
50% of patients with CLL and MBL, respectively, have no or
minimal neutralizing activity to early SARS-CoV-2 clades and the
Delta variant.9

Patients with CLL are immunocompromised and those who are
unable to generate their own antibody response remain
vulnerable with a limited range of imperfect options. Continued
social distancing equates to ongoing social isolation and for
many is not possible, antiviral therapy targets only recent-onset
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COVID-19 infection, and the prophylactic antibody combina-
tion tixagevimab and cilgavimab (Evusheld, AstraZeneca)
remains difficult to access for many patients with CLL globally
and evidence of viral resistance is emerging, especially for
SARS-CoV-2 variants BA.4 and BA.5.16-19 A study by the Leu-
kemia and Lymphoma Society presented at the Scientific
Symposium of the American Society of Hematology 2021
reported that many patients who were seronegative “took
matters into their own hands” and sought additional vaccine
doses.20 In our patient population, we also noted higher rates
of seroconversion and higher antispike antibody levels in most
patients who accessed third, fourth, and subsequent vaccine
doses. Patients with MBL also have an immune defect.9,21-23

The prevalence of MBL in the community in those aged
>60 years is extremely high at ~10%,21,24 and many will have
suboptimal vaccine response yet be unaware of their status
and risk. Adequate protection against COVID-19 for the
elderly population, therefore, remains a major public health
issue.

Internationally, many governments and health systems have
launched third, and sometimes fourth, vaccine dose programs
in the general population or selected groups deemed immu-
nocompromised or vulnerable. Recent Israeli, United Kingdom,
French, and Danish data showed that a third dose in patients
with CLL that were seronegative post-D2 resulted in serocon-
version in 23.7%, ~14%, 35%, and 30%, respectively.25-28

Generally, this supports the hypothesis that multiple doses
boost the antispike antibody level and that additional doses
may result in successful seroconversion.

In this prospective observational study, we evaluated responses
in patients with CLL or MBL after 3, 4, and up to 8 doses of
COVID-19 vaccine and report (1) seroconversion rates, (2)
antispike antibody levels, (3) neutralizing antibody activity levels
against the early SARS-CoV-2 clade D614G and the later vari-
ants Delta and Omicron, and (4) COVID-19–specific T-cell
responses.
-017814-m
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Methods
The study was approved by the Northern Sydney Local Health
District Human Research Ethics Committee (approval number
LNR/14/HAWKE/181). The diagnosis of CLL and MBL were
according to International Workshop on Chronic Lymphocytic
Leukemia guidelines.29 Vaccination occurred through the
Australian Government program with Vaxzevria (ChAdOx1
nCoV-19, adenoviral vector–based vaccine; AstraZeneca),
Cominarty (Pfizer-BioNTech, messenger RNA [mRNA]–based
vaccine; Pfizer), Spikevax (mRNA-1273, mRNA-based vaccine;
Moderna), or Nuvaxovid (NVX-CoV2373, spike protein subunit
vaccine; Novavax).30 Most patients had an initial 2 doses with
Vaxzevria, then subsequent doses mostly with Cominarty vac-
cine and some with Spikevax. Vaccine doses were accessed
through vaccine hubs, pharmacies, or local medical practi-
tioners, distributed by the Australian Government with Austra-
lian Technical Advisory Group on Immunization–issued
guidelines regarding vaccine type, number, and schedule that
evolved throughout the pandemic. Australia had very low
COVID-19 case numbers until December 2021 (supplemental
2710 22 DECEMBER 2022 | VOLUME 140, NUMBER 25
Figure 1, available on the Blood website). Although many
patients were able to access additional doses, some were not,
as detailed in supplemental Figure 2. The current study is an
expansion of our 2-dose cohort,9 but focuses on outcomes after
3, and up to 8 multiple sequential vaccine doses. The reported
ultimate positivity rate was calculated based on the latest
antispike antibody level from post-D2 onward. Blood samples
were collected ~4 weeks after each sequential vaccine dose.
The SARS-CoV-2 IgG II Quant assay (Abbott Diagnostics,
Macquarie Park, NSW) was performed in accordance with the
manufacturer’s instructions. An antispike antibody level of
≥50 AU/mL was defined as positive, and the maximum reported
level was >25 000 AU/mL.

SARS-CoV-2 live virus neutralization assay
HEK-ACE2/TMPRSS cells (clone 24)31 were maintained and
used as previously described18 for characterization of SARS-
CoV-2 variants Omicron (BA.1), Delta (B.1.617.2), and the
wild-type control SARS-CoV-2 (B.1.319/D614G strain) from an
early circuiting 2020 clade (B.1).

IFN-γ/IL-2 fluorospot assay
Peripheral blood mononuclear cells were seeded in T-cell
interferon γ (IFN-γ)/interleukin 2 (IL-2) dual color FluoroSpot
plates (Mabtech) and incubated with overlapping SARS-CoV-2
peptide pool spanning the complete S-protein (1 μg/mL;
Miltenyi), as previously described.9,32 Reported data are
represented as the mean of the duplicates expressed as
spot-forming units per 106 cells. The threshold for a positive
response was set based on the average number of spot-forming
units per 106 cells across all negative controls plus 3 standard
deviations. The mean number of responding cells in negative
controls (no stimulation controls, that is, cells incubated in
media with no peptides) were subtracted from stimulated
samples to account for background responses.

Statistical analysis
Statistical analyses were conducted using SAS version 9.4. A
generalized mixed model was fitted (using SAS PROC GLIM-
MIX) where neutralization antibody response (positive or
negative) was the outcome. COVID-19 variants and antispike
antibody levels (≥1000 or <1000) were included as factors,
together with an interaction term. Number of doses were also
included as a factor with values 2, 3, 4, or ≥5. To acknowledge
the dependence in the data (ie, each patient provided results
for up to 3 variants), variants were included as a random term
with subject as the repeating term using a compound symmetry
variance/covariance matrix. Univariate logistic regression
models, modeling the odds of adequate/positive response
(antispike antibodies ≥1000 AU/mL), fitted with conditional
exact methods to obtain exact P values and 95% confidence
interval. Exact methods were employed owing to the small
patient numbers in some categories. Multivariate logistic
regression models were subsequently fitted including multiple
clinical variables found to be significant in univariate models. If
2 clinical variables were highly correlated, only 1 variable was
included. Any analyses of immunoglobulin G (IgG) levels (or IgG
subclasses) excluded patients on IgG replacement therapy
(IgRT).
SHEN et al



Results
Patient characteristics
From 1 March 2021 to 24 June 2022, a total of 258 patients (215
with CLL and 43 with MBL) with antispike antibodies measured
after at least 2 doses of vaccination were included in the anal-
ysis. The median age for patients with CLL and patients with
MBL was 72 years. The proportion of male patients with CLL or
Table 1. General patient information

Total number of patients (n = 258)

Males, n (%)

Median age (range), y

Median age at diagnosis (range), y

Seroconversion (at the time of analysis)

Positive, n (%)

Negative, n (%)

Lost contact, n

Cytogenetics

Del 13q, n (%)

Del 11q, n (%)

Del 17p, n (%)

Trisomy 12, n (%)

Unknown, n

IGHV, n

Mutated

Unmutated

Unknown

Treatment status at vaccination, n (%)

Treatment naïve

Off therapy in remission (complete or partial remission)

Off therapy in relapse

On therapy

Immunoglobulin replacement therapy, n (%)

Currently on

Prior but not current

Never on immunoglobulin replacement therapy

Unknown

Anti-CD20 inhibitor in the last 12 mo, n (%)

Yes

No

MULTIPLE COVID-19 VACCINE DOSES IN CLL AND MBL
MBL was 55.8% and 32.6%, respectively. Patient characteristics
and baseline demographics are summarized in Table 1. In this
post-D2 cohort, there were 229 patients whose antispike anti-
body level was assessed and seroconversion rates were 55.5%
in CLL (106/191) and 92.1% in MBL (35/38) (supplemental
Table 1; supplemental Figure 2). At the time of D2, there was
no reported COVID-19 infection and all had negative
CLL (n = 215) MBL (n = 43)

120 (55.8) 14 (32.6)

72 (22-95) 72 (49-88)

60 (18-85) 67.5 (27-84)

180 (94.2) 43 (100)

11 (5.8) 0 (0)

24 0

92/145 (63.4) 6/10 (60)

16/145 (11) 0/10 (0)

10/145 (6.9) 0/10 (0)

23/145 (15.9) 1/10 (10)

70 36

27 —

7 —

181 43

119 (55.3) 43 (100)

46 (21.4) 0 (0)

6 (2.8) 0 (0)

44 (20.5) 0 (0)

27 (12.6) 0 (0)

10 (4.7) 0 (0)

149 (69.3) 43 (100)

29 (13.5) —

14 (6.5) 0 (0)

201 (93.5) 43 (100)
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antinucleocapsid assays. Since December 2021, 32 patients
(28 CLL and 4 MBL) have reported COVID-19 infection, of
whom there have been 30 patients with relatively mild disease
and 2 that became severely ill with 1 fatal outcome. Both
patients with severe COVID-19 were hospitalized and had CLL,
and their latest antispike antibody levels before infection were
1.0 AU/mL and 2462.3 AU/mL (supplemental Figure 3). After
COVID-19 infection, no further analysis is reported on these
patients as this will reflect response to infection and not only
vaccination.
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Serological response of antispike seroconversion
rate and antibody levels in CLL
The ultimate seroconversion rate for CLL was 94.2% (180/191;
ie, total of 215 patients with CLL, excluding 13 and 11 patients
missing post-D2 or post-D3 data, respectively, but with later
time points recorded), defined as an antispike antibody con-
centration ≥50 AU/mL (Abbott Diagnostics). No patient sero-
converted if they remained seronegative after 6 doses.

After 3 doses, the seroconversion rate was 73.7% (123/167)
(Figures 1 and 2). For patients who were seronegative after D2
(85/191), 68 received a third dose, 27 of which (39.7%) sero-
converted. The median antispike antibody level post-D3 rose
from 144.6 to 1800.7 AU/mL. To assess heterologous vs
homologous vaccine doses, we analyzed a subset of 75
patients: 64 with Vaxzevria as D1+2 followed by an mRNA
vaccine for D3 (heterologous) vs 11 patients who received
mRNA for D1, D2, and D3 (all Cominarty, homologous). The
antispike antibody increase in the heterologous cohort was 1.6
times higher than in the homologous cohort (95% confidence
interval, 0.5-5.28), adjusted for D2 response, but was not sta-
tistically significant (P = .42) (supplemental Figure 4A).

In patients with CLL after D4, 81.7% seroconverted (>50 AU/
mL), but only 35.6% achieved a level >5000 AU/mL capable of
Omicron neutralization, that is, 64.4% of patients with CLL are
inadequately protected with 4 doses (Figure 2). After ≥4 doses,
the number and proportion of patients with CLL who sero-
converted or achieved a higher antispike antibody level
increased, and therefore, fewer patients proceeded with addi-
tional doses; hence, the denominator of patients at risk
progressively decreased with multiple sequential doses
(supplemental Table 1; supplemental Figure 2). Sequentially for
those who remained seronegative after their most recent dose,
seroconversion occurred in 40.6% (13/32) after D4, 46.2% (6/13)
after D5, 16.7% (1/6) after D6, and none (0/1) after D7 or D8
(supplemental Table 1).

However, importantly, and in contrast to those with no
detectable antispike antibody, patients with CLL with detect-
able but low-level antispike antibodies frequently achieved a
higher level of antibody with subsequent doses and the level
typically progressively increased with each subsequent vaccine
dose (Figure 1A,C). Hence, the ultimate seroconversion rate for
CLL was 94.2%, of whom 79.1% achieved antispike antibody
levels ≥1000 AU/mL; 54.1%, ≥5000 AU/mL; and 34.1%, ≥10 000
AU/mL. The later and higher antispike antibody levels were
commonly associated with neutralization activity against all
major COVID-19 variants, including Delta and Omicron.
2712 22 DECEMBER 2022 | VOLUME 140, NUMBER 25
Seroconversion rates after each dose are summarized in
supplemental Table 1. Patients with only qualitative (ie, positive
or negative) results were not included in Figure 2.

Antispike protein seroconversion and antibody
levels after 3 to 5 vaccine doses in patients
with MBL
In MBL, the seroconversion rate after D3 was 100% (29/29),
including the 3 patients who failed to seroconvert after D2
(Table 1). There were 11 patients with MBL that received a
fourth dose and 3 that received a fifth dose (Figure 2). After D4,
although all achieved ≥50 AU/mL, only 72.7% achieved ≥5000
AU/mL; that is, 27.3% of patients with MBL remain vulnerable.
The median antispike antibody level in patients with MBL
increased from 904.9 AU/mL post-D2, to 6188.2 AU/mL post-
D3, 19 016.2 AU/mL post-D4, and >25 000 AU/mL post-D5
(Figure 1B). Hence, in MBL, multiple sequential vaccine doses
progressively increment to higher antispike antibody levels. No
significant vaccine adverse events were reported in patients
with MBL.

Adverse events
Adverse events were mainly mild and related to localized
injection site or short-term systemic inflammatory responses.
There were no serious adverse events reported with the Vax-
zevria vaccine, and specifically no episodes of vaccine-induced
thrombosis thrombocytopenia syndrome. One patient required
hospital admission for bradycardia following the patient’s first
dose of Cominarty (mRNA), which was administered as the
patient’s third total dose after 2 Vaxzevria doses; this did not
recur with the subsequent fourth total vaccine dose, which was
Nuvaxovid.

Neutralization titers against SARS-CoV-2 D614G,
Delta, and Omicron variants following 2 to 8
vaccination doses
Detection of neutralizing antibody against the D614G, Delta,
and Omicron variants was performed on 98 CLL and 13 MBL
samples, including sequential samples collected ~4 weeks after
each dose from the same patient, in 50 patients with CLL and
12 patients with MBL. There were 27 samples collected post-
D2, 34 post-D3, 21 post-D4, 10 post-D5, 5 post-D6, and 1
post-D7. Detection of neutralizing antibody against the 3 SARS-
CoV-2 variants is summarized in Figure 3A-B.

Of the 98 tested samples from patients with CLL, antispike
antibody levels did not reach the positive/negative threshold of
≥50 AU/mL in 9 patients, and no neutralizing antibodies against
any variant were detected in these 9 patients. In the remaining
patients, 37 had levels between 50 and 1000 AU/mL, and 52
had levels ≥1000 AU/mL. Of the 98 samples post-D2, 24 pre-
dated emergence of the Omicron variant and have been
included in a previous report9 but were retained in this study to
enable comparison with, and statistical evaluation of, subse-
quent vaccine doses.

Of all 98 samples from patients with CLL, 65.3% had neutral-
izing antibody against the early SARS-CoV-2 clade D614G,
52.0% against Delta, and 36.5% against Omicron (excluding the
24 samples that predated Omicron). Detection of neutralizing
SHEN et al
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Figure 1. Sequential post vaccination antispike protein IgG levels. Changes in antispike protein IgG levels are shown in patients with CLL (A) or MBL (B) and treatment
history (C). An antispike antibody level >50 AU/mL is classified as a positive response and an antispike antibody level ≥1000 AU/mL is classified as a strong positive response.
Red bars in panel C indicate the median antispike antibody level in each group. An antispike antibody level of 0 could not be displayed in this figure. Although Australia had
low COVID-19 case numbers, consensus guidelines developed at the beginning of the pandemic recommended deferral of CLL therapy where possible during COVID-19
outbreaks.33,34 Hence, the number of patients on therapy (panel C box 4) is relatively low. pre-vacc, prevaccine.
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Anti-Spike level stratification in CLL
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Figure 2. Anti–SARS-CoV-2 spike antibody level stratification in patients with CLL or MBL postvaccination. Antispike level stratification after sequential vaccination were
shown in patients with CLL (A) and MBL (B). Only patients with known quantitative antispike antibody levels were included.
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antibodies against all 3 SARS-CoV-2 variants demonstrated a
moderate, nonlinear, but statistically significant correlation
(Spearman definition) with antispike antibody levels
(supplemental Figure 5). Correlation coefficients to the 3 vari-
ants are D614G, 0.65 (P < .0001); Delta, 0.53 (P = .0029); and
Omicron, 0.78 (P < .0001).

For all variants, the odds of a positive neutralizing response with
antispike antibody <1000 AU/mL is markedly reduced
compared with patients with antispike antibodies ≥1000 AU/
mL. The OR for all variants are similar from 0.012 to 0.017
(Figure 3C). We then evaluated differences between variants for
patients with an antispike antibody level ≥1000 AU/mL,
accounting for the number of doses received by the patients
when calculating the odds of positive neutralization. The
adjusted ORs ranked the likelihood of positive neutralization for
a patient with an antispike antibody level ≥1000 AU/mL as
D614G>Delta>Omicron (Figure 3C).
2714 22 DECEMBER 2022 | VOLUME 140, NUMBER 25
SARS-CoV-2–specific T-cell responses following
sequential doses
IFN-γ and IL-2 responses specific to the SARS-CoV-2 peptide
pool (Miltenyi) were measured in 23 patients by the FluoroSpot
assay. Patients were selected to evaluate a broad spectrum of
antispike antibody levels and different number of doses. Of the
23 selected patients, 17 (73.9%) were positive for IFN-γ,
14 (60.9%) were positive for IL-2, and 14 (60.9%) were positive for
both IFN-γ and IL-2. Based on the latest antispike antibody levels
of these 23 patients, we observed strong correlation between
positive T-cell responses and high antispike levels (>5000 AU/
mL) (Figure 4A). All 7 patients who had an antispike antibody
level >25 000 AU/mL showed consistent positive T-cell
responses against the stimulatory SARS-CoV-2 peptide pool.
Conversely, no correlation was found in patients with an antispike
antibody level <5000 AU/mL. Furthermore, no correlation was
found between T-cell responses and number of doses adminis-
tered (supplemental Figure 5) in any of the 23 patients.
SHEN et al
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Neutralizing activities were measured in 14 of the 23 patients
assessed for T-cell responsiveness. Strong neutralizing activities
against all 3 variants, D614G, Delta, and Omicron, were
observed in 7 patients and were highly consistent with their
positive T-cell responses in 85.7% (6/7) of these patients. The 1
patient with positive neutralizing activities but inadequate T-cell
responses had an antispike antibody level of 1072 AU/mL.

Statistical analysis for persistent vaccine failure
after multiple doses
The association between best serological response after mul-
tiple doses and clinical variables was estimated using univariate
logistic regression models. Immunoglobulin levels and treat-
ments for CLL are shown in supplemental Figures 6 and 7 and
supplemental Table 2, respectively. Statistically significant
association was identified between positive/adequate serolog-
ical responses (antispike antibodies ≥1000 AU/mL) and IgM
≥0.53 g/L (OR, 2.71; P = .0209), IgG3 ≥0.22 g/L (OR, 4.06; P =
.0031; only assessed in patients without IgRT), absence of CLL
treatment in the last 12 months (OR, 2.96; P = .0048), and
absence of current CLL therapy (OR, 3.18; P = .0081), including
CD20-based therapy (OR, 9.22; P = .0501). Ibrutinib and ven-
etoclax were associated with negative response (OR, 2.33 and
1.73, respectively), but did not achieve a low P value owing to
the small number of patients.

We then fitted a multivariate logistic regression model,
modeling the odds of a positive/adequate response (antispike
antibodies ≥1000 AU/mL) based on clinical and biological var-
iables identified in the aforementioned univariate analysis.
Variables statistically associated with an adequate antispike
antibody response include IgM ≥0.53 g/L (OR, 2.90; P = .0314),
2716 22 DECEMBER 2022 | VOLUME 140, NUMBER 25
IgG3 ≥0.22 g/L (OR, 3.26; P = .0057), and the absence of any
current CLL therapy (OR, 2.48; P = .0574). Interestingly, a trend
of a better antispike antibody response was observed in
patients who received IgRT at any time (currently or previously)
(Figure 5B), possibly owing to the emergence of antispike
antibodies in the vaccinated IgRT source population.35

Statistical predictors and associations with vaccine
responses
Vaccine responses after multiple doses were highly variable,
ranging from 0 to >25 000 AU/mL (upper reported limit of the
Abbott assay). To enable evaluation of biological or clinical
predictors of antispike antibody levels, we categorized patients
with CLL into 3 cohorts based on their serological responses
and considering the number of doses administered. Univariate
models were constructed for (1) patients who had >4 doses, but
maintained antispike antibodies <50 AU/mL (zero responders);
(2) patients with antispike antibodies <1000 AU/mL post-D3,
but then increased to ≥1000 AU/mL after ≥4 doses (late
responders); and (3) patients who reached ≥20 000 AU/mL at
any point post-D1 (high responders). Using these definitions,
11 patients were identified as zero responders, 28 patients
were defined as late responders and 36 patients were high
responders.

There were large sample size discrepancies between the
comparator groups, hence, we focused on large or small OR
values and used a P value cutoff of P < .2 for this analysis. Using
the aforementioned approach, zero response vs any response
was highly associated with reduced IgA (OR, 3.08; P = .1659),
reduced IgG2 (OR, 5.86; P = .1443), reduced IgG3 (OR, 8.21;
P = .0233), treatment in the last 12 months (OR, 7.31; P = .0048),
SHEN et al
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and current ibrutinib treatment (OR, 4.43; P = .1259). Factors
associated with a late response vs other response patterns
included reduced IgM (OR, 3.09; P = .1396) and reduced IgM as
a sole immunoglobulin abnormality (OR, 3.38; P = .0875). Cur-
rent ibrutinib treatment (OR, 2.41; P = .2149) was not statistically
significant but may be clinically relevant. Failure to become a
high responder was associated with reduced IgM (OR, 0.21;
P = .0013), reduced IgA (OR, 0.36; P = .1573), reduced IgG3
(OR, 0.23; P = .0521), treatment in the last 12 months (OR, 0.14;
P = .04), current ibrutinib treatment (OR, 0.20; P = .0475), and
MULTIPLE COVID-19 VACCINE DOSES IN CLL AND MBL
female sex (OR, 0.47; P = .1250) (Figure 5). All patients treated
with BTKi received ibrutinib.

Discussion
Immune impairment in CLL and also MBL, leads to a signifi-
cantly impaired response to COVID-19 vaccination with lower
and slower rates of both seroconversion and antispike antibody
levels generated compared with normal individuals.9-12,36-38 An
Israeli group recently documented that a third vaccine dose in
22 DECEMBER 2022 | VOLUME 140, NUMBER 25 2717
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patients with CLL, seroconverted 23.8% of those who had been
negative after D2.25 We found a somewhat higher rate of 39.7%
for D2 to D3 seroconversion, which is very similar to the 35%
observed in a French study, in which the same Abbott assay for
antispike antibody levels was used, but in which all 3 doses
were mRNA-based vaccines.27 These differences may reflect
the CLL population under study (higher or lower numbers with
advanced disease), different vaccines used (all Comirnaty in
Israel vs mainly Vaxzevria followed by Comirnaty in Australia),
and possibly the assay used to measure antispike antibody
levels (Roche vs Abbott) that have different noninterchangeable
numerical values and assay kinetics.39,40 In any event, it high-
lights the principal that additional doses provide seroconver-
sion in a significant proportion of patients.

The key messages from this study are that multiple sequential
COVID-19 vaccine doses ultimately seroconvert all patients with
MBL and a very high proportion, 94.2% of patients with CLL This
is more than double the seroconversion after 2 vaccine doses,
and generates progressive increases in the antispike antibody
level in most patients, thereby providing, in some individuals,
adequately antispike antibody levels necessary for neutralization
of the SARS-CoV-2Delta andOmicron variants. Induction of high
antispike antibody levels achieved by multiple vaccine doses are
associated with stronger SARS-CoV-2–specific T-cell responses.

There are compelling arguments to support strategies to ach-
ieve an endogenous immune response to COVID-19 vaccina-
tion. Access to prophylactic monoclonal antibody therapies
such as tixagevimab and cilgavimab, which had high neutrali-
zation activity against early variants, remains difficult in many
areas of the world, including Australia at the time of the study in
patients with CLL (supplemental Table 3); this despite CLL
being the hematologic malignancy with the highest rate of
vaccine failure.37,41 Furthermore, there is already evidence that
the Omicron family of variants, BA.1, BA.2, BA.4, and BA.5, are
less sensitive to tixagevimab and cilgavimab17,19,42 and sotro-
vimab17 than previous SARS-CoV-2 variants. Hence, there is an
ongoing risk that future SARS-CoV-2 mutations, strains, and
variants may further escape the effect of prophylactic mono-
clonal antibody therapies, rendering them potentially ineffec-
tive. For example, although tixagevimab and cilgavimab had
high neutralizing activity against early variants (20 ng/mL), its
activity is now 14-fold lower at ~300 ng/mL and, effectively, a
monotherapy as tixagevimab has no activity against BA.2 and
BA.5.17 BA.5 reduces the potency for tixagevimab and cil-
gavimab and sotrovimab by 14.3-fold and 16.8-fold, respec-
tively.17 Therefore, patients who are immunocompromised are
left with Paxlovid, molnupiravir, or the less potent remdesivir as
their remaining effective options. Vaccination also produces a
SARS-CoV-2–specific T-cell response that may be very impor-
tant in long-term protection from severe COVID-19 and mor-
tality,43 and a T-cell response cannot develop from passive
antibody therapy such as tixagevimab and cilgavimab or from
pooled convalescent immunoglobulin.

The number of individuals at risk is considerable. CLL is the
most common hematologic malignancy with a high prevalence
arising from prolonged survival with current treatment options.
By comparison, however, MBL is extraordinarily common with a
clone detectable in ~10% of the adult population aged >60
years;44-46 we recently postulated that unrecognized MBL with
2718 22 DECEMBER 2022 | VOLUME 140, NUMBER 25
its attendant immune impairment may be a factor leading to
higher risk of severe COVID-19 in those aged >60 years.21

Vaccination strategies of 2 to 4 doses based on data from
individuals that are healthy and immunocompetent leave many
patients with CLL or MBL (including unrecognized MBL) that are
immunocompromised, inadequately protected. After D4, only
35.6% of patients with CLL and 73.7% of patients with MBL had
antispike antibody levels ≥5000 AU/mL, the lowest threshold for
Omicron-neutralizing antibodies. If provided with adequate
vaccine access, >94% of patients with CLL will seroconvert, and
most will achieve higher antispike antibody levels. Hence,
strategies for achieving seroconversion, with higher endoge-
nous antibody production remain an important unmet need.
The results of this and other recent studies showing improved
humoral responses after a third vaccine dose in patients with
CLL provide support for tailored vaccine strategies that incor-
porate serological testing and multiple sequential vaccine
dosing.20,25,26,47

It remains unclear whether the progressive seroconversion or
the progressive rise in antispike antibody levels result primarily
from the total vaccine dosage, the sequence of vaccine type
administered, interval spacing between doses, or a combina-
tion of these factors. Multiple vaccine options are universally
available and relatively inexpensive in most countries. Further-
more, at the time preparation of this manuscript, Pfizer48 and
Moderna49 have announced bivalent mRNA vaccines
combining high viral neutralizing activity against earlier SARS-
CoV-2 clade and Omicron BA.4 and BA.5.

Neutralization data from this study demonstrate that serocon-
version with a low antispike antibody level (ie, ≥50 but <1000
AU/mL) is insufficient to provide viral neutralization protection
against wild-type and early variants of SARS-CoV-29,50 and less
so against later variants (Figure 3). Indeed, neutralization
against Omicron was not observed until the antispike antibody
level surpassed 5000 AU/mL, and consistent neutralization of
Omicron was only observed with antispike antibody levels
≥20 000 AU/mL. Similar data were reported in the literature,13

in particular, Parry et al51 demonstrated a 28% reduction in
neutralization capacity against Delta compared with the Wuhan
variant. We fitted a generalized mixed model (using SAS PROC
GLIMMIX) to identify determinants of the neutralization anti-
body response against D614G, Delta, and Omicron (positive/
negative as the outcome). Our analysis, consistent with
others,42,51 showed that novel variants, antispike antibody
levels <1000 AU/mL, and fewer doses are contributing factors
for poor neutralization with statistical significance (Figure 3D).
Antispike antibody levels interpreted together with neutralizing
data show that most patients with CLL lack sufficient neutral-
izing activity, especially against the latest SARS-CoV-2
variants.52

SARS-CoV-2–specific T-cell function also showed a strong
association with higher serological responses (antispike anti-
bodies ≥5000 AU/mL) after multiple doses. Less than half (5/12,
41.7%) of the patients with antispike antibody levels <5000 AU/
mL had normal levels of both IFN-γ and IL-2, compared with
81.8% (9/11) with antispike antibody levels ≥5000 AU/mL.
Although a strong T-cell response was almost always associated
with a high antispike antibody level, good T-cell responses were
SHEN et al
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not necessarily accompanied by high antispike antibody levels
with neutralizing activity. Similar results were shown in the
literature, demonstrating a heterogeneous mix of T-cell
responses among all patients with CLL,53 whereas a weak cor-
relation between antispike antibody level and IFN-γ was
observed.54 It remains unclear to what extent the B-cell vs T-cell
response contributes to protection against severe COVID-19,
especially pneumonitis.43

Univariate analysis for parameters associated with positive/
adequate (antispike antibodies ≥1000 AU/mL) serological
responses showed correlations that included IgM ≥0.53 g/L,
IgG3 ≥0.22 g/L, absence of treatment in the last 12 months, and
absence of current CLL therapy (including CD20-containing
therapy), all consistent with our previous study,9 except for
IgG2 (OR, 1.85; P = .1763). Although the ORs for ibrutinib and
venetoclax of 2.33 and 1.73, respectively, did not achieve a low
P value owing to the small number of patients, it is possible that
these data reflect clinically significant risks for failure to sero-
convert. The association between vaccine response and IgG3
≥0.22 g/L again suggests that the IgG3 subclass is important in
COVID-19 vaccine efficacy.55

Reduced IgM is again identified as a major contributing factor
to poor serological responses and to being a late responder.
IgM deficiency is extremely common in early-stage CLL,3

72.2% in the current cohort, and almost half of MBL (49.3%)
in our center (unpublished data). The importance of IgM in the
primary immune response was apparent in serological
responses after the initial 2 doses, and this study reinforces this
finding with multiple vaccine doses. Total IgG levels, as
opposed to adequate IgG2 or IgG3 subclass levels, were not
associated with positive vaccine response, in keeping with
IgG1 not being an important determinant of COVID-19 vac-
cine response.

Multivariate analysis confirmed IgM ≥0.53 g/L (OR, 2.90;
P = .0314), IgG3 ≥0.22 g/L (OR, 3.26; P = .0057), and the
absence of current CLL therapy (OR, 2.48; P = .0574) as key
statistical associations with adequate serological responses
(antispike antibodies ≥1000 AU/mL), consistent with our previ-
ous report and the literature.9-12,25-27 Unlike others,10,11,25

reduced IgA was associated with either complete vaccine fail-
ure or failure to achieve antispike antibodies ≥20 000 AU/mL
after multiple doses, in univariate analyses. Differences in
the diagnostic antispike antibody assay performance56,57

(Abbott9,12 vs Roche10,11) may contribute to discrepancies in the
identification of statistically significant predictors of responses.
MULTIPLE COVID-19 VACCINE DOSES IN CLL AND MBL
In summary, multiple sequential COVID-19 vaccine doses
significantly increase serological responses, both seroconversion
and higher antispike antibody levels, together with neutralizing
activities, and resulted in stronger SARS-CoV-2–specific T-cell
response in a high proportion of patients with CLL and in virtually
all patients with MBL. These data are consequential and globally
applicable for patients with CLL and MBL that are immunocom-
promised. COVID-19 vaccination policies must address the
specific needs of these patients and afford them an optimal level
of protection as the pandemic proceeds.
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